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Background: Long-standing ulcerative colitis (UC) leading to colorectal cancer (CRC) is one of the most serious and life-
threatening consequences acknowledged globally. Ulcerative colitis-associated colorectal carcinogenesis showed distinct
molecular alterations when compared with sporadic colorectal carcinoma.

Methods: Targeted sequencing of 409 genes in tissue samples of 18 long-standing UC subjects at high risk of colorectal
carcinoma (UCHR) was performed to identify somatic driver mutations, which may be involved in the molecular changes during the
transformation of non-dysplastic mucosa to high-grade dysplasia. Findings from the study are also compared with previously
published genome wide and exome sequencing data in inflammatory bowel disease-associated and sporadic colorectal
carcinoma.

Results: Next-generation sequencing analysis identified 1107 mutations in 275 genes in UCHR subjects. In addition to TP53 (17%)
and KRAS (22%) mutations, recurrent mutations in APC (33%), ACVR2A (61%), ARID1A (44%), RAF1 (39%) and MTOR (61%) were
observed in UCHR subjects. In addition, APC, FGFR3, FGFR2 and PIK3CA driver mutations were identified in UCHR subjects.
Recurrent mutations in ARID1A (44%), SMARCA4 (17%), MLL2 (44%), MLL3 (67%), SETD2 (17%) and TET2 (50%) genes involved in
histone modification and chromatin remodelling were identified in UCHR subjects.

Conclusions: Our study identifies new oncogenic driver mutations which may be involved in the transition of non-dysplastic cells
to dysplastic phenotype in the subjects with long-standing UC with high risk of progression into colorectal neoplasia.

Colorectal cancer is the cancer of lower digestive system which has
been implicated in patients with a history of chronic ulcerative
colitis (UC), an inflammatory bowel disease (IBD) (Eaden
et al, 2001; Xie and Itzkowitz, 2008; Navaneethan et al, 2013). It
is the cancer of western world but has recently been reported with
increasing frequencies in several South Asian countries, including
India (Sung et al, 2005; Ray, 2011). Molecular alterations associ-
ated with sporadic form of colorectal cancer (S-CRC) are
well established (Leary et al, 2012; Yashiro, 2015). Based on the

previous studies, it is known that spectrum of mutations of
colorectal tumours in patients with long-standing UC has both
similar and distinct features when compared with sporadic
tumours. The S-CRCs exhibits different clinicopathological fea-
tures compared with that of UC-associated CRCs (UC-CRC), thus
indicating unique genetic variations or mutations responsible for
dysplasia (Ali et al, 2011). Loss of p53 expression occurs much
earlier in IBD-associated CRC compared with the sporadic form
(Goretsky et al, 2012). KRAS, a proto-oncogene, has been reported
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with decreased mutations (8–24%) rates in UC-CRC com-
pared with S-CRC where the mutations are reported with higher
frequency (40–50%) (Tomlinson et al, 1998). Similarly, gene
expression profiles and miRNA analysis showed distinct patterns
in UC-associated and in sporadic form of colorectal carcinoma
(Colliver et al, 2006; Olaru et al, 2011; Kanaan et al, 2012; Wu et al,
2014). Analysis of gene-specific methylation in UC with and
without neoplasia (Konishi et al, 2007; Dhir et al, 2008; Garrity-
Park et al, 2010) showed similar and distinct signatures when
compared with S-CRC. Taking a clue from these observations, it is
clear that the molecular pathways that drives the malignant
progression in two scenarios have some similarities with majority
of them are being unique signatures. Chronic inflammation of
colonic mucosa in long-standing UC has an important role in the
generation of reactive oxygen species, which in turn can aid in
genomic instability. A detailed analysis of mutational spectrum
using a comprehensive gene panel could help to understand the
promutagenic role of inflammation and other molecular alteration
favouring carcinogenesis in subjects with long-standing UC. At
present, little is known about the molecular alterations that govern
the colitis-derived neoplasia in several population. UC-associated
CRC studies have shown sequential mutations in the KRAS, BRAF
and TP53 genes in an Indian population (Shivakumar et al, 2012;
Laskar et al, 2015). Previously, our group has reported few
molecular signatures using conventional Sanger sequencing, PCR-
RFLP and multiplex PCR (Shivakumar et al, 2012). Subsequently,
we have reported genome-wide analysis of copy number variation
in UCLR, ulcerative colitis high risk (UCHR) and S-CRN, and
showed significant copy number change and its association with
the progression of cancer from its early stage (Shivakumar et al,
2015, 2016). Recently, two independent studies have demonstrated
the utility of targeted sequencing of cancer gene panel to identify
clinically relevant mutations from CRC patient tissues using ion
torrent next-generation sequencing (NGS) platform (Singh et al,
2014; Malapelle et al, 2015). In the present study, we have
performed targeted sequencing of 409 genes for the identification
of driver gene mutation in long-standing UC patients with and
without dysplasia, that is, progressor and non-progressor pheno-
type, who are at high risk of developing colorectal carcinoma.

MATERIALS AND METHODS

Study subjects. This study was approved by Ethics Committee
of Kasturba Medical Hospital, Manipal University, Manipal. All the
patients provided informed consent before participating in the
present study. Ulcerative colitis patients (n¼ 26) at high risk of
associated colorectal neoplasia (UC-HR, X7 years of extensive
colitis or X10 years of left-sided colitis), who were in remission
underwent magnification chromo-colonoscopy as a part of
surveillance colonoscopy from September 2008 to January 2011.
These subjects were recruited and divided in two groups. Dysplasia
was identified histologically according to the Riddell grading as
indefinite, low grade (LGD) or high grade (HGD) on colonoscopic
biopsies obtained from areas of abnormal pit pattern identified by
at the time of magnifying chromo colonoscopy performed using an
� 80 magnification colonoscope (EC-3870 LZK, Pentax Corpora-
tions, Tokyo, Japan) (Hurlstone et al, 2005; Shivakumar et al,
2012). Ulcerative colitis high-risk subjects were subdivided as non-
progressors or progressors depending on the absence or presence
of neoplastic lesions on histopathology. The groups were as
follows: (a) UCHR non-progressors (UCHR-NP), which consisted
of 13 UC patients with high risk but without any dysplasia and
(b) UCHR progressors (UCHR-P) wherein there were 13 patients
with dysplasia or cancer. Tissue biopsies were collected from study
subjects with UC at high risk of associated colorectal neoplasia

(UC-HR, X7 years of extensive colitis or X10 years of left-sided
colitis) for molecular analyses.

Targeted sequencing of 409 genes using ion torrent. DNA was
extracted from fresh tissue biopsies using NucleoSpin tissue extraction
kit (MACHEREY-NAGEL Inc., Bethlehem, PA, USA). Purity of the
DNA was determined using NanoDrop ND1000 Spectrophotometer
(Thermo Scientific, Waltham, MA, USA). Purified DNA was quantified
using Qubit dsDNA HS (High-Sensitivity) Assay Kit (ThermoFisher
Scientific, Waltham, MA, USA) and subsequently used for library
preparation. Next-generation sequencing for the detection of clinically
relevant mutations in the exonic region of Ion AmpliSeq comprehen-
sive cancer panel (CCP 409 gene panel) genes in the UCHR-P and -NP
patient samples was carried out using Ion Proton NGS platform.

Library preparation for ion comprehensive cancer panel genes.
In the present study, we have performed targeted NGS of long-
standing UC subjects (n¼ 18) who are at high risk of progressing
into CRC (UCHR-P¼ 9 and UCHR-NP¼ 9). Library preparation
for 409 genes was performed using Ion AmpliSeq DNA library kit
(ThermoFisher Scientific) along with primer pools from Ion
Comprehensive Cancer Panel (4000 primer pairs in 4 pools) as per
the manufacturer’s instructions (ThermoFisher Scientific). Com-
prehensive cancer panel facilitates PCR based amplification capture
and sequencing the coding regions of the 409 genes involved in
various cellular pathway frequently altered during the process of
carcinogenesis. The panel requires 60 ng DNA per tissue samples
in four PCR reactions with each reaction utilising 15 ng DNA
involving a total of 16 000 primer pairs (4000 primer pairs in each
PCR reaction) for targeted sequencing of 409 genes. Each sample
was barcoded using Ion Express Barcode Adapter 1–16 kit
(ThermoFisher Scientific). Each library prepared were subse-
quently quantified using Agilent Bioanalyzer 2100 using Agilent
HS DNA kit (Agilent Technologies, Santa Clara, CA, USA).

Emulsion PCR and targeted sequencing of cancer panel genes
using ion proton. Automated emulsion PCR was performed to
clonally amplify the CCP gene DNA library using Ion PI Template
OT2 kit v2 (ThermoFisher Scientific) following the manufacturer’s
instruction. The enriched template positive ion sphere particles
were then loaded onto a Proton PI v2 chip and sequenced using
Ion proton system (ThermoFisher Scientific).

Sequencing analysis and variant calling. Sequencing reads obtained
from Ion Proton were aligned to human reference sequence (human
genome build-19) and variant calling was performed using Ion
Torrent Variant Caller v5.0 in Torrent Suite software v5.0 (Thermo-
Fisher Scientific). After the reads were aligned to the reference
sequence, noisy and low quality reads were removed and sequence
variants were detected using Ion Torrent Variant Caller Plugin
software v5.0 with optimised parameters (AmpliSeq Designer,
ThermoFisher Scientific) for low-frequency variant detection with
minimal false-positive calls. Further, variant calls were filtered based
on the technical characteristics such as (1) variant quality score,
(2) variant coverage and (3) variant allele frequency. Amplicon
coverage was determined via Coverage Analysis Plugin software v5.0.
ThermoFisher Scientific Alignment reads and variants called, with
respect to the reference human genome sequence, were viewed using
Integrative Genomic Viewer software (Thorvaldsdóttir et al, 2013)
and to check for strand biases, homopolymer length and sequencing
errors. The variant caller plug-in generates a variant caller file or VCF
file, which was subsequently imported to Ion Reporter software v5.0
(ThermoFisher Scientific) for variant annotation and filtering.

Functional significance of missense variants in UCHR subjects.
Ion Reporter employs public databases such as, COSMIC v67,
Ensembl74 and dbSNP for annotation. Variants with base call
quality below 20 were filtered out. Non-coding and synonymous
mutations were excluded for downstream analysis in all the UCHR
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barcoded samples. CRAVAT (Cancer-Related Analysis of Variants
Toolkit), a tool specifically tailored to analyse cancer-specific
variants, was used for identification and prioritisation of genes with
possible role in cancer tumorigenesis in each UCHR subjects
(Douville et al, 2013). Identification and annotation of cancer-
specific driver missense mutation was performed using CHASM
(Cancer-specific High-throughput Annotation of Somatic Muta-
tions) for UCHR subjects (Carter et al, 2009, 2010). To identify and
prioritise pathogenic missense mutation, we have used Variant
Effect Scoring Tool, a supervised machine learning-based classifier
for each UCHR subject (Carter et al, 2013). cBio cancer genomics
portal (http://www.cbioportal.org/) was used for the representation
of the mutations in UCHR subjects (Cerami et al, 2012). We have
taken additional care to filter germline variants as UCHR-P and -
NP in high-risk UC patients were analysed against unmatched
normal control. We have excluded silent and known germline
variants using dbSNP, ESP (http://evs.gs.washington.edu/EVS/)
and ExAC (http://exac.broadinstitute.org/) (variants with 41%
minor allele frequency), and remaining missense variants were
analysed with known somatic mutations using COSMIC v67, The
Cancer Genome Atlas Research Network (TCGA) and whole-exome
sequencing data sets for IBD-associated colorectal carcinoma.
Analysis of mutation pattern was performed by collating the base
substitutions into six different categories representing six different
base change pattern. This was further subdivided into 16 possible
combinations by extracting the trinucleotide context of the mutated
base yielding 96 categories. Mutation signature, analysis of transition
and transversion mutation, and mutation spectrum in UCHR subjects
were performed using Maftools (Mayakonda and Koeffler, 2016).

Copy number analysis in UCHR subjects. Copy number analysis
was performed by comparing normalised coverage of individual
genes in UCHR subjects and in normal control using Ion Reporter
software v5.0 (ThermoFisher Scientific). The patient who under-
went colonoscopy for clinical symptoms and found to be normal
during colonoscopy and histopathology were considered as control
group. DNA was extracted from 10 male subjects with no organic
colonic disease confirmed by colonoscopy and histopathological
analysis, pooled at equimolar concentration and employed for copy
number analysis. The quality and quantity of pooled control DNA
was analysed using NanoDrop ND1000 Spectrophotometer and
Qubit dsDNA HS Assay Kit.

RESULTS

Technical performance of the ion comprehensive cancer panel.
Our study aimed to identify potential driver mutations in
colorectal carcinogenesis process in subjects with long-standing
UC at risk of CRC. To achieve this, targeted sequencing of 409
genes, involved in various molecular pathways altered during the
process of carcinogenesis, were performed in 18 UCHR subjects
(Supplementary Table 1). An average of 16 million mapped reads
were generated in each subject with 497% reads were on target in
all UCHR subjects. In our data, the average mean depth per sample
was 41000�with uniformity of base coverage 494% in all
UCHR subjects (Supplementary Table 2).

Mutational spectrum in UCHR subjects. Variant calling was
performed using Ion Torrent Variant Caller v5.0 (TSV) in Torrent
Suite software v5.0. Identified variants in each UCHR subjects were
annotated and filtered with custom filters using Ion Reporter
software (Supplementary Figure 1). After filtering, our bioinfor-
matics analysis narrowed down to 1107 potentially deleterious
somatic mutation including 1074 missense and 33 nonsense
mutations in 275 genes in 18 UCHR subjects (Supplementary
Table 3, and Figure 1A and B). We observed more number of
transitions than transversion mutations in all UCHR subjects

(Figure 1C). Although comparing the base change pattern for all
the mutations, we observed majority of them were C to T
transition as previously reported in other cancers (Kandoth et al,
2013) including colorectal adenocarcinoma and may occur due to
spontaneous deamination of methylated cytosine (Figure 1C and
D, Supplementary Figure 2). Mutational signature analysis using
somatic single base substitutions identified in UCHR subjects was
performed as previously discussed (Alexandrov et al, 2013). When
compared with validated mutational signatures, it was found to
be most similar to mutational signature observed in CRC with
predominant C4T transitions (Figure 1E). Mutations identified in
UCHR subjects were plotted using CIRCOS visualisation tool
(Zhang et al, 2013) (Figure 2).

Recurrent mutation in UCHR subjects. Overall, we identified
1107 mutations in 275 genes in all UCHR subjects. Among them,
62 genes were recurrently mutated in two or more UCHR subjects
(Supplementary Table 4). Among the 62 recurrently mutated
genes, oncogenes KRAS, PIK3CA, FGFR2, FGFR3, PDGFRA and
RAF1, and tumour suppressor genes APC, TP53, TET2 and
ATM showed mutation rate of 410 mutations/Mb (Figure 3). We
found ARID1A, EP300 and SMARCA4, involved in chromatin
remodelling process, were recurrently mutated in UCHR subjects
(Supplementary Figure 4). ARID1A, a subunit of the SWI/SNF
chromatin remodelling complex, regulates gene expression by
controlling the accessibility of DNA to transcriptional machinery.
Earlier studies have established ARID1A gene as novel tumour
suppressor in several cancers and it has been found frequently
mutated in microsatellite unstable colorectal carcinoma (Cajuso
et al, 2014). In addition, we have identified recurrent mutation is
MLL, MLL2, MLL3, SETD2, KDM5C and TET2 genes involved in
histone modification and DNA demethylation processes. Among
them, somatic mutations in histone-lysine N-methyltransferase
2 (KMT2) family proteins (MLL, MLL2 and MLL3) have been
previously reported (Guo et al, 2013). Among the recurrently
mutated genes in UCHR subjects, ATM, FGFR3, AKAP9,
MTOR and ACVR2A are known cancer drivers identified by
IntOGen-mutations analysis pipeline (Gonzalez-Perez et al, 2013)
(Figure 3B). We compared recurrent mutations identified in
UCHR subjects with recurrent mutated genes identified in IBD-
associated colorectal carcinoma subjects (Robles et al, 2016). In
addition to TP53 and KRAS mutation, we have identified multiple
mutations in APC, MTOR, TRRAP and EP300 genes in more than
one UCHR subjects (Supplementary Table 5).

Cancer driver mutations in UCHR subjects. We have applied
CHASM to all the missense mutations identified in the UCHR
subjects to identify driver mutation in CRC progression. Missense
mutations were identified and annotated as drivers (false discovery
rate o0.15) with the CHASM algorithm in the UCHR subjects.
In addition, we considered all nonsense mutations and splice-site
changes as drivers, as these changes are involved in structural
and functional alteration of the protein products. In addition to
TP53 and KRAS mutations, we have identified oncogenic driver
mutations in APC, FGFR3, FGFR2, PDGFRA and PIK3CA in
UCHR subjects. Among the others AKT1, ATM and TET2
were found to be mutated in both UCHR-P and -NP subjects
(Supplementary Table 6 and Supplementary Figure 3). We
compared the mutations identified in UCHR subjects with the
sporadic colorectal neoplasia data reported by TCGA. When
compared with TCGA-CRC data Cancer Genome Atlas Network
(2012), we identified SYNE1, LRP1B, ARID1A, ACVR2A, ABL2,
FGFR3, PDGFRA, AKAP9 and TAF1L gene with high mutation
frequency (40% or more) in UCHR subjects (Supplementary
Table 7). Driver genes identified in UCHR subjects were stratified
based on their known role in cancers using the Broad Institute’s
GSEA analysis. We identified 15 oncogenes (AKT1, CCND1,
CREBBP, EGFR, ERBB2, FGFR2, FGFR3, JAK3, KRAS, MET, MPL,
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PDGFRA, PIK3CA, RUNX1 and TSHR) and 10 tumour suppressor
genes (APC, ASXL1, ATM, KDM5C, MSH6, PTCH1, SMARCA4,
STK11, TET2 and TP53) with potential driver mutations in UCHR
subjects (Supplementary Table 8).

Gene Ontology and pathway altered in UCHR subjects. Gene
Ontology analysis identified enrichment in ontologies associated
with DNA recombination, DNA repair, cell differentiation,
immune response and cell cycle (Supplementary Table 9).

Mutated genes were significantly enriched for most of the
major cancer pathways including CRC, prostate cancer, pancreatic
cancer, endometrial cancer, melanoma and for glioma pathways
(Supplementary Table 10). We found that WNT signalling path-
way was altered, which includes inactivating mutation in APC in
6 out of 18 UCHR subjects, CTNNB1 mutation in 2 out of 18 and
EP300 mutations in 3 out of 18 UCHR subjects respectively.
Similar to the observations made in previous CRC studies, we
noticed recurrent mutation in genes belong to PI3K-Akt signalling
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pathway (AKT1, FGFR2, FGFR3, IGF1R, PDGFRA, TP53 and
RAF1), TGF-b receptor pathway (ACVR2A, SMAD2/4 and
TGFBR2), Ras signalling (ABL2, KRAS, FGFR2, FGFR3, PDGFRA,
IGF1R and RAF1), mTOR signalling pathway (MTOR, AKT1,
PIK3CA, PIK3CG, PIK3CD, STK11 and TSC2) (Figure 4). We
observed TRRAP, EP300, MLL, MLL2 and MLL3 genes mutated in
UCHR subjects involved in chromatin remodelling. MLL3 gene
frameshift mutation with loss of expression has been previously
reported in gastric and CRC (Je et al, 2013). EP300 and TRRAP are

involved in chromatin remodelling via histone acetylation facil-
itating p53-mediated transcription.

Recurrent mutation in chromatin remodelling complex proteins
and histone-modifying proteins in UCHR subjects. Chromatin
remodelling is a dynamic process that regulates transcription in
normal cell. Previous studies have shown genetic alteration and
aberrant regulation of ATP-dependent chromatin remodelling
complex proteins and nucleosome histone-modifying complexes
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have been identified as one of the key process facilitating
carcinogenesis (Nakazato et al, 2016). Epigenetic alteration, which
includes histone methylation, has an important role in carcinogen-
esis. Altered expression of several histone methyltransferase
enzymes have been implicated in several cancers including CRC.
Human KMT2 family, also known as mixed-lineage leukaemia
(MLL) family, initially discovered in this disease. Recently, several
genome-wide and targeted sequencing studies have revealed
widespread mutations in KMT2 gene family in many types of
human cancers. Ongoing studies identified the link between KMT2
gene family deregulation and its roles in tumorigenesis (Rao and
Dou, 2015). In our study, we identified recurrent mutations in
MLL (KMT2A), MLL2 (KMT2D) and MLL3 (KMT2C) in UCHR
subjects. In addition, we identified mutation in ARID1A, ATRX,
SETD2, PRDM1, EP300 and NSD1 gene involved in regulation of
gene expression by histone modification and chromatin remodel-
ling (Supplementary Table 3 and Supplementary Figure 4A and B).
In addition, SMARCA4 gene, a member of the SWI/SNF family of
proteins, was mutated in three out of nine UCHR-P subjects
(Supplementary Figure 4A and B). Mutation in SMARCA4 gene
has been reported in lung cancer and ovarian cancer (Rodriguez-
Nieto et al, 2011). We have further identified a heterozygous
insertion mutation in the MLL3 (KMT2C) gene on chromosome 7
(151945071 bp, insT; Human Genome assembly GRCh37/hg19) in
both UCHR-P and -NP subjects. MLL3 gene insertion, which starts
at codon 817 in exon 14, results a frameshift mutation causing
premature stop codon at codon 827. In addition, we identified
recurrent MLL3 somatic mutations in all the UCHR subjects
(Supplementary Figure 4A).

Copy number variants identified in UCHR subjects. Analysis of
relative copy number in UCHR subjects were also assessed from the
targeted sequencing data. We have identified 10 copy number-
amplified regions with more than 3 copy number in UCHR subjects
(Supplementary Table 11). Copy number-amplified regions identified
in our study include MYC oncogene (8q24.21), ERBB2 (17q12),
MYCN (2p24.3) and IRS2 (13q34) reported previously in IBD-
associated colorectal carcinoma (Robles et al, 2016). MYC gene
amplification was previously identified in UCHR subjects by our
group (Shivakumar et al, 2016). MET proto-oncogene and ABL1
oncogene amplification, previously reported in colon cancer, have
been observed in UCHR subjects. Although ABL1 oncogene ampli-
fication is observed in both UCHR-P and -NP, MET proto-oncogene
amplification is observed only in UCHR-Ps (n¼ 3). We observed
copy number gain in 20q12 harbouring topoisomerase 1 (TOP1),
receptor-type tyrosine-protein phosphatase T (PTPRT) and phos-
pholipase C, gamma 1 (PLCG1) in UCHR subjects. Chromosome
20q12 gain is commonly observed in sporadic colorectal carcinoma
and may play a possible role in transformation of adenoma to
carcinoma (Carvalho et al, 2009). PTPRT functions as an oncogene
and has been reported to be recurrently amplified in colorectal
carcinoma (Laczmanska et al, 2014).

DISCUSSION

Long-standing UC with LGD experiences a higher incidence of
colorectal carcinoma than the rest of the population (Herrinton
et al, 2012; Choi et al, 2015). Our study population belongs to
region with low incidence of both UC and UC-associated CRC.
Moreover, little is known about the molecular alterations aiding the
malignant transformation in UC patients in Indian population.
Recently, few reports have highlighted close association of
molecular signature patterns identified in CRC in India and that
of the western population (Gupta et al, 2010; Laskar et al, 2015).
In colorectal carcinoma, the malignant transformation occurs by
acquiring series of driver mutations in sequential manner. Recent

NGS studies in sporadic CRCs have extensively classified driver
mutations accumulated during progression of CRC. Molecular
alterations commonly observed include (a) defective DNA
mismatch repair with microsatellite instability, (b) somatic copy
number alterations (8q, 13q, 17q, 20q), (c) activating mutation in
KRAS and PIK3CA oncogene and (d) inactivating mutation and
LOH in APC and TP53 tumour suppressor genes. Although, some
of the cellular pathways involved in carcinogenesis are same in
sporadic and UC-associated colorectal carcinoma, recent studies
highlighted that APC mutations appear early, whereas TP53
mutation appears late in sporadic colorectal carcinoma. Similarly,
TP53 mutations is an early event and APC inactivating mutation is
seen in later stages of UC-associated colorectal carcinoma (Ullman
and Itzkowitz, 2011; Carethers and Jung, 2015; Robles et al, 2016).

The objective of our study was to identify (a) common
molecular alteration in the genes in UCHR subjects previously
associated in UC-associated and sporadic colorectal carcinoma,
and (b) unique molecular alteration in the genes that are not
frequently altered in sporadic colorectal carcinoma however may
have a role in UC-associated carcinogenesis. Long-standing UC
subjects were classified by using magnification chromo-colono-
scopy into UCHR-P with neoplastic lesions and UCHR-NP were
without neoplastic lesions. Targeted sequencing of 409 genes
performed in 18 UCHR subjects with and without neoplastic lesion
identified 1107 somatic mutations in 275 genes implicated in
various molecular pathways, which are altered in UC-associated
and S-CRC. Somatic mutation in APC was observed in 6 out of 18
UCHR subjects. APC mutations with altered WNT signalling
pathway is frequently observed in sporadic colorectal carcinoma
subjects. We have identified a nonsense mutation with premature
stop codon in APC (R1114*) in one UCHR subject with HGD.
Among the other genes in WNT signalling pathway, CTNNB1
mutation was found in 2 out of 18 UCHR subjects. KRAS mutation
(G13D, G12D and Q61H) was observed in 4 out of 18 UCHR
subjects. Although TP53 mutation was found in 4 UCHR subjects
with HGD (UCHR-P), which is commonly seen as an early
molecular event that occurs during UC-CRC tumorigenic process.
However, we did not observe TP53 mutation in UCHR subjects
without dysplastic phenotype (UCHR-NP), which could possibly
be because of the small sample size. In our study, we did not find
BRAF mutation in any of the UCHR subjects. Based on the
previous reports, frequency of BRAF mutations is less in sporadic
CRCs (6–11%) and in UC-associated colorectal neoplasia (9%)
(Aust et al, 2005). It is reported that BRAF mutations frequency is
higher in microsatellite instable CRCs developed through the
mutator or serrated pathway (Aust et al, 2005). Frequent somatic
mutations in TGFBR2 and SMAD4, members of canonical TGF-b
signalling pathway, were reported in CRCs. In our study, TGFBR2
missense mutation and a nonsense mutation with premature stop
codon in SMAD4 (Q169*) was found in two UCHR subjects with
high grade dysplasia.

Deregulation of histone lysine methyltransferase activity leading to
aberrant chromatin remodelling has been reported in various cancers
(Rao and Dou, 2015). It is known that altered chromatin modification
contribute to aberrant cell proliferation via altered expression pattern
of oncogenes and tumour suppressor genes or by inducing genome
instability (Benard et al, 2014). Mutation in MLL2, encoding a histone
methyltransferase, has been implicated in substantial transcription
stress and genomic instability (Kantidakis et al, 2016). MLL3 gene
germline insertion mutation was previously reported in a pedigree of
CRC (Li et al, 2013). In our study, we observed recurrent mutations
in MLL (KMT2A, H3K4me1/2/3), MLL2 (KMT2D, H3K4me1/2/3)
and MLL3 (KMT2C, H3K4me1/2/3) in UCHR subjects. Mutation
in NSD1 (H3K36me1/2/3), SETD2 (H3K36me1/2/3) and PRDM1
(H3K9me1/2/3) was also observed in UCHR subjects. Massively
parallel sequencing of cancer genome projects involving large number
of subjects have identified recurrent mutation in mammalian SWI/
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SNF complex and its associated proteins. SWI/SNF nucleosome
remodelling complex is a known tumour suppressor in many human
malignancies. We have identified frequent somatic missense mutation
in ARID1A and SMARCA4 in UCHR subjects. ARID1A has been
previously reported to be frequently mutated in colon and rectal
carcinoma and is a known epigenetic tumour suppressor gene. Recent
study has shown ARID1A deficiency promotes colon cancer in animal
model (Mathur et al, 2017). Together, these finding suggests an in-
depth interrogation is required to understand the widespread
mutation in epigenetic regulators, chromatin remodelling complex
genes and their contribution in epigenetic regulation of histone,
transcriptional stress, and genome instability during colorectal
carcinogenesis.

Several mutations and copy number alteration, which are
already established as oncogenic driver genes in the colorectal
carcinogenesis have been identified in our study. These include
AKT1 and RAF1 (EGF receptor signalling pathway) APC, CTNNB1
and TP53 (WNT signalling pathway), FGFR2, FGFR3, AKT1, RAF1
(FGFR signalling pathway), PIK3CA mutation along with IRS2,
ERBB2, EGFR, MYC, MET and ABL1 gene amplifications in UCHR
subjects. In addition, we have observed PTPRT (20q12) gene
amplification in 10 out of 18 UCHR subjects. PTPRT belongs to
tyrosine phosphatase gene superfamily and has been previously
reported to have dual roles as oncogene and tumour suppressor
gene in a context-dependent manner in human cancers. Previously,
PTPRT gene was reported to be frequently amplified in sporadic
colorectal carcinoma without BRAF mutation (Laczmanska et al,
2014).

From a low resource country, this is one of the few attempts to
study by targeted sequencing-based comprehensive analysis of
mutation spectrum in cancer-associated genes for the identification
of driver mutation in long-standing UC subjects. Data generated
from this study highlight a possible mechanism of early molecular
changes that occur during transformation of colitis to low grade
dysplasia into carcinoma. Although the study population repre-
sents a low incidence rate of UC-associated colorectal carcinoma,
findings from the study could be tested in a larger cohort to assess
the role of somatic driver mutations and its potential for an early
molecular signature. To complement our findings, an in-depth
analysis of gene expression and epigenetic regulation of driver
genes could facilitate deeper perspective of the pathophysiology of
CRC and may also identify potential therapeutic targets.
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