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Abstract: Skin is the external part of the human body; thus, it is exposed to outer stimuli leading to
injuries and damage, due to being the tissue mostly affected by wounds and aging that compromise its
protective function. The recent extension of the average lifespan raises the interest in products capable
of counteracting skin related health conditions. However, the skin barrier is not easy to permeate
and could be influenced by different factors. In the last decades an innovative pharmacotherapeutic
approach has been possible thanks to the advent of nanomedicine. Nanodevices can represent an
appropriate formulation to enhance the passive penetration, modulate drug solubility and increase
the thermodynamic activity of drugs. Here, we summarize the recent nanotechnological approaches
to maintain and replace skin homeostasis, with particular attention to nanomaterials applications
on wound healing, regeneration and rejuvenation of skin tissue. The different nanomaterials as
nanofibers, hydrogels, nanosuspensions, and nanoparticles are described and in particular we
highlight their main chemical features that are useful in drug delivery and tissue regeneration.

Keywords: nanomaterials; stem cells; cellular mechanisms; skin; regenerative medicine

1. Introduction

Skin represents the first line of defence of the human body, being exposed to external
stimuli, thus playing an essential role against injuries and damages [1,2]. Wound and aging
are two processes arising from skin exposure to injuries. For this reason, tissue regeneration
and rejuvenation represent fields of interest in clinical practice. Within this context, the use
of scaffolds, nanomaterials and bioactive molecules, has been largely employed to support
tissue homeostasis.

1.1. Aging

Aging in skin arises from two different mechanisms: an intrinsic and an extrinsic
aging. These processes are associated with the progressive loss of function and higher
stress sensitivity of the involved tissues and cell types, influencing human life and affect-
ing featured phenotypic changes [3]. Intrinsic aging takes place along time, involving
tissues of the entire organism. On the other hand, extrinsic aging, also called photoaging,
arises from environmental stimuli and is related to lifestyle, nutrition and stress response
mechanisms [4]. UV radiation is one of the external stimuli affecting skin, generating
photo-oxidative stress on skin cell populations [5]. Then, epidermal layer undergoes ker-
atinocyte turnover to replace damaged elements [6]. However, the dermis is more affected
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by extrinsic aging, with loss of tone and hyperpigmentation, deeply changing residents cell
behaviour [7]. Moreover, the dermal layer mainly comprises extracellular matrix (ECM)
whose collagen fibrils and hyaluronic acid organization and production change during
aging [8,9]. The reduced amount of ECM fibres results in a diminished elasticity and
thickness of the tissue. Within this context, age-specific changes in collagen turnover and
production have also been described [10,11].

Stem cells play a crucial role in maintaining tissue homeostasis thanks to their capabil-
ity to replace damaged cells restoring tissue functions [12]. Stem cells are undifferentiated
elements able to replace damaged elements differentiating after specific stimuli [13,14].

For this reason, preserving stem cell plasticity and differentiation capability represents
an important goal in tissue regeneration. Nevertheless, skin stem cells (SSCs) are affected
by damages as the other cell populations in the tissue, undergoing different changes: they
downregulate stemness related genes and lose the capability to replace damaged elements
triggering tissue aging [15,16]. Besides stem cells, fibroblasts also accumulate cellular
damages leading to a minor ECM production along with aging [17–19].

Nanomaterials can stimulate SSCs proliferation and the maintenance of a young
phenotype and the modulation of fibroblast gene expression leading to a proper ECM
production and guaranteeing a young skin thanks to the photoprotection and the antiaging
qualities [20,21].

1.2. Wound Healing

The term wound indicates all the damages or disorders of skin due to trauma or
therapeutic conditions. Once a wound occurs, skin loses its morphological features and
functions in the affected area. These damages can be either acute or chronic, depending
on duration. Acute wounds arise from mechanical or physical damages occurring after
heat, electricity or chemicals exposition as well as after surgery. This type of wound is
rapidly solved when properly managed. On the other hand, chronic wounds are very
complex events, with difficult resolution, being often a complication of other diseases like
diabetes [22]. The wound area can be colonized by microorganisms leading to making the
healing process slower and more complicated [23].

Wound healing comprises a sequence of events involving various cell types and
molecules, usually divided into different phases. The first is the inflammatory phase
involving platelet and biological signals [24,25].

Then, the proliferative phase occurs, when regeneration restores skin functions. The
main actors of these events are stem cells and fibroblasts, that, by migrating to the damaged
site, take care of extracellular matrix depot and inflammatory mediators secretion [26,27]. Fi-
broblasts are responsible for wound closure, from the early inflammatory phase to the final
phase comprising extracellular matrix production, essential to restore skin barrier [26]. Ad-
ditionally, stem cells are involved in skin regeneration, undergoing proliferation and differ-
entiation toward keratinocytes and/or fibroblasts before the final re-epithelization [13,27].

1.3. Skin Permeation by Topical Treatments

Products able to counteract age-related complications, ameliorating the wound heal-
ing process, are largely used in medicine and cosmesis [28]. However, the intrinsic features
of skin provide an efficient barrier against elements coming from the environment, also reg-
ulating the flux of chemicals counteracting the transition of hydrophilic and hydrophobics
drugs [29].

The flux of molecules through the skin occurs by passive diffusion, following a
gradient concentration, both via intracellular and extracellular pathways. However, large
molecules cannot permeate the skin and the transdermal delivery is still far from satisfying
the clinic and cosmetic requests [29]. Indeed, drugs can be carried through the skin by three
pathways according to their physical and chemical properties: transappendageal route,
trans-epidermal route or transcellular route [30] (Figure 1). Moreover, skin permeability
could be affected by several factors, including age [31].
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Figure 1. Schematic representation of the three pathways involved in the internalization of molecules through the skin. The
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For these reasons, the accomplishment of skin treatments is not only dependent on
the molecules, but also on the delivery system and its proprieties. Bioactive molecules,
properly delivered, can implement regenerative and rejuvenating processes supported by
skin cell populations. Moreover, a suitable formulation can modulate molecule release,
increasing drug solubility [20,27,33–36]. Nanomedicine discloses novel chances for innova-
tive pharmacotherapeutic approaches enhancing the passive penetration and increasing
the thermodynamic activity of drugs [37,38].

Currently, cosmetic products as sunscreens, hair products, and skin creams contain
nanoformulations [37], and although nanomaterials were first employed in cosmetics thirty
years ago with liposomes, the discovery of novel devices is still a leading research trend,
recently including different materials and techniques such as wound dressing [39,40].

Nanomaterials (Table 1) are particles with at least one dimension in the range 1–100 nm,
showing peculiar properties causing a different kind of interactions with the environ-
ment [41] respect to conventional materials. First, they possess a very high surface-to-
volume ratio compared to bulky matter, that also determines a change in reactivity respect
to their massive counterparts [42]. Second, their size is perfect for an effective interac-
tion with cells, especially when dealing with internalization. Third, domination of some
physical phenomena compared to macroscopic materials, like surface tension, embodies in
nanomaterials unexpected characteristics unknown or negligible in bulky materials. These
characteristics could be, with a great advantage, also utilized in drug delivery systems.

The mechanisms involved in such processes are of a totally different nature with
respect to classical molecules. There are two main routes of entry into the cell: direct
fusion with the plasma membrane or endocytosis. The main route used by nanopar-
ticles to enter into the cell is endocytosis. To date, there are five main types of endo-
cytosis: (1) clathrin-coated cavity-mediated endocytosis (CME; clathrin and dynamin
dependent); (2) endophilin-mediated rapid endocytosis (FEME, a clathrin-independent
but dynamin-dependent) ligand-driven rapid endocytosis of specific membrane proteins);
(3) clathrin-independent carrier (CLIC)/glycosylphosphatidylinositol-anchored protein,
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enriched early endocytic compartment endocytosis (GEEC) (clathrin and dynamin inde-
pendent); (4) macropinocytosis; and (5) phagocytosis (Figure 1) [32].

Table 1. Illustration of the structure and the materials mainly used in the field of skin regeneration and rejuvenation.

Representative Image of Nanomaterial Name Materials Used in Skin Regeneration
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The excretion processes are also different, being that cells are more prone to retaining
nanoparticles than other molecular formulations [43]. Nanomaterials can be functionalised
for cell targeting and drug delivery, so that they are able to transport their cargo of useful
therapeutics directly to the site where they are needed [44]. For these and many other
reasons, nanoparticles represent one of the most promising tools for biomedicine in general,
but specifically for skin and wound repair interventions.

2. Tissue Regeneration and Rejuvenation Strategies

Nanoparticles formed by a single chemical species, like metals or metal oxides, besides
being good antimicrobial agents, are able to exert healing activities on skin lesions and
wounds per se. For instance, gold and silver nanoclusters with sizes between 1.1 and 1.6 nm
were found to be active in skin repair in rat models in vivo [45]. In vitro tests, on the other
hand, evidenced that gold clusters are the most efficient, with better cell uptake and an
improved cell proliferation, probably by enhancing cell metabolism. Moreover, they were
also able to promote cell migration, a crucial step in skin repair, and an anti-inflammatory
activity as ROS scavengers. In general, AuNPs are able to reduce inflammation, pro-
mote granulation tissue formation, and skin tissues do not reject them, due to their high
biocompatibility [46]. On the other hand, AgNPs can enhance keratocyte and fibroblast
proliferation by blocking the respiratory pathways keeping them alive. Moreover, they are
able to suppress the innate immune system, a fact that is related to an increased rate of
wound healing and decreased rate of the scarring process [47].

As a matter of fact, Acticoat® is the first commercial wound dressing containing
silver nanoparticles. The use of silver nanoparticles in skin regeneration finds a significant
example in the clinical practice in a case of toxic epidermal necrolysis by carbamazepine
administration that caused vesiculobullous lesions and erosions on the 70% of the patient’s
body surface. No conventional antibiotic was used to treat skin lesions; only a nanosilver
dressing (based on silver nanocrystals) was applied and kept in place using cotton pads and
crepe bandages. After five days re-epithelialization was observed and healing was complete
after nine days [48]. Another example is nanoceria (spherical cerium oxide nanoparticles,
3–5 nm), that in low doses is able to counteract the effects of UVA-induced photodamage
to the skin, favouring cell survival, migration and proliferation [49]. Copper nanoparticles
(20, 40 and 80 nm, all spherical in shape) are able to promote endothelial cell migration
in a size- and dose-dependent manner while keratinocyte and fibroblast cell proliferation
occurs at specific sizes and concentrations. Larger CuNPs (80 nm) increase collagen 1A1
expression in cultured fibroblast cells more efficiently as compared to smaller ones (40 nm).
Furthermore, copper nanoparticles can accelerate full-thickness skin wounds healing and
increase the formation of new blood vessels in rat models without any drawback [50]. The
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advantage in using metal or metal-based NPs, especially for their antibiotic properties, lies
in the fact that the cationic forms of metals, which are usually the active species, are easily
cleared by a series of detoxification mechanisms able to restore the metal homeostasis, thus
preventing their therapeutic action. On the other hand, metal NPs are able to circulate
in the blood stream or lie inside the cell for a very long time, during which they slowly
dissolve, behaving like a small, continuous reservoir of metal ions, for a prolonged action
towards their target(s) [51]. Metal nanoparticles are thus suitable for many applications
in this research area. Nevertheless, the best results in skin healing and regeneration are
obtained with nanocomposite materials, as described in the following sections. Finally,
it has to be added that bio- or biocompatible polymers, under proper conditions, can
self-assemble to form spherical nanostructures in which drugs can be incapsulated for
delivery and controlled release [52].

Summarizing, nanoparticles in wound healing and regeneration are able to exert
different actions:

(i) Direct stimulation of cell regrowth;
(ii) Antibacterial activity;
(iii) Drug delivery.

These can be often reunited in a single nanoformulation for a synergistic effect and a
faster recovery. All these aspects will be thus discussed and analysed in the next chapters,
and are resumed in Table 2.

Table 2. Nanoparticles mainly used for skin regeneration and rejuvenation, and their functions.

Nanoparticle Description Function/Use

Gold and silver nanoclusters Size between 1.1 and
1.6 nm

Skin repair in rat models in vivo [45].
Enhance cell proliferation in vitro and full thickness wound healing [50].

AuNPs

Biosynthesised
AuNPs are highly
biocompatible and
have less side
effects [53]

Reduction of inflammation, promotion of granulation tissue
formation [46].
Antimicrobial activity [54].
Skin rejuvenation properties [55] including ability to reduce wrinkles [56]
improve skin brightening, promote skin healing, have a cleansing effect,
reduce inflammation and ROS damage, slow down collagen
depletion [57] and elastin degradation [58].

AgNPs

Enhance keratocyte and fibroblast proliferation, suppress the innate
immune system increasing wound healing rate and decrease the scarring
process rate [47].
Antimicrobial activity [59–61].

Nanoceria
Spherical cerium
oxide nanoparticles,
3–5 nm

In low doses are able to counteract the effects of UVA-induced
photodamage, favouring cell viability, migration, and proliferation [49].

Copper nanoparticles
(CuNPs and CuS)

20, 40 and 80 nm, all
spherical in shape

Promotion of size- and dose-dependent endothelial cell migration and
proliferation, accelerate full-thickness skin wounds healing. Increased
collagen 1A1 expression in vitro and increased formation of new blood
vessels in rat models [51].
Antimicrobial activity [54,62–64].

Zinc ferrite (ZnFe2O4) Antimicrobial activity via multiple mechanisms [65].

Silver sulfadiazine Antimicrobial activity in particular against biofilms [66].

2.1. Nanohydrogels and Nanoparticle–Hydrogel Superstructures

Hydrogels are one of the most promising wound dressing materials because their
composition can be tuned to mimic the ECM and provide a moist environment for tissue
regrowth, which in turn promotes re-epithelialisation through epithelial cell migration.
In fact, they are composed of a 3D crosslinked polymeric network able to withhold large
amounts of water while retaining its structure after swelling [67]. This provides an elas-
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ticity close to that of the surrounding tissues, and a permeability to oxygen that prevents
the growth of anaerobic bacteria. Moreover, hydrogels often promote haemostasis, cell
migration and proliferation, thus accelerating the process of healing. Their formulation can
be studied to allow injectability, so that they can fill irregular wounds and adhere more
tightly to the tissue walls.

There are different ways in which a hydrogel-based nanomaterial can be prepared.
Among them, the proper aggregation of polymers (polysaccharides, hyaluronic acid, chi-
tosan, etc.) can lead to the generation of nanohydrogels in the form of nanofilms, nanopar-
ticles or nanofibers [52]. Nanofibers offer a better choice for skin tissue engineering
scaffolds because they are able to imitate the properties of biological tissues (vide infra) [68].
Nanoparticle–hydrogel superstructures, on the other hand, are new materials prepared
by embedding nanoparticles in hydrogels to produce nanoplatforms with highly tunable
properties and a wide range of applications [69]. In fact, when small quantities of nano-
sized materials are added to a polymer matrix, the performance of the resultant material is
improved to an extraordinary level.

Typical components of hydrogels for wound dressings are polyvinyl alcohol (PVA),
sodium alginate (SA), cyclodextrin (CD), hyaluronic acid (HA), polyacrylic acid (PAAc),
polyacrylamide (PAAm), polycaprolactone (PCL), polyethylene glycol (PEG), polylactic
acid (PLA), polyvinyl pyrrolidone (PVP), polyvinyl acetate (PVAc), collagen, pectin, chitin,
and many others [70]. Biodegradable materials are obviously preferred since they degrade
along with new tissue formation. However, their use as such in skin tissue regeneration
is rather limited due to poor mechanical properties. This can be circumvented by incor-
poration of nano- and biomaterials able to reinforce their structure and convert hydrogels
into multifunctional nanocomposites with a series of other advantages [68]. In fact, their
formulation can be properly modified to exert different functions at the same time, as it
often happens also with other nanomaterials for skin regeneration.

2.1.1. Antibacterial Action

This was traditionally achieved by the addition of conventional antibiotics (such as
sulfadiazine, whose properties have been addressed in a dedicated section, vide infra),
but with the advent of nanomaterials this role has been taken by metal or metal-based
nanoparticles (such as gold [71], silver [59–61], copper, zinc oxide, copper oxide or sul-
phide [54,62,63]. Metal nanoparticles (e.g., AuNPs and AgNPs) exert their antimicrobial
activity by a series of mechanisms involving direct interaction with the negatively charged
bacterial cell membrane, its disruption, and subsequent leakage of the inner cellular mate-
rial [51]. Once the NPs get inside the cell, they can further damage it by impairing DNA or
other cellular components. Noble metal NPs can also generate ROS to cause additional
harm to the bacteria [54], and while AuNPs are also able to inhibit the ATP synthase, further
lowering the ATP levels and leading to cell death from a downfall in energy metabolism,
silver in particular can set up a sequence of events that cannot be simultaneously counter-
acted by adaptive measures. For such reasons, AgNPs are not able to induce resistance in
any bacterial strain tested to date, except P. stutzeri that was isolated in silver mines. In a
similar way, CuS NPs, which are well established non-toxic nanomaterials, carry out their
antibiotic action by damaging the cellular membrane and producing ROS [64]. Zinc ferrite
(ZnFe2O4) NPs antimicrobial activity is exerted via multiple mechanisms that include all
those previously cited: cell membrane damage, protein leakage and reactive oxygen species
generation [65].

On the other hand, metal oxide NPs are more prone to exert their antibiotic activity
through photocatalysis and can be activated by proper wavelength irradiation. In fact,
the ultraviolet portion of light is able to produce free radicals when impacting with the
metal oxide nanoparticle surface, such as oxygen and hydroxyl radicals, that can rapidly
kill bacteria [72,73]. Thus, the presence of metal or metal-based NPs in the formulation
of hydrogels, as well as in other composite material used in wound dressing, is highly
desirable [54].
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Another common component in hydrogels possessing intrinsic antimicrobial activity
is a biocompatible, biodegradable and non-toxic natural polymer, chitosan, due to the
interaction of its positive charges with the negative charges on the cellular membranes of
bacteria. Chitosan is often employed in the preparation of biomaterials for wound repair,
although its poor mechanical properties and low water solubility limit its applications.
Therefore, it has to be properly modified or functionalized, for example by introduction of
a quaternary ammonium moiety onto its backbone [74,75].

Antimicrobial peptides (AMPs) are also employed in the formulation of hydrogels [75–77].
They are cationic and amphiphilic (hydrophilic and hydrophobic) α-helical peptide molecules
that represent one of the first-line defences of the host against bacteria, being essential compo-
nents of the innate immune system in various species, including humans, animals and plants.
Cationic peptides interact with the negatively charged bacterial cell membrane, changing
its potential and leading to its disruption, with a series of related event that can result in
cell death. Natural AMPs are rather effective, but possess a series of drawbacks that limit
their use in therapy: they have a short half-life, can be toxic and can cause haemolysis, for
instance [78]. Thus, adequate modification of natural AMPs or synthesis of new peptides
with the right qualities are required to exploit their antibiotic action in nanohydrogels and
other nanomaterials.

2.1.2. Antioxidant Properties

Hydrogels can be formulated to host an antioxidant species to decrease damages
caused by ROS, thus ameliorating the process of wound healing. Such molecules are
usually polyphenols and their derivatives, but also other compounds, from both natural
and synthetic sources, have been employed with remarkable results. Ceria [79], cur-
cumin [80], hydroxycinnamic acid derivatives, such as p-coumaric and ferulic acids [81],
tannic acid [82], propolis [83], natural plant extracts [84–86], anthocyanins [87] and many
other phytochemicals within nanocomposites have been tested for their ROS scavenging
activities with relevant effects, especially in the case of diabetic chronic wounds, where
over-production of ROS can impair angiogenesis and results in continuous inflamma-
tion [88–90].

2.1.3. Drug Release

Hydrogel nanocomposites may function as reservoirs for a controlled release of drugs
and other molecules necessary for an optimal wound healing. For instance, scar sup-
pression can be achieved by slow pulsatile release of an inhibitor of the transforming
growth factor-β (TGFβ) [91]. APOSEC is a novel, innovative drug, able to promote healing
of diabetic foot ulcers, and it was included in a hydrogel tested in the phase I/II study
MARSYAS II with successful results [92]. Pro-angiogenic drug deferoxamine (DFO) was
inserted in a dual-crosslinked mussel-inspired hydrogel with antibacterial and angiogenic
properties applied in the treatment of chronic infected diabetic wounds, and was delivered
via pH modification [93]. The efficacy of drug release in nanoformulations is equally well
documented [68,94].

2.2. Nanofibers and Scaffolds

Nanofibers are fibres featured by high surface area, low basis weight, with a minimum
aspect ratio of 1000:1, high strength rate and high content of small pore size [95–99]. These
nanomaterials are particularly interesting for their features resembling the extracellular
matrix and stimulating tissue regeneration. Nevertheless, nanofibers are known as an
excellent antimicrobial device, protecting and covering skin, being prepared for medical
application conforming all safety rules [100]. Nowadays, nanofibers are used for skin
regeneration and rejuvenation as scaffolds, and for drug delivery. They can be composed of
natural, synthetic and mixed polymers, each showing peculiar characteristics [101]. Natural
polymers are highly biocompatible, non-toxic, biodegradable, often possess antibiotic activ-
ity per se, and can elicit skin contraction during the process of wound healing, ameliorating
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wound treatment, [102,103]. On the other hand, synthetic polymers can be modulated
and modified during their preparation to meet specific requirements for each case of
application. This leads to a control in their composition, molecular weight, crystalline
structure, chemical properties and mechanical features that allow high reproducibility for
these materials. Hybrid polymers represent a successful union of these aspects, resulting
in the best performances recorded for nanofibers and the relative scaffolds with a faster
wound healing respect to other nanomaterials [104].

Nanoporosity, together with other prominent features in nanofibers, can be controlled
during the process of preparation [105,106]. The most common way is through a technique
called electrospinning [107]. In such way, scaffolds are produced that can be formed by
different non-woven nanofibers, disposed in random orientations, and with different shape.

Currently, nanofibers of electrospun poly-ε-caprolactone (PCL) and polyvinyl alcohol
(PVA) have been described as safe, well tolerated and effective. They can be used as a smart
skin cover dressing during wound healing process alone or in combination with bioactive
molecules [20,108]. Among the different subjects functionalized in nanofibers, platelets
have been recently described, to create a device delivering platelet-derived bioactive
molecules able to improve melanocyte proliferation. This result is interesting in the man-
agement of skin vitiligo process, involving melanocytes [109]. PCL scaffolds with adhered
platelets are also able to stimulate skin cell proliferation, promoting cell propagation, and
metabolic activity in all skin-associated cell types [110]. Within this context nanofibers are
emerging as a good candidate for diabetic foot ulcer treatments [111]. Moreover, nanofibers
produced with PCL and gelatine displayed a faster healing rate, when exopolysaccharide
was loaded into a nanofiber on full-thickness wounds in rat models [112]. Furthermore,
PCL nanofibers loaded with silver and magnesium ions showed antibacterial activity and
pro-angiogenesis function for wound repair on vascular endothelial cells in vitro [113].
When Ag-doped magnetite nanoparticles were used, the resulting PCL scaffold had en-
hanced cell adhesion and growth [114]. By increasing the silver concentration in the
magnetite phase a parallel increase in the viability of human melanocytes and antibacterial
activity against E. coli and S. aureus was obtained, together with an improvement in the
skin wound healing rate in rats. No abnormalities in the dermal and epidermal tissues
were evidenced after 10 days in the treatment group. A PCL-based three-layer nanofiber
containing also chitosan and polyvinylalcohol was loaded with melatonin (20%) to afford a
new nanomaterial with high water uptake (around 400% after 24 h) and cell adhesion, re-
sulting in a fast wound healing, with complete regeneration of the epithelial layer, decrease
in inflammatory cells, collagen synthesis and remodelling of wounds [115]. A combination
between poly-ε-caprolactone nanofibers with embedded magnetic nanoparticles is able
to accelerate the proliferation of mesenchymal stem cells (MSCs) in vitro, [116]. Moreover,
PCL nanofibers combined with natural extracts are able to protect mesenchymal stem cells
of the skin (SSCs) from UV induced aging, suggesting a role in skin rejuvenation [20].

Electrospun wound dressing can be prepared to be loaded with different therapeutic
or antimicrobial agents to improve wound healing. Unfortunately, the currently available
wound dressings are not able to fulfil all the expectations because they are unable to restore
the structural and functional properties of the native skin [117]. Nevertheless, nanofibers
are presently being studied and improved for their application in tissue regeneration, both
in wound healing and beauty treatment. In the former case, nanofibers are exploited to
deliver drugs or other biological components (e.g., growth factors [118] and stem cells [119]
to the wound site; in the latter, facial masks made of nanofibers are actually used for
the release of collagen and vitamins on human skin [41]. A schematic example of a
nanofiber-based wound dressing could be found in Figure 2. Among the many examples of
drug-loaded nanofibers, a cerium-doped bioactive glass in a chitosan/polyethylene oxide
nanofiber showed remarkably high antibacterial action against both Gram-negative and
Gram-positive bacterial strains [119]. Heparin has high affinity for many growth factors
that are crucial biological mediators in the wound healing mechanism. Poly(lactic-co-
glycolic acid)-encapsulated heparin nanoparticles incorporated into sericin/gelatine (1:2)
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nanofibers are able to combine the controlled release of the drug to the skin regeneration
properties of the two biopolymers, resulting in good nanofiber morphology, high water
retention and low degradation of the scaffold that made it an interesting nanomaterial for
heparin topical delivery [120].

Int. J. Mol. Sci. 2021, 22, 7095 9 of 19 
 

 

antibacterial activity against E. coli and S. aureus was obtained, together with an improve-
ment in the skin wound healing rate in rats. No abnormalities in the dermal and epidermal 
tissues were evidenced after 10 days in the treatment group. A PCL-based three-layer 
nanofiber containing also chitosan and polyvinylalcohol was loaded with melatonin (20%) 
to afford a new nanomaterial with high water uptake (around 400% after 24 h) and cell 
adhesion, resulting in a fast wound healing, with complete regeneration of the epithelial 
layer, decrease in inflammatory cells, collagen synthesis and remodelling of wounds [115]. 
A combination between poly-ε-caprolactone nanofibers with embedded magnetic nano-
particles is able to accelerate the proliferation of mesenchymal stem cells (MSCs) in vitro, 
[116]. Moreover, PCL nanofibers combined with natural extracts are able to protect mes-
enchymal stem cells of the skin (SSCs) from UV induced aging, suggesting a role in skin 
rejuvenation [20]. 

Electrospun wound dressing can be prepared to be loaded with different therapeutic or 
antimicrobial agents to improve wound healing. Unfortunately, the currently available 
wound dressings are not able to fulfil all the expectations because they are unable to restore 
the structural and functional properties of the native skin [117]. Nevertheless, nanofibers are 
presently being studied and improved for their application in tissue regeneration, both in 
wound healing and beauty treatment. In the former case, nanofibers are exploited to deliver 
drugs or other biological components (e.g., growth factors [118] and stem cells [119] to the 
wound site; in the latter, facial masks made of nanofibers are actually used for the release of 
collagen and vitamins on human skin [41]. A schematic example of a nanofiber-based wound 
dressing could be found in Figure 2. Among the many examples of drug-loaded nanofibers, a 
cerium-doped bioactive glass in a chitosan/polyethylene oxide nanofiber showed remarkably 
high antibacterial action against both Gram-negative and Gram-positive bacterial strains [119]. 
Heparin has high affinity for many growth factors that are crucial biological mediators in the 
wound healing mechanism. Poly(lactic-co-glycolic acid)-encapsulated heparin nanoparticles 
incorporated into sericin/gelatine (1:2) nanofibers are able to combine the controlled release of 
the drug to the skin regeneration properties of the two biopolymers, resulting in good nano-
fiber morphology, high water retention and low degradation of the scaffold that made it an 
interesting nanomaterial for heparin topical delivery [120]. 

 
Figure 2. Skin regeneration after wound process with or without wound dressing. The nanofibers 
mimic the ECM and provides a proper environment for tissue growth, promoting re-epithelialisa-
tion and cell migration. They can be used in combination with bioactive molecules (functionaliza-
tion) improving cell adhesion and proliferation, showing also antimicrobial activity. 

Figure 2. Skin regeneration after wound process with or without wound dressing. The nanofibers
mimic the ECM and provides a proper environment for tissue growth, promoting re-epithelialisation
and cell migration. They can be used in combination with bioactive molecules (functionalization)
improving cell adhesion and proliferation, showing also antimicrobial activity.

2.3. Antiscar Action

Wound healing is associated to scar formation that sometimes can be abnormal (hy-
pertrophic or keloidal scars) [121]. Hydrogel nanocomposites and electrospun nanofibers,
both natural or synthetic (PCL, PLGA, PVA, collagen, chitosan, silk fibroin, alginate/PVA,
etc., also associated to noble metals nanoparticles or other therapeutics) can help reduce
the scarring process. For instance, PLGA nanofibers transformed to contain carboxylic acid
groups exhibited enhanced fibroblast cell adhesion and proliferation, desired properties
for a correct wound healing [122]. In fact, this functionalization can enhance the binding
of nanofibers to collagen or gelatine, which are key proteins found in the extracellular
matrix, and this can improve cell adhesion and proliferation [123]. Moreover, electrospun
systems such as alginate/PVA nanofibers are able to induce scar-free wound healing since
they can retain humidity to maintain a moist wound microenvironment, as it has been
demonstrated that when a wound is kept moist the scar tissue formation is decreased [124].
Silk fibroin electrospun fibres possess the same properties as fibroin, which is known to
have anti-inflammatory action and a remarkable anti-scarring potential. Additionally, in
fact, such nanofibers showed decreased levels of pro-inflammatory IL-1α in skin tissues,
together triggering collagen formation, which arranged itself within the wound in a way
similar to normal skin instead of a scarring composition [125]. Other factors that can reduce
scar tissue formation are a more rapid and efficient cell migration, or a block of fibrob-
last differentiation into myofibroblasts, that can be induced by proper formulation of the
nanofibers used to treat the wound [126]. It is evident that nanofibers or nanofiber-based
composites can have an important role in the proper growth of scar-free skin tissues.

3. Silver Sulfadiazine Nanomaterials

Silver sulfadiazine (SSD) is a drug based on a silver complex with an antibiotic of
the sulphonamide family. Its introduction in clinics dates back to the early 1960s to treat
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burn wounds, but it was also marginally used to heal skin wounds in general. Its current
formulation in the therapy of second- and third-degree burns is a 1% cream for topical
administration [53]. The clinical application of silver sulfadiazine has been controversial
since two Cochrane systematic studies (2010 and 2013) questioned its efficacy in burn
wounds treatment and concluded that the evidence collected was not sufficient to establish
it. Moreover, SSD exhibits delayed wound healing due to fibroblast toxicity. Nevertheless,
silver sulfadiazine is still considered by many clinicians as a crucial topical drug in the
management of burn patients [53]. To improve its efficacy and optimize its administration,
nanotechnology has been exploited. Several nanoformulations have been prepared to
obtain better results in the treatment of wounds, from either burns or other causes.

Silver sulfadiazine nanosuspensions were obtained with 0.5% SSD in 6% Cremophor
EL and 4% Lauroglycol 90, while nanogels were made with 0.5% SSD in 1% Carbopol
974 P [127]. Nanosuspensions were faster than nanogels in releasing SSD, and although
they both had the same activity against several bacterial strains as an SSD solution in vitro,
the in vivo application of such 0.5% SSD nanoformulations had a higher efficacy in wound
healing compared to commercially available 1% topical creams.

A different composition for the administration of SSD could be found in the prepara-
tion of a non-propellant-based foam containing sulfadiazine and pectin capped “green”
AgNPs. The foam had an average globule size of <75 nm, caused no skin inflammation and
showed a good recovery of the burnt tissues, with an evident regeneration of the derma in
superficial second-degree (partial thickness) burn wounds [128].

Polyvinyl alcohol/carboxymethylcellulose/silver sulfadiazine composite nanofibers
(PVA/CMC/SSD) were prepared and found to be active in the treatment of excision
wounds, leading to rapid healing in rabbits. The nanocomposite also displayed good
antibacterial activity against P. aeruginosa and S. aureus, being at the same time nontoxic
against fibroblasts [129].

An important aspect in skin lesions that has not been mentioned so far, but can be
fundamental for a proper healing, is the presence of biofilm. In fact, bacteria can grow
in two ways: the planktonic and the sessile forms. In the former, single bacterial cells
are free to move, while in the latter they aggregate in colonies that can adhere to both
living and non-living surfaces [53]. This may happen also in chronic wounds, and the
occurrence of biofilms on damaged skin is always a concern, since such colonies are
surrounded by a matrix of extracellular polymeric substances (mainly polysaccharides,
but also small amounts of proteins, enzymes, DNA, and RNA) that shields the bacterial
cells from the outer environment and prevents antibiotics from reaching them. For this
reason, drug treatment of biofilms requires high doses of antibacterial agents for prolonged
times. Silver sulfadiazine was found to be particularly active also against biofilms, and SSD
nanoformulations exhibits the same properties. For this reason, a chitosan gel containing
solid lipid nanoparticles of silver sulfadiazine (SSD-SLNs) and deoxyribonuclease-I (DNase-
I) was designed with the double aim of winning biofilm resistance and decreasing SSD
fibroblast cytotoxicity [66]. DNase-I seems to help the antibiotic agents overcome biofilm
infections via hydrolysis of the extracellular DNA, responsible for biofilm adhesion, and
the optimal action of the SSD-SLNs/DNase-I nanoformulation was evidenced by the
inhibition of nearly 97% of biofilm of Pseudomonas aeruginosa in comparison to SSD
with DNase-I only (around 83%). Moreover, the new nanomaterial was less cytotoxic to
fibroblasts than SSD alone and showed faster wound healing compared to other SSD and
SSD-SLNs preparations. Of course, other nanomaterials showed to be effective against
biofilms in wounds, but they are all manly based on silver nanoparticles, either alone or in
combination [130–133].

4. Nanoformulations for Skin Care and Anti-Aging Products

Nanotechnology has found wide application in the field of skin care formulations for
at least forty years, being this probably one of the first areas of diffusion of nanomaterials in
customer products, that started with the introduction of liposomes in moisturizing creams.
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TiO2 and ZnO NPs have been employed for decades as UV inorganic filters in sunscreens,
with a safe and effective protection against noxious sun rays and in the prevention of skin
cancer, so effective that their ability to block solar radiation was correlated to a decrease of
vitamin D production, with contrasting results (read for instance [134–136]). Nowadays,
the use of nanomaterials in antiaging products is mainly directed towards the delivery and
controlled release of pharmaceuticals and cosmeceuticals for different purposes, such as
anti-radical action, stimulation of collagen production, protection of skin components, etc.
In this perspective, a series of nanocarriers have been employed, especially those based on
lipidic materials, starting from liposomes, of course, to include solid lipid nanoparticles
(SLN) and nanostructured lipid carriers (NLC), or nanoemulsions. Other useful NPs in
cosmetics are dendrimers, nanocrystals, carbon nanotubes, niosomes, nanopolymers, etc.
The properties and uses of these nanomaterials have been recently reported in detailed
and extensive reviews [137,138] and thus will not be further discussed. As carriers, the
nanodevices were loaded with active pharmaceutical ingredients, vitamins or pro-vitamins,
polypeptides, plant extracts, essential oils, antioxidant molecules (including enzymes
and coenzymes), drugs, etc. In this way, the targeted delivery of active molecules and
their selective and controlled release, together with increased permeation of skin by NPs,
improved the performances of cosmetic products and the results obtained were superior to
classic formulations. The nanocarriers, in fact, can pass through the stratum corneum and
exert their action either translocating inside the skin without degradation, or alternatively
they can undergo degradation close to the skin surface where the encapsulated therapeutic
compounds can be released and then penetrate into the skin layers [138].

The cosmetic industry took advantage of the progresses in nanotechnology to expand
its boundaries in personal care and antiaging areas of sales. Several companies have already
commercialised products containing dendrimers (such as artificial skin tanning agents,
mascaras, nail polish, etc.) or metal nanoparticles [137]. In general, metal-based NPs (Au,
Ag, CuO, ZnO, etc), as previously discussed, have been employed in nanocosmetics due to
their assessed antibacterial activity and promotion of wound healing (vide supra). Gold
nanoparticles, especially, have been introduced in moisturizers, sunscreens, eye creams
and lip balms for other properties. Many spas and beauticians offer facial masks and
treatments based on AuNPs for skin rejuvenation [55]. It has been demonstrated that gold
nanoparticles are able to reduce wrinkles [56], improve skin brightening, promote skin heal-
ing, have a cleansing effect, reduce inflammation and ROS damage, provide anti-bacterial
action, slow down collagen depletion [57] and elastin degradation [58]. Nevertheless,
concerns have been expressed about a safe use of gold-based nano-cosmeceuticals, since it
has been demonstrated that Au nanosheets in cosmetic creams are able to quantitatively
permeate into the skin epidermis, dermis and subcutaneous layer after a ten-day cutaneous
exposure [139]. The same study also showed that Au nanosheets are not able to enter the
systemic circulation, though, but can decrease the cell viability of keratinocytes and induce
a low level of apoptosis or necrosis of keratinocytes and skin dermal fibroblasts. These
findings, again, raise the issue of nanoparticle safety. It seems, though, that biosynthesised
AuNPs may have higher biocompatibility and less side effects [53]. In any case, the subject
of NPs safety still remains open.

5. Considerations on the Toxicity of Nanomaterials in Wound Dressings

The outstanding properties of nanoparticles in the biomedical field, especially those
connected to skin treatments, are undeniably crucial in the development of new, advanced
materials for these applications. Nevertheless, concern has been expressed during the
last decades over NPs toxicity, but with no clear results or conclusions [140]. Due to their
dimensions, nanoparticles are able to interact with matter in a way that is completely
different respect to the corresponding bulk materials, and they can exert unexpected effects
on the living organisms, including humans. NPs size allows their effective interactions
with cells, either eukaryotic or prokaryotic. Metal NPs show remarkable antibacterial
and anticancer activity, depending not only on their dimensions, but also on their shape,
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coating/capping/functionalization, solubility, etc. Several studies demonstrated they can
also interact negatively with healthy cells, thus causing toxicity and damage based on
the same mechanisms through which they exert cytotoxicity [141]. Many studies, on the
other hand, found NPs are effective against cancer and bacterial cells, but safe when tested
on normal ones. The fact that, after two decades since their introduction in biomedical
research, there is still no clear evidence on one case or the other is probably also due to the
impossibility of a sensible comparison among different results. In fact, there are too many
factors determining NPs toxicity, so that there is no real and effective standard to allow a
significant comparison for sound conclusions. What emerged, though, as a general trend,
is that particles too small, around 10 nm, are very active against cancer and bacteria, but
scarcely biocompatible, being able to induce haemolysis, for instance. Nevertheless, other
researcher found that very tiny NPs (<2 nm) can be cleared more easily respect to bigger
ones (generally through kidneys) [142], resulting in a decreased toxicity [143]. Shape is
important too, as spheroidal nanoparticles can circulate in body fluids for a shorter time
respect to non-spherical NPs, thus reducing their interaction with healthy cells. Finally, the
outer layer, where a coating of organic molecules (stabilizers, capping agents, bioreductants,
etc.) can be found, has been indicated as one of the factors responsible for their intrinsic
toxicity [144,145], with citrate-covered NPs more toxic than biogenic or PEGylated NPs.

Skin has been generally considered as a strong barrier to the penetration of nanopar-
ticles in the body, although different papers recently appeared in the literature showing
that this is not always true [139]. Damaged skin, such as in burns and wounds, is more
penetrable by NPs as compared to healthy derma, therefore the formulation of wound
dressings and nano-cosmetics should be carefully designed and thoroughly tested in the
respect of nanotoxicity [146]. Moreover, even a healthy skin can suffer from NPs aggressive
action [147] and this should always be considered when dealing with new topical treatments.

6. Conclusions

Wound healing and skin rejuvenation still represent a difficult challenge in regen-
erative medicine; nevertheless, the application of nanotechnology has given a huge con-
tribution to the progress in this field, and the nanomaterials discovered during the last
years paved the way for novel approaches in wound treatment, tissue regeneration, or to
counteract aging related morphogenetic changes.

The nanodevice-mediated controlled drug delivery, protection of the affected areas,
biocompatibility, antibacterial activities, etc. have allowed a great expansion in the use of
these innovative products alone or in combination, conjugating high performances, ease of
administration and safety. The use of nanotechnologies thus represents a great potential and
could get concrete advantages in improving wound healing and rejuvenation supporting
skin cell populations during adverse conditions and implementing the therapeutic options
already used in clinic.
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