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encodings
Alexis R. Krueger1,2, Psiche Giannoni2, Valay Shah1, Maura Casadio2,3 and Robert A. Scheidt1,4,5,6,7*

Abstract

Background: Deficits of kinesthesia (limb position and movement sensation) commonly limit sensorimotor
function and its recovery after neuromotor injury. Sensory substitution technologies providing synthetic
kinesthetic feedback might re-establish or enhance closed-loop control of goal-directed behaviors in people
with impaired kinesthesia.

Methods: As a first step toward this goal, we evaluated the ability of unimpaired people to use vibrotactile
sensory substitution to enhance stabilization and reaching tasks. Through two experiments, we compared the
objective and subjective utility of two forms of supplemental feedback – limb state information or hand position error –
to eliminate hand position drift, which develops naturally during stabilization tasks after removing visual feedback.

Results: Experiment 1 optimized the encoding of limb state feedback; the best form included hand position and
velocity information, but was weighted much more heavily toward position feedback. Upon comparing optimal
limb state feedback vs. hand position error feedback in Experiment 2, we found both encoding schemes capable
of enhancing stabilization and reach performance in the absence of vision. However, error encoding yielded
superior outcomes - objective and subjective - due to the additional task-relevant information it contains.

Conclusions: The results of this study have established the immediate utility and relative merits of two forms of
vibrotactile kinesthetic feedback in enhancing stabilization and reaching actions performed with the arm and
hand in neurotypical people. These findings can guide future development of vibrotactile sensory substitution
technologies for improving sensorimotor function after neuromotor injury in survivors who retain motor capacity,
but lack proprioceptive integrity in their more affected arm.
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Background
Kinesthesia refers to sensations of limb position and
movement [5] derived predominantly from information
encoded by muscle spindle afferents, which are sensitive
to muscle length and rate of length change (c.f., [39]).
Deficits of kinesthetic feedback are common after
stroke. Almost 50% of stroke survivors experience

impaired limb position sense in their contralesional
arm [9, 11, 15]. Loss of kinesthetic sensation con-
tributes to impaired control of reaching and sta-
bilization behaviors that are vital to an independent
life style [6, 45, 56, 64]. Although people suffering
loss of kinesthetic feedback can move by relying on
vision of their limbs, long processing delays inherent
to the visual system (100–200 ms; [8]) yield move-
ments that are typically slow, poorly-coordinated,
and require great concentration [18, 41]. Visually
guided corrections come too late and result in jerky, un-
stable movements [42]. Unfortunately, many stroke
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survivors give up using their contralesional limb because
of their sensorimotor deficits [55] even though this re-
duces quality of life [1, 56].
Our long-term goal is to mitigate the negative impact

of post-stroke kinesthesia deficits by creating sensory
substitution technologies that provide real-time feedback
of contralesional arm state (e.g., the position and velocity
of the arm and hand) to a site on the body retaining
somatosensation (e.g., the ipsilesional arm). As a first
step, the current study tested the ability of people with
no known neuromotor deficits to control goal-directed
actions using supplemental vibrotactile stimuli that pro-
vided real-time feedback about the moving limb to a
part of the body that was not itself involved either in the
movement or in essential behaviors like speaking and
eating. We justify this approach by noting that the vast
majority of people – including neurologically intact indi-
viduals - exhibit imperfect somatosensory control of the
arm and hand in the absence of ongoing visual feedback.
Indeed, the most conspicuous and ubiquitous manifest-
ation of imperfect somatosensation is “proprioceptive
drift” ([60]; c.f., [52]), wherein marked errors in the per-
ceived position of the unseen hand develop within a
period of 12 to 15 s [36]. Proprioceptive error is likely
due to a progressive drift between visual and propriocep-
tive maps of body configuration when vision of the rela-
tive positions of the body and the visual target is
precluded [23]. Proprioceptive drift succinctly predicts
the pattern of performance errors observed during goal-
directed reaching [43] and stabilizing actions [53] per-
formed with the hand in the absence of visual feedback.
The idea of providing supplemental feedback to miti-

gate sensory deficits has been explored for many decades
(c.f., [61]). Successful applications include cochlear im-
plants (c.f., [31]) and non-invasive systems that encode
video images into either vibratory or electrical signals
applied to the skin at one of several body parts (abdo-
men, back, thigh, fingertip, forehead, tongue) [25].
Vibrotactile systems for enhancing postural stabilization
in vestibular patients have been proposed [28, 50] and
show promise [37] when the synthesized feedback in-
cludes all task-relevant states [27]. Vibrotactile systems
also show promise for providing information about grasp
force and hand aperture to users of myoelectric forearm
prostheses [63]. While these past works reveal the brain’s
remarkable ability to integrate synthetic feedback for per-
ception and control, shortcomings include a lack of focus
on limb kinesthesia and use of feedback systems that have
potential to negatively impact quality of life, for example
by interfering with verbal conversation (cf., [2]). Several
research groups have designed supplemental feedback sys-
tems for enhancing training of arm movements in healthy
individuals by stimulating the moving limb ([3, 4, 30]; for
a review see [49]), but those systems could not be effective

in individuals suffering somatosensory deficits in the more
affected limb. We therefore propose to use vibrotactile
stimulation of one arm to deliver supplemental kinesthetic
feedback pertaining to motion of the other arm. We ra-
tionalize this choice because, aside from the palms and
fingers, tactile feedback from the surface of the arm does
not appear to be critically important for completing most
daily living activities and thus, we minimize the likeli-
hood that the vibrotactile display would impede use of
the stimulated arm for other tasks.
There are many conceivable ways to encode informa-

tion about a moving limb within a vibrotactile feedback
stream, and it is unclear which way might best facilitate
closed-loop control of goal-directed stabilizing and
reaching behaviors. One possibility is the encoding of
limb state (e.g., the position and/or velocity of the
moving hand). From the perspective of technological im-
plementation, the hardware and software tools needed
to develop stand-alone wearable technologies capable to
detect, synthesize and deliver limb state information in
unconstrained environments are readily available. A sec-
ond, distinct approach, “goal-aware” feedback [58], add-
itionally encodes information about the current task’s
objectives. For example, a simple form of goal aware
vibrotactile feedback might indicate the instantaneous
error between the hand’s current position and the
position of a visual target. A more complex version
might encode information about which direction to
move the arm, based on the output of a computational
model implementing an optimal trade-off between kine-
matic and energetic performance. Although goal-aware
feedback might yield better performance than limb
state feedback because it includes additional task-
specific information, this approach suffers from a
number of unique technological challenges that state
feedback avoids. In particular, determining the user’s
motor intentions and movement goals from one mo-
ment to the next in a dynamically changing environ-
ment seems to be a daunting undertaking. Errors in
estimating intent would lead to unreliable feedback,
thus compromising usability of the vibrotactile display
for daily life applications.
Human physiology provides no clear guidance on

how kinesthetic information might be encoded within
supplemental vibrotactile feedback to optimize aug-
mented closed-loop control of stabilization and reaching
behaviors. For example, muscle spindle primary endings
encode muscle length and the rate of length change in a
joint-based coordinate reference frame whereas muscle
spindle secondary endings encode primarily muscle length
information [39]. Simulated vibrotactile limb state feed-
back could readily emulate these types of native feedback.
By contrast, Golgi tendon organs encode muscle tension
[39], which may be more difficult to estimate and emulate.
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Additionally, γ-motor neurons can modulate the sensitivity
of muscle spindles in ways that are - in some cases - sug-
gestive of error encoding [21], although the functional de-
pendence of spindle feedback on γ-motor neuron activity
is rather complex [19].
To gain some insight on possible kinesthetic encoding

schemes, consider a simplified, single-joint model of a
human-in-the-loop state feedback control system (Fig. 1a).
Although this model is not intended to replicate the com-
plexities of human sensorimotor control (for example see
[20]), it includes many characteristics relevant to the
current problem: a “limb” dominated by viscoinertial dy-
namics; feedback delay arising from sensory transduction,
transmission and processing; and a central mechanism
that transforms performance errors into corrective motor
commands, modeled here using a simple proportional

control law. We justify use of proportional control be-
cause we ultimately seek to design a sensory substitution
system that requires minimal information processing by
the stroke-injured brain.
Consider now a task wherein the limb should acquire

and hold a goal target in less than 1 s (Fig. 1b, vertical
dotted line). If feedback emulates the dynamics and
delay associated with muscle spindle afferents [i.e., posi-
tion plus velocity feedback and a sensory delay of
~60 ms; [8]], a wide range of controller gain values
(φ, ranging from 20 to 130) can yield acceptable per-
formance (Fig. 1b, blue traces). Thus, position plus
velocity feedback can yield robust performance that is
relatively insensitive to controller gain while requiring
minimal computational load (i.e., implementing a sim-
ple proportional control law). In the absence of reli-
able proprioceptive feedback (e.g., post-stroke), one
might be inclined to substitute visual feedback. The
model suggests that relying solely on hand position
feedback relative to a fixated target with a visual
delay of ~120 ms [8] cannot yield acceptable capture-
and-hold performance in this task for any propor-
tional gain value (Fig. 1c, red traces). Even if the limb
reaches the target within 1 s, the hold criteria is sub-
sequently violated. Acceptable performance can be re-
stored only by making the feedback and/or controller
more complex (e.g., with position plus velocity feed-
back encoding; Fig. 1c, purple trace).
This study sought to determine how best to synthesize

and deliver supplemental kinesthetic feedback and to
test its ability to enhance performance of goal-directed
stabilization and reaching behaviors in neurotypical
adults. In a first set of experiments, we evaluated dif-
ferent weighted combination of moving hand position
and velocity information to find the form of supple-
mental state feedback that minimizes performance
error during stabilization and reaching tasks per-
formed with the arm. Based on the predictions of the
computer model, we hypothesized that a vibrotactile
feedback encoding scheme that includes a modest
amount of hand velocity information - but weighted
more heavily toward position information - would best
impact performance of these behaviors. In a second set
of experiments, we compared this optimal limb state
feedback to hand position error feedback [one of the
simplest forms of “goal aware” feedback [58]] to deter-
mine the performance benefits of each encoding
scheme. We hypothesized that both state and error
feedback would be capable of enhancing performance
of stabilization and reaching behaviors in the absence
of visual feedback. We furthermore hypothesized that
error encoding would likely yield superior enhance-
ment of these behaviors due to the additional task-
relevant information that error feedback contains.

Fig. 1 Simplified model of closed-loop feedback control for
goal-directed reaching. a Simplified model demonstrating how
feedback delay (Δ) and information content (Sensor Function)
impacts performance of a proportional controller regulating the
position θa of a damped inertial “limb” modeled as a second
order differential equation relating changes in limb kinematics
(position, velocity and acceleration) to changes in the control input u.
Controller gain φ was varied to test the capabilities of the model
system. b Simulation results of limb displacement (vertical axis) plotted
as a function of time (horizontal axis) when the feedback path emulates
proprioception (i.e., Delay Δ = 0.06 s and Sensor Function θf = θa + 0.15
dθa/dt). Arrow indicates the time of change in desired position
(depicted in arbitrary units of displacement). Dotted line: t = 1 s.
Grey band: goal target zone. The limb obtains the goal within the
time constraint over a broad range of controller gains with position +
velocity feedback (Thick blue trace: φ = 20; Thin trace: φ = 130).
c Simulated reaching under visual guidance (Red: Delay Δ = 0.12 s
and Sensor Function θf = θa; Thick red trace: φ = 5; Thin trace: φ = 10;
dashed trace: φ = 20). With position feedback, no value of φ enables
success when Δ = 0.12 s. Also shown (Purple; φ = 20) is an acceptable
solution obtained when simulated visual feedback also includes
velocity information: θa + 0.15 dθa/dt. For panels b and c, the
horizontal scale bar depicts 1 s whereas the vertical scale bar
represents 5 cm displacement
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Preliminary aspects of this study have been presented
in abstract form [26].

Methods
Twenty-six healthy humans (13 female) were recruited
from the University of Genoa community and all pro-
vided written informed consent to participate in this
study. All procedures were approved by local Institu-
tional Review Boards serving the University of Genoa
(ASL3 Genovese) and Marquette University in accord
with the 1964 Declaration of Helsinki. None of the par-
ticipants had known neurological disorders. Participant
ages ranged from 22 to 32 (26 ± 3) years. All of the par-
ticipants self-reported to be right handed. All partici-
pants had normal or corrected-to-normal vision and all
were naïve to the purposes of the study.
Each participant took part in up to three experimen-

tal sessions conducted on separate days. The experi-
ments were designed to determine whether encoding
state or error information about a moving limb (e.g.,
the dominant arm) into a vibrotactile feedback stream
applied to a non-moving body part (e.g., the non-
dominant arm) would best enhance performance of
stabilization and reaching behaviors in the absence of
ongoing visual feedback of performance. Specifically,
the first session (Experiment 1) sought to determine the
best (optimal) combination of limb state information,
hand position and velocity feedback, to encode within

the vibrotactile feedback applied to the contralateral
arm. The purpose of the second and third sessions
(Experiment 2) was to compare the effects of encoding
optimal state feedback with that of encoding an objective
measure of hand position error.

Experimental setup
Participants were seated comfortably in a high-backed,
adjustable-height chair in front of a horizontal planar ro-
botic manipulandum, which has been described in detail
previously (see [10]) (Fig. 2a). The participant was seated
approximately 25 cm from the center of the workspace
with the right arm strapped to the robotic handle and to
its integrated forearm support. The arm support con-
sisted of a lightweight rigid bar attached to the robot’s
handle through a bearing that allowed free horizontal
planar rotation of the hand + forearm about the center
of rotation of the handle. The seat height was adjusted
such that the abduction angle of the right shoulder was
between 75° and 85°. The left arm rested comfortably on
a horizontal planar armrest situated below that plane of
motion of the robot; the forearm and hand pointed for-
ward as in Fig. 2a. An opaque shield was placed over the
workspace to block the participant’s view of the moving
arm and the robotic apparatus. View of the stationary
arm was not precluded. A vertical computer monitor
was mounted in direct view, 0.7 m in front of the par-
ticipant and just above the shield to avoid neck strain;

Fig. 2 Experimental setup and protocol. a Participant at robot holding the end effector of a planar manipulandum, with integrated forearm
support. An opaque screen occluded direct visual feedback of task performance; the left arm shows the standard placement of the four tactors
(red dots). b Tasks. Left: stabilizing the hand at a fixed point in space against robotic perturbations. Right: example of a center-out reaching movement.
c Sequence of events in each experiment. E1: Experiment 1. E2: Experiment 2; baseline 2 and test 2 were counter balanced in order across participants.
Visual feedback (V) and vibrotactile feedback (T) was either continuous (+), absent (−), or only used for providing the results at the end of each task
(KR). This sequence was used during 2 sessions, in which the only difference was that the vibration feedback encoded either error or state
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this display provided visual cues of hand and target pos-
ition and motion when appropriate (the scheduling of
visual feedback is described below).
Supplemental kinesthetic feedback was provided using

a two-channel (4 “tactor”) vibrotactile display attached
to the non-moving arm. Each tactor consisted of a
micro-motor with integrated eccentric rotating mass
(Pico Vibe 10 mm vibration motors; Precision Micro-
drives Inc., Model # 310–117), with an operational fre-
quency range of 50 to 250 Hz and peak vibrational
amplitude of 2.8G, which corresponded to an expected
maximal forearm-plus-hand acceleration ranging be-
tween 0.53 m/s2 and 0.77 m/s2 depending on participant
anthropometrics. We employed a nonlinear activation
map (Fig. 3a). The intensity of vibration was 100% full

scale when activation was 5.0 V, vibration was OFF when
activation was 0.0 V, and above a minimum level of acti-
vation (0.5 V), the intensity of vibration increased mono-
tonically with activation voltage (Fig. 3b). The frequency
of vibration in Hz was roughly 100 times the amplitude
of vibration in G. Below the minimum level of activa-
tion, nonlinear “stiction” within the motors prevented
the motors from engaging. To improve tactor response
time and the bandwidth of frequency modulation, we
also employed a “pulse-step” activation strategy, whereby
a desired tactor activation level was implemented by
first activating the tactor fully (100% activation) for 0.8
milliseconds before reducing activation to the desired
level (Fig. 3c). This control scheme also increased the
repeatability of tactor excitation levels, especially at the
lowest levels of activation, where nonlinear stiction was
most noticeable.
For all participants, tactors were initially arranged with

one tactor on the back of the hand, two tactors on the
forearm, and one on the upper arm (Fig. 2a; default tac-
tor locations indicated by red spheres). In this standard
configuration, the hand tactor (+y tactor) was placed ap-
proximately 1 cm proximal to the first and second finger
metacarpophalangeal joints. The forearm tactors were
placed approximately 3 cm distal to the cubital fossa,
one on each side of the forearm (+x tactor on the
right, −x tactor on the left). The upper arm tactor (−y
tactor) was placed on the bicep muscle belly about
5 cm proximal to the cubital fossa. Elastic fabric bands
were used to secure the tactors. This default tactor
configuration was designed such that inter-tactor spa-
cing exceeded two-point discrimination thresholds for
dermatomal regions of the arm and forearm, as re-
ported by Nolan [33].
We then performed a verification procedure wherein

we adjusted tactor locations slightly so that each par-
ticipant could indicate reliably which tactor or pair of
tactors was activated at any given time. This was done
using low, middle, and high intensity vibrations
(approximately 10%, 50% and 90% full scale range, re-
spectively). The adjustment/verification procedure
began by asking the participant to place the hand’s
cursor at each of the four corners of the screen and to
tell the experimenter how many and which tactors
were vibrating (at ~90% FSR). This was repeated two
times, once adjacent to the center of the screen (~10%
FSR) and again approximately mid-way between the
center and the edge of the screen (~50% FSR). Next,
the participant was asked to place the hand’s cursor at
the middle of the screen, and then to move away from
and back towards the center so as to feel the changing
intensity. If the participant could not give clear and
correct indication as to which tactor was active and
the appropriate direction of activation change, further

Fig. 3 Tactor activation characteristics. a Exemplar activation
mapping for state feedback of hand position wherein displacements
of the hand were mapped onto tactor excitation voltages, as a
percentage of Full Scale Range (FSR = 5.0 V). b Realized mapping
between tactor activation and vibration amplitude (data points), and
a solid line representing the best-fit polynomial reveal a nonlinear,
monotonically increasing relationship over the entire half-workspace
encoded by each tactor. A dashed line fit between the lowest and
highest sample points provides an “ideal” linear reference for comparison.
Grey shading indicates the half-workspace spanned by the home and far
targets. c Pulse-step scheme employed to decrease the response time of
the tactors. See text for details
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personalized tests were used to isolate and resolve the
problem. This setup procedure successfully identified
well-discriminated stimulation sites in all participants
and typically took between 5 and 10 min to complete.
However, it should also be noted that for 16 of our
healthy participants, finding well-discriminated sites
did require adjustments (see Discussion).
The vibrotactile display was calibrated to the robot’s

workspace such that motions of the robot handle to the
right would induce the + X tactor to vibrate, whereas
motions of the robot handle away from the participant
(i.e., toward the monitor) would induce the + Y tactor to
vibrate. The various mappings of hand kinematics onto
vibratory stimuli are described in greater detail below.

Experimental tasks
Across the three days of testing, participants were re-
quired to perform two different experimental tasks
(Fig. 2b). This included: i) stabilizing the hand at a fixed
point in space against robotic perturbations; and ii)
reaching to 16 spatial targets that sampled 16 movement
directions and two movement extents.

Stabilizing
When performing the stabilization task, participants
attempted to hold the robot’s handle steady at a com-
fortable “home” position located in the center (origin) of
the workspace. During each 1 min stabilization trial, the
robot generated spatially complex sum-of-sinusoid force
perturbations that contained a low frequency component
(0.25 Hz) and several high frequency components
(1.1 Hz, 1.2 Hz, 1.65 Hz and 1.75 Hz) (Eq. 1a and 1b):

FX ¼ 0:75⋅cos 2π⋅1:75⋅tð Þ
þ 0:75⋅cos 2π⋅1:2⋅tð Þ
þ 6⋅cos 2π⋅0:25⋅tð Þ ð1aÞ

FY ¼ 0:75⋅sin 2π⋅1:65⋅tð Þ
þ 0:75⋅sin 2π⋅1:1⋅tð Þ
þ 6⋅sin 2π⋅0:25⋅tð Þ ð1bÞ

During pilot testing, some individuals adopted a strategy
whereby they stabilized hand position by stiffening the
arm and ignored the vibrotactile feedback altogether. We
therefore gave study participants the following instruc-
tions: “Without stiffening your arm, keep your hand as
steady as possible using the vibration feedback.” De-
pending on the specific experimental test conditions,
participants could perform the stabilization task under
three different visual feedback conditions. In the first
condition (continuous visual feedback; V+), a 0.5 cm ra-
dius cursor was always visible on the computer screen
and tracked the motion of the hand continuously. In
the second feedback condition (no visual feedback; V−),
participants attempted to stabilize the hand at the home

position without ongoing cursor feedback (i.e., the cursor
was never visible). In the third visual feedback condition
(Knowledge of Results; VKR), participants only received
cursor feedback of final hand position (not the entire hand
path) after the trial was complete. Reminders to avoid
stiffening the arm and to focus on the vibration were re-
peated periodically throughout the stabilization trials.

Reaching
During this task, participants performed out-and-back
reaches to 16 targets. For each of the targets, partici-
pants reached to the target, paused for a few seconds,
and executed a return-to-home movement for a total of
32 discrete goal directed reaches. Each target-capture
movement started from the same comfortable “home”
position as in the stabilization task. The 16 spatial tar-
gets were equally distributed along the perimeter of two
concentric circles that were centered on the home posi-
tion (center target). Eight “near” targets were distributed
around an inner circle that had a radius of 5 cm,
whereas eight “far” targets were distributed around an
outer circle that had a radius of 10 cm. We attempted to
equalize the Fitts Law difficulty of the different move-
ments by scaling the size of targets such that the inner
targets had 1 cm radii whereas the outer targets had
2 cm radii. The presentation order of the targets was
pseudorandomized within each block. As in the
stabilization task, reaching trials could be conducted
with one of the three different forms of visual feedback.
In the V+ case, a 0.5 cm radius cursor tracked the mo-

tion of the hand continuously. At the start of a trial, an
800 Hz audio cue sounded for 0.2 s, and one of the 16
visual targets was presented on the video display. When
the cursor reached the target, the 800 Hz audio cue
sounded again and the participant could relax. After a
2 s pause, the current target disappeared, a final 800 Hz
audio cue sounded, the home target appeared, and the
participant reached back to the starting position in an-
ticipation of the next trial.
In the V− trials, the cursor was never visible as partici-

pants attempted to capture the visual targets. At the
start of these trials, the 800 Hz audio cue sounded and
one of the 16 visual targets appeared. Upon completing
the reach, the participant announced that they thought
they had arrived to the target and the experimenter reg-
istered that event by pressing a button. At this point, the
800 Hz audio cue indicated the trial was complete re-
gardless of the spatial accuracy of the movement.
Following a 2 s pause, the current target disappeared, a
final 800 Hz audio cue sounded, the home target ap-
peared, and the participant reached back to the starting
position. Once again, the participant verbally indicated
completion of the movement and the experimenter
registered the event in anticipation of the next trial.
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In VKR trials, participants received visual feedback of
the final cursor/hand position only after the reach was
complete; they were to use that feedback to correct for
any terminal target capture errors. In this condition, the
participant reached to the target without visual feedback
as in the V− case. When the participant announced that
they had arrived to the target, the experimenter pressed
the button and the cursor appeared. If the cursor was
correctly on-target, the 800 Hz audio cue sounded. If
the cursor was incorrectly off-target, an annoying,
2000 Hz to 400 Hz descending-pitched audio tone
sounded for 1.5 s, and the participant was required to
correct the error with the aid of visual feedback. Upon
arriving on the target the pleasing 800 Hz audio cue
sounded. After a 2 s pause, this sequence of events was
repeated for the return-to-home reach.
In all three conditions, time constraints were placed

on each reach. If the participant had not reached the tar-
get or announced to the experimenter they had reached
the target within 10 s, the experimenter terminated the
movement and the experiment proceeded as normal. In
all cases, participants were instructed to “Capture the
target as quickly and accurately as possible.” As a re-
minder to capture the target quickly, reach targets
turned from red to blue 1 s after they appeared.

Vibrotactile feedback encoding schemes
Hand position data derived from the robot’s optical
encoders were used to generate three distinct forms of
vibrotactile cues. The first, state feedback, was a
weighted combination of hand position and velocity in-
formation. Position feedback was calibrated such that
the intensity of vibrotactile feedback was zero in all tac-
tors when the hand was centered on the home target
(i.e., the origin of the workspace) and increased propor-
tionally within the vibrotactile display as a vector repre-
sentation of the hand’s deviation from that position. The
vibration was 0 only when the cursor was at the center
of the home target’s location. Vibratory stimulation
reached 90% full-scale range (FSR: 75 Hz to 200 Hz)
when the hand reached the bounds of the visual display
(i.e., at a displacement of 15 cm from home along the
positive and negative x and y axes). The distance
between target circles (i.e., 5 cm) corresponded to a
difference in vibration magnitudes greater than 2 just
noticeable differences (JNDs) as reported in a psycho-
physical study of a vibrotactile discrimination using a
similar vibrotactile display configuration [47, 48]. The
bijective linear mapping between hand position and
stimulation within the X-Y vibrotactile display adhered
to the intuitive registration between the robotic and
vibrotactile reference frames. Velocity feedback was
calibrated such that the intensity of vibrotactile feed-
back was zero in all tactors when the hand was at rest,

regardless of where the hand was in the workspace.
Vibratory stimulation increased proportionally within
the vibrotactile display as a vector representation of
the hand’s instantaneous velocity. Vibratory stimula-
tion reached 90% FSR when hand speed reached
20 cm/s. Prior to use, participants were instructed that
the state feedback vibration encoding scheme provided
position and velocity feedback information relative to
the home position.
The second form of vibrotactile cue, position error feed-

back, was defined as the instantaneous signed error be-
tween the hand and target locations. Error feedback was
calibrated as for position feedback, except that the origin
of the vibrotactile display was always centered on the
current target rather than always on the home position.
The vibration was set to 0 if the cursor was anywhere
within the current specified target. The sign and magni-
tude of error in each feedback channel (X or Y) deter-
mined which tactor within that channel was activated (+
or -) and the extent to which it was activated (stronger vi-
brations indicated larger errors). Prior to use, participants
were instructed that this vibration feedback scheme pro-
vided information about the position error between the
cursor and the target. Error feedback encoding is a form
of “repulsive” feedback in the sense that to optimize per-
formance, participants were to reduce the magnitude of
vibration within the vibrotactile display.
The third form of vibrotactile feedback, sham feed-

back, was created by applying a Fourier transform to a
selected vibrotactile feedback signal recorded during
pilot testing from a participant performing a dynamic
stabilization task while using error feedback. The phase
of the selected feedback signal was scrambled in the
frequency domain and inverse Fourier transformed,
yielding a signal that maintained the power content of
the original vibration signal within each frequency bin,
but did not encode any information about either the
hand position or the current task. Stabilization about the
target produced a signal containing both high- and low-
frequency changes in the vibration. By randomizing the
signal’s phase in the frequency domain, the resulting
sham signal retained a spectral power signature similar
to that of both the reaching and stabilization tasks in
both the state and error feedback conditions, but did not
convey any information meaningfully related to ongoing
task performance. The resulting sham signal was 1 min
long and was looped during trials lasting longer than
1 min. The sham signal was only used at the end of an
experimental session. Participants who noticed the onset
of sham stimulation and voiced their awareness were
instructed to nevertheless attempt to use the vibration
as best as they could.
Figure 4 presents representative waveforms and spec-

trograms derived from the vector magnitude time series
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of measured vibrotactile stimuli recorded within the
vibrotactile display during selected reach and stabilization
actions. With error feedback, vibrotactile stimuli tapers off
as subjects acquire the reach target (Fig. 4a, left). During
stabilization however, robotic perturbations induce sys-
tematic time-varying performance errors that give rise to
relatively steady amounts of vibration in the vibrotactile
display that are modulated by the ongoing performance
(Fig. 4a, right). State feedback (Fig. 4b) gives rise to

stronger end-of-reach vibrotactile stimulation in the
100 Hz to 200 Hz frequency band as subjects acquire the
near and far targets, as well as throughout the stabilization
trials. By contrast, sham feedback (Fig. 4c) stimulates the
arm and hand with a spectral signature that closely repli-
cates the average frequency content of the state and error
feedback, albeit without temporal modulation meaning-
fully related to ongoing task performance.

Experiment 1 - Optimizing state feedback
There currently exists no theoretical or empirical guid-
ance on how best to combine information about a moving
limb’s dynamic state when synthesizing and delivering
supplemental kinesthetic feedback for promoting stable
and accurate limb control in the absence of visual feed-
back. The first experiment used several different combina-
tions of hand position and velocity information to
systematically compare the utility of both forms of infor-
mation to promote limb stability and movement accuracy
in the absence of ongoing visual feedback.
Fifteen participants (9 female; age range 22 to 32 years)

performed 12 matched pairs of one reaching trial
(reaches to and from 16 different targets) and one
stabilizing trial (1 min duration). Each pair of trials uti-
lized one of six specific weighted combinations of hand
position and velocity information (Eq. 2):

γ tð Þ ¼ λ⋅ _p þ 1−λð Þ⋅p ð2Þ

where the vibrotatile feedback signal γ(t) is a vector
function of hand position p and ṗ velocity. λ is a con-
stant scalar weighting factor such that when λ = 0 feed-
back contained only position information, whereas when
λ = 1, feedback contained only hand velocity informa-
tion. The λ parameter varied from 0 to 1 in increments
of 0.2. Each λ value was tested two times, one time in
each of two blocks of 6 matched pairs. The presentation
order of λ values was pseudorandomly distributed within
each block (an example of one such randomization is
depicted in Fig. 2c, E1).
At the start of the experimental session, participants

were informed that the vibrotactile feedback could en-
code several different combinations of hand position and
velocity information, ranging from pure position feed-
back to pure velocity feedback. They were then intro-
duced to the vibrotactile display with position-only
feedback (λ=0.0) and encouraged to freely explore the
workspace to develop an understanding of how the vi-
bration feedback interface worked. After free explor-
ation, participants practiced the reaching task and then
the stabilization task until they were comfortable with
the vibrotactile display and the tasks. During the
reaches, VKR visual feedback was provided only after the
movement was completed to allow for terminal

Fig. 4 Vibrotactile information encoding schemes: spectrograms and
time-aligned time series waveforms. a Error feedback encoding scheme.
Time series (bottom) and spectrogram (top) of vibrotactile feedback
during an exemplar reach (left) and a portion of a stabilization trial
(right). Frequency axes and time scale as in panel (c). For the time series,
the scale bars in the bottom panel (left) represent 0.1 G (vertical axis)
and 1 s (horizontal axis). b Optimal state encoding scheme (λ = 0.2). c
Sham feedback encoding scheme. See text for details. Colorbar: signal
power relative to total signal power, in units of dB
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correction of target capture errors. During the stabili-
zations, visual feedback was not available at all (i.e.,
the V− condition). In both types of trials, participants
were encouraged to use the vibration to complete the
tasks to the best of their ability.
Participants then completed the 2 blocks of six

matched trial pairs (one λ value per pair). Before asses-
sing performance under each new encoding scheme, par-
ticipants were again encouraged to freely explore the
workspace to learn the relationship between vibration
and hand position/velocity; they were allowed up to one
minute to do so. Participants then completed the reaching
trial followed by the stabilization trial. This exploration-
reach-stabilize sequence was repeated for each λ value
within each block. We designed this sequence of tasks
such that the reach and return movements would provide
structured practice with the current λ encoding scheme
prior to performance testing in the stabilization task. At
the end of each matched trial pair, participants were asked
to describe, if possible, how they interpreted and used the
vibration to perform each task. Although we originally
intended the reaching task to serve as structured practice
for stabilization, we report performance in both the
stabilizing and reaching trials because we observed con-
sistent results in both tasks.

Experiment 2 - Comparison of optimal state vs. error
feedback
We next compared effectiveness of two forms of supple-
mental vibrotactile feedback in guiding performance of
stabilization and reaching behaviors in the absence of
visual feedback. The first encoding scheme, optimal state
feedback, was the best combination of limb position and
velocity information identified in Experiment 1. The sec-
ond scheme, error feedback, involved the encoding of
performance error into the vibrotactile information
stream. Error encoding is a simple form of “goal aware”
feedback (c.f., [58]) wherein deviations from a desired
position (the “goal”) are fed back to the user, who can
drive performance back to that desired position. In this
experiment, the desired position was defined simply as
the instantaneous position of the target.
Fifteen participants (8 Female) participated in 2 ex-

perimental sessions at least 2 h apart (Range 2 h to
19 days; mean 5 ± 6 days). Both sessions followed the
same experimental protocol but used a different type of
feedback, optimal limb state feedback (as determined by
the first experiment) or goal-aware error feedback. The
presentation order of state and error feedback sessions
was counterbalanced across participants. Four of these
participants had also participated in Experiment 1.
During each session, participants completed a series of

reaching and stabilization tasks guided by various com-
binations of visual (V) and vibrotactile (T) feedback

(Fig. 2c, E2). First, participants familiarized on the tasks
by performing each with continuous vision and without
vibration feedback (V+T−). Participants repeated the
tasks with neither visual nor vibration feedback (V−T−)
to assess baseline performance before vibration training.
Following baseline assessment, participants were intro-
duced to the vibrotactile display and encouraged to
freely explore the workspace for up to 3 min. Partici-
pants then received training throughout the workspace
by performing five reaching trials with vibrotactile feed-
back and visual knowledge of results (VKRT+). Partici-
pants concluded training by performing the stabilization
task with V−T+ feedback. On average, participants took
45 min to do this training. We then examined afteref-
fects of training by having participants complete both
tasks without either visual or vibration feedback (V−T−)
(i.e., post-training baseline testing). We also tested how
well participants could use vibrotactile feedback to guide
performance of reaching and stabilizing behaviors in
the absence of vision by having them perform one trial
of each task with only vibrotactile feedback (V−T+)
(i.e., vibrotactile performance testing). The presenta-
tion order of the post-training baseline phase and the
vibrotactile performance testing were counter balanced
across participants (Fig. 2c, dashed box). Lastly, the
participants performed both tasks with sham vibrotac-
tile feedback (V−Tsham). Subjects were provided brief
intervals (1 to 2 min) of V+T− feedback between each
experimental phase, thus allowing periodic realignment
of visual and proprioceptive maps of space.
At the end of each error or state feedback session, par-

ticipants were asked to rate the “usefulness” of that par-
ticular encoding scheme on a scale that ranged from 1
to 7, by responding to three questions: “ How useful was
the vibration in the {reaching, stabilization} task?”. They
were asked to describe, if possible, how they interpreted
and used the vibration to perform each task.

Data analysis
Analysis of participant performance during stabilization
and reaching behaviors focused primarily on hand posi-
tion data, which were derived from the robot described
in [10] using Python (Python Software Foundation) and
H3D API (SenseGraphics, www.h3dapi.org) running at
60 Hz to collect data from the robot’s encoders and con-
trol the visual display.
Stabilizing: Conspicuous features of participant per-

formance during stabilization trials included the presence
of startup transients at the beginning of each trial and the
presence of prolonged hand position “drift” in the absence
of ongoing visual feedback (see also [43, 53, 60]). We
therefore discarded the first 5 s of data in each 60-s trial
to eliminate potential start-up transients caused by the
onset of force perturbations applied to the hand. We
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modeled hand position drift along the x and y axes separ-
ately as low-order (linear through 3rd-order) polynomial
functions of time. The purpose of this manipulation was
to isolate variations in the data due to slow drift from
moment-by-moment fluctuations caused by the robotic
force perturbations of Eq. 1a and 1b. As the 2nd- and 3rd-
order models yielded results indistinguishable from the
linear model, we only report results obtained with the
lowest order model. We then computed the root-mean-
square error for the raw position data (RMSEtotal) as well
as for the portions of data variance accounted for by the
drift model (RMSEdrift) and by the moment-by-moment
fluctuations in the data (i.e., the residuals of the drift
model fit, RMSEresidual). For each component (RMSEtotal,
RMSEdrift, RMSEresidual), we analyzed only the RMSE
values in the second block of trials of six different lambda
values performed by each participant. Then, we fit third
order polynomials to the variations in RMSEtotal,
RMSEdrift, and RMSEresidual values across the popula-
tion of participants. Finally, we identified the optimal
mixture of limb state information within the vibrotac-
tile feedback signal by identifying the lambda value that
minimized the third order polynomial fit.
Reaching: Performance in the reaching task was quan-

tified using hand positions sampled when the participant
indicated that they thought they had acquired the
intended targets. These final reach positions were used
to compute two performance measures: mean absolute
error magnitude (a measure of reach accuracy), and
target capture variability (a measure of reach precision).
Mean absolute error was computed separately for each
intended target type {center, near, far} as the average
root-mean-square error between the final reach position
and the center of the intended target. Target capture
variability was estimated separately for each intended
target type by computing the area of the 95% confidence
interval (CI) ellipse for the entire distribution of final
hand positions about the desired target ([24, 35]; see
also, [45]). For the near and far targets, we collapsed
across movement directions by counter-rotating the
reach endpoints about the home target by the angle of
desired target movement. For the center target, we cal-
culated target capture variability in two ways – after
counter-rotating by the intended movement direction
(as for the near and far targets), and without counter-
rotation.

Statistical analysis
This study tested three main hypotheses via two sets of
experiments. The goal of Experiment 1 was to identify
the form of vibrotactile limb state feedback (i.e., the spe-
cific weighted combination of moving hand position and
velocity information) that elicits the best performance of
stabilizing and reaching behaviors in the absence of

ongoing visual feedback. Based on the predictions of a
simple proportional control model, we hypothesized that
a vibrotactile feedback encoding scheme that includes a
modest amount of hand velocity information - but
weighted more heavily toward position information -
would best enhance performance of these behaviors. The
goal of Experiment 2 was to perform a head-to-head
comparison of optimal state feedback and hand pos-
ition error feedback, which is a simple “goal-aware” en-
coding scheme (c.f., [58]). We hypothesized that both
state and error feedback would enhance performance of
stabilization and reaching behaviors in the absence of
visual feedback. We furthermore hypothesized that
error encoding would yield superior enhancement of
these behaviors due to the additional task-relevant in-
formation contained in this encoding scheme.
Prior to statistical testing, each of the performance

measures described above required correction for non-
normality (i.e., skew) in their distributions, stemming
from the fact that these measures are strictly non-
negative. A Box-Cox transformation [ Tλ yð Þ ¼ yλ−1

� �
=

λyλ−1
� �

] [7] was used to correct for distribution skew.
Here, y is the variable to be transformed while λ is a
transformation parameter.
In Experiment 1, we used multivariate analysis of vari-

ance (MANOVA), followed by repeated measures ANOVA
and Dunnett’s multiple comparison t-test (where appro-
priate) to determine the extent to which stabilization
performances (RMSEtotal, RMSEdrift, and RMSEresidual)
at each value varied relative to those at the optimal
value, which was identified by minimizing the polyno-
mial fit to the population RMSEdrift data. For reaching,
we similarly analyzed mean absolute error and target cap-
ture variability for each target type {center, near, far}. We
calculated the within-subject difference between perfor-
mances at each value relative to the performances mea-
sured at the optimal value identified during stabilization.
We then performed a 1-sample t-test to evaluate the
statistical significance of the population differences
(H0: difference = 0.0).
In Experiment 2, we tested the ability of vibrotactile

feedback to enhance performance of stabilizing. First we
quantified the amount of the mean absolute error mag-
nitude accounted for by drift in each of the various
training conditions. Then we analyzed the effect of the
experimental phase {post-training baseline V−T−, test
V−T+, sham V−Tsham} and feedback type {state, error}
on RMSEdrift using two-way, repeated measures
ANOVA and post-hoc Tukey t-test (where appropri-
ate). For reaching, we analyzed mean absolute error
and target capture variability for each target type
{center, near, far} by calculating the within-subject dif-
ferences between performances during the test phase
and both the post-training baseline phase and the
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sham feedback phase. We used paired t-test to compare
the V−T− and V−T+ (no vibration verses vibration) condi-
tions to determine if state and error feedback encoding
could improve performance in the absence of vision. We
tested V−T+ verses V−Tsham to verify that any performance
improvement ascribed to state and/or error feedback was
due to the specific information content of the vibrotactile
feedback rather the mere presence of vibration. Finally, we
used paired t-test to compare test phase (V−T+) perform-
ance across feedback conditions {optimal state, error}, to
determine which encoding scheme best enhanced per-
formance during reaching to each target type. All statis-
tical testing was carried out within the Minitab computing
environment (Minitab, State College, PA). Bonferroni cor-
rections were applied such that effects were considered
statistically significant at the α = 0.05 level.

Results
Experiment 1 - Optimizing state feedback
Hand position drift was a conspicuous feature of kine-
matic performance during stabilization in this group of
neurologically intact subjects (Fig. 5). As a representative
example of this phenomenon, a single trial performed in

the absence of visual feedback drifted steadily to the left
(Fig. 5a). Drift was well modeled as a linear function of
time for both the X- and Y-axis projections (Fig. 5b, red
dashed lines). In this way, we decomposed raw hand
stabilization kinematics (RMSEtotal) into two parts –
components characterized by the linear drift model
(RMSEdrift) and residuals of the modeling process
(RMSEresidual), which reflect the participant’s ability to
compensate for moment-by-moment changes in the im-
posed robotic forces. We observed hand position drift to
some degree in all study participants.
Across the study population, RMSEtotal varied with the

state weighting variable (Fig. 6a), with approximately
equal contributions of RMSEdrift (Fig. 6b) and RMSEresidual
(Fig. 6c) at low values and an increasing drift contribution
at higher values. We fit a third-order polynomial to the
pooled population RMSETOTAL data and found this rela-
tionship to be minimized when was approximately 0.2. A
similar result was obtained upon fitting a third-order poly-
nomial to the pooled RMSEdrift data (Fig. 6b). By contrast,
variation across values in the RMSEresidual data appeared
to be minimal (Fig. 6c).
These observations were confirmed using repeated

measures MANOVA to compare stabilization perform-
ance {RMSEtotal, RMSEdrift, RMSEresidual} across values.
MANOVA found significant variation across values
[Wilk’s F(15,188) = 2.536; p = 0.002]. Subsequent ANOVA
found significant variation in RMSEtotal values [F(5,70) =
6.02, p < 0.0005] such that Dunnett multiple compari-
son tests (referenced to control level: λ = 0.2) revealed
significant increases in RMSEtotal when λ = 0.6 (p =
0.022), λ = 0.8 (p = 0.001) and λ = 1.0 (p = 0.001), but
not when λ = 0.0 or λ = 0.4 (p > 0.05 in both cases). Simi-
larly, ANOVA [F(5,70) = 5.52, p < 0.0005] and Dunnett mul-
tiple comparison tests found significant increases in
RMSEdrift between the control level λ = 0.2 and both λ =
0.8 (p = 0.002) and λ = 1.0 (p = 0.005). By contrast,
ANOVA found no significant variation in RMSEresidual
across values [F(5,70) = 1.22, p = 0.311].
Kinematic performance of reaching movements also

varied with λ, even though exposure to each new λ
encoding scheme was very brief prior to structured
reach training. This was most clearly evident in the
measure of target capture variability obtained using
final hand positions recorded during return-to-home
movements. Figure 7 depicts all final hand positions
achieved by one subject while reaching in the ab-
sence of ongoing visual feedback but in the presence
of λ- weighted vibrotactile feedback. The yellow ellip-
ses represent 95% CIs on the total distributions of
return-to-home movement endpoints recorded under
each λ feedback condition. The precision of return-
to-home reaches degrades substantially with increas-
ing λ values. λ -dependent variations in performance

Fig. 5 Experiment 1: Selected subject performance in the stabilization
task (λ = 1.0). a Hand trajectory showing drift over time (line shading).
Drift was modeled from t = 5 s to the end of the trial at t = 60 s.
b Time course of the x (black) and y (blue) components of the
endpoint trajectory from t = 5 s to t = 60 s. Scale bars: as in panel c.
c Time course of the x (black) and y (blue) components of the endpoint
trajectory residuals after removal of the drift, from t = 5 s to t = 60 s
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were more difficult to discern for reaches directed to
the near and far targets.
Across the study population, target capture variability

for return-to-home reaches exhibited significant vari-
ation across λ values [ANOVA: F(5,70) = 6.01, p < 0.0005]

such that Dunnett multiple comparison tests revealed
significant increases in target capture variability when
λ = 0.6 (p = 0.034), λ = 0.8 (p = 0.028) and λ = 1.0 (p =
0.006) when compared to λ = 0.2 (Fig. 8a). Increased vari-
ability observed when λ = 0.0 and λ = 0.4 relative to λ =
0.2 did not reach statistical significance. This outcome
suggests that low values enhance spatial localization of the
hand about the central reference location.
We also computed target capture variability and mean

absolute error at the center, near and far targets after
collapsing across movement directions (i.e., after counter-
rotating reach endpoints by the intended movement direc-
tion about the home target). MANOVA found significant
variation across λ values within the six datasets (2 per-
formance measures × 3 target sets) [Wilk’s F(35,271) =
1.986; p = 0.001]. Subsequent ANOVA found a signifi-
cant main effect of λ for both performance measures at
the center target [F(5,70) > 3.60, p < 0.006 in each case]
(Figs. 8b, 7c), but no main effect of λ for either measure
at the near and far target sets [F(5,70) < 1.31, p > 0.270 in all
cases] (data not shown). At the center target, Dunnett
multiple comparison tests revealed significant increases in
target capture variability when λ = 0.8 (p = 0.011) and λ =
1.0 (p = 0.018) compared to when λ = 0.2 (Fig. 8b). Dun-
nett multiple comparison tests also revealed signifi-
cant increases in mean absolute error magnitude
when λ = 0.6 (p = 0.025), λ= 0.8 (p < 0.001) and λ = 1.0
(p < 0.001) compared to when λ = 0.2 (Fig. 8c).

Experiment 2 - Comparison of optimal state vs. error
feedback
Figure 9 contrasts one participant’s stabilization per-
formance during Experiment 2 sessions wherein state
feedback (λ = 0.2; top) and error feedback (bottom) was

Fig. 7 Experiment 1: “Birds-eye view” of selected subject performance in
the reaching task for each λ value in Vkr visual condition. Light grey circles:
the 16 targets; small black dots: final reach endpoints for movements to
the far targets; small, dark grey dots: final reach endpoints for movements
to the near targets; white dots: final reach endpoints for movements
returning to the central home target. Yellow ellipses represent the
two-dimensional 95% confidence intervals of the return-to-home
reach endpoints

Fig. 6 Experiment 1: Population performance in the stabilization task
as a function of state mixture parameter lambda, with 3rd order
polynomial population fit and 95% function bounds. a RMSE of
the end-effector trajectory. b RMSE of the drift component of
the end-effector trajectory. c RMSE of the residuals after removal
of the drift
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administered. During task familiarization trials with on-
going visual feedback but no tactor feedback (V+T−), the
subject readily maintained hand position centered on
the home target with virtually no drift. During baseline
testing, when visual feedback was subsequently removed
and the vibration was not yet introduced (V−T−), hand
position gradually deviated from the home target, albeit
in different directions on different trials. After perform-
ing about 45 min of training with vibrotactile feedback
during reaching and stabilizing, the subject persisted in
exhibiting drift during post-training baseline assessment
(although drift magnitude appears to have decreased
somewhat after training). By contrast, the subject suc-
cessfully eliminated drift when provided vibrotactile
feedback of either state or error feedback (V−T+). This
effect was due to the information contained within the
feedback and not the mere presence of vibrotactile
stimulation, because the magnitude of drift was at least
as great during sham stimulation trials (V−TSHAM) as it
was during the baseline trials.
Based on these observations, we focused our analysis

of population behavior on RMSEdrift during the post-
training baseline (V−T−) testing (V−T+) and sham feed-
back (V−TSHAM) phases of this Experiment (Fig. 2c).
Two-way repeated measures ANOVA found that when
stabilizing about the home target, RMSEdrift varied
dramatically across experimental phases [F(2,70) =
23.76, p < 0.0005] but importantly not across feedback
conditions [F(1,70) = 0.56, p = 0.457], with no inter-
action between these two factors [F(2,70) = 2.74, p = 0.071]
(Fig. 10). Dunnett multiple comparison tests on the ef-
fect of experimental phase (control level: V−T+ test
phase) revealed that the significant main effect was the
result of a decrease in RMSEdrift during the V−T+ test

Fig. 8 Experiment 1: Population statistics for reaching task, as a
function of state mixture parameter lambda. Error bars represent ± 1
SEM. a Variability of raw reach endpoints about the home target
(area of an ellipse fit to the reach endpoints). b Variability of reach
endpoints at the central target location after collapsing across
movement directions. c Mean absolute error |Error| at the central
target. Red lines: significant Dunnett comparisons at p < 0.05

Fig. 9 Experiment 2: “Birds-eye view” of selected subject performance in the stabilization task. Cursor trajectory showing drift over time (line shading)
varies with the presence and type of vibration feedback. Light grey dot: hand position at time t0; black dot: hand position at time t0 = 5 s; white dot:
hand position at time t0 = 60s. Drift was modeled from t = 5 s to the end of the trial at t = 60 s. Values in red are the RMSEDrift for that trial
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phase as compared to both the V−T− post-training
baseline phase (p < 0.0005) and the sham stimulation
phase (V−TSHAM: p < 0.0005). The difference between
the post-training baseline and test phases was not the
result of an order effect (i.e., additional practice on the
tasks) because the presentation order of these two
phases was counter balanced across participants. More-
over, the benefits of vibrotactile feedback were specific
to the correction of RMSEdrift, as separate ANOVA and
Dunnetts tests revealed no systematic benefit of test phase
vs. post-training baseline performance on RMSEresidual
values for either feedback type (p > 0.211 in both cases).
The absence of a significant main effect of vibrotactile

feedback type on RMSEdrift during stabilization was not
entirely unexpected because, in the neighborhood of the
home target, the information content of state and error
encoding schemes is really quite similar, deviating by the
small amount of velocity information contained within
the state feedback. By contrast, the two encoding
schemes differ markedly in the neighborhood of targets
that are not centered upon the origin of the workspace,
defined in this study as the center of the home target.
Figure 11 depicts all final hand positions achieved by
one subject while reaching in the Experiment 2 sessions
wherein state feedback (top) and error feedback (bottom)
was administered. During task familiarization trials with
ongoing visual feedback but no tactor feedback (V+T−),
the subject captured the center, near and far targets with
accuracy and precision. When visual feedback was
subsequently removed during pre-training baseline testing
(V−T−), target capture performance collapsed in the sense
that reach endpoints deviated wildly from all the intended
targets. Reaches to the near and far targets systematically
overshot their intended targets whereas the dispersion of

return-to-home reaches increased greatly. After perform-
ing about 45 min of training with vibrotactile feedback
during reaching and stabilizing behaviors, the subject ap-
peared to exhibit beneficial aftereffects of training during
the post-training baseline assessment without vibration in
the sense that final return-to-home hand positions ap-
peared to cluster more tightly around the center target.
Aftereffects of training in this second baseline phase were
more difficult to discern at the near and far targets. By
contrast, beneficial effects of concurrent vibrotactile feed-
back were evident and specific to the different encoding
schemes during the test phase performed without cursor
feedback (V−T+) (Fig. 11; red dashed box). Although target
capture accuracy and precision appeared to improve sub-
stantially with concurrent state feedback at all three target
sets {center, near, far}, target capture performance with
error feedback was undoubtedly superior for reaches to
the near and far targets. This striking difference between
post-training baseline and test performance was not
merely an order-effect, as the presentation order of these
two blocks was counter-balanced across subjects. As with
stabilization, this beneficial effect of vibrotactile feedback
was due to the information contained within the feedback
and not the mere presence of vibrotactile stimulation,
because the improvements in reach accuracy and preci-
sion were eliminated upon switching to sham stimula-
tion (V−TSHAM).
We used two-way repeated measures ANOVA to test

the ability of optimal state and error feedback schemes
to enhance performance of goal-directed return
reaches toward the (unrotated) center target (Fig. 12;
red significance bars). We found that reach endpoint
variability varied systematically across experimental
phases [F(2,70) = 42.87, p < 0.0005], but not systematically
across feedback conditions [F(1,70) = 0.05, p = 0.823].
Within both feedback sessions, Dunnett multiple com-
parison tests revealed that un-rotated center target cap-
ture variability in the test block was less than that in the
post-training baseline phase (p < 0.0005) and in the sham
feedback phase (p < 0.0005). When we performed the
planned comparison of test phase performances across
the two feedback encoding schemes (i.e., across experi-
mental sessions), we found that error feedback was better
than optimal state feedback in enhancing the precision
of return-to-home movements (paired t-test: T14 = 3.93,
p = 0.002), with the average ellipse area under state
feedback equal to 9.73 cm2 and the average ellipse area
under error feedback equaling 4.74 cm2, with the aver-
age within-subject difference equal to 4.99 ± 6.03 cm2.
Similar outcomes to those presented in Fig. 12 were

obtained upon analyzing reaches to all target sets
after collapsing across movement directions (Fig. 13;
red significance bars). Within both performance
measures {reach endpoint variability, mean absolute

Fig. 10 Experiment 2: Population statistics in the stabilization task
for error and state feedback. Red lines: p < 0.05. Vertical dashed lines
mark the occurrence of training. The black horizontal dashed line
provides a reference to assist visual comparison across training groups.
No significant difference was observed across groups in this condition
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error magnitude}, MANOVA found significant effects
of experimental phase {post-training baseline, test,
sham} [Wilk’s F(4,494) = 68.841; p < 0.0005], feedback
condition {optimal state, error} [Wilk’s F(2,247) = 5.107;
p = 0.007], and target set {center, near, far} [Wilk’s
F(4,494) = 77.362; p < 0.0005], as well as a strong inter-
action between feedback type and experimental phase

[Wilk’s F(4,494) = 13.560; p < 0.0005]. We therefore per-
formed follow-on ANOVA and post-hoc Dunnett’s
multiple comparisons tests to explore this interaction
for each of the six combinations of two performance
measures {target capture variability, target capture
error} and three target sets (Fig. 13).
In contrast to the pattern of performance enhance-

ments observed in Experiment 1, where exposure to
each form of vibrotactile feedback encoding was very
limited prior to reaching, subjects in Experiment 2 dem-
onstrated the ability to use both forms of feedback to
enhance target capture accuracy and precision at all
three target sets after approximately 45 min of training.
Within the state feedback session, ANOVA found target
capture variability to vary significantly across experimen-
tal phases at all three target sets [F(2,44) > 8.07, p < 0.002
in each case]. Variability was lower in the test block than
in the post-training baseline block for nearly all sub-
jects at all three target types, yielding significant and
meaningful benefits of vibrotactile feedback at the cen-
ter (p = 0.004) and near targets (p = 0.016) (Fig. 13;
panels A and B; open bars), with a somewhat more
modest trend at the far target (p = 0.068) (Fig. 13c; open
bars). The benefits of error feedback at all three target
types were also very strong [F(2,44) > 43.70, p < 0.0005 in
each case] (Fig. 13 a-c; filled bars). Post-hoc Dunnett
tests found that with error feedback, target capture vari-
ability in the test block was less than that in post-training
baseline for all target sets (p < 0.0005 in each case). The

Fig. 12 Experiment 2: Population statistics for reaching to the
(unrotated) center target. Error bars represent ± 1 SEM. Red lines:
p < 0.05. Vertical dashed lines mark the occurrence of training.
Red horizontal dashed line: significant across-group comparison
at p < 0.05

Fig. 11 Experiment 2: Selected subject performance in the reaching task. Figure elements as described in the legend for Fig. 8. Compare performance
in the test phases (red dashed box) to the baseline 2 and sham phases
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effects for both feedback conditions were specific to the in-
formation content embedded within the vibrotactile stimuli
because target capture variability in the test phase was less
than that in the sham phase for all three target sets under
both feedback conditions (p < 0.004 in each case). A
planned comparison of test phase performance across the
two feedback conditions found that error feedback yielded
superior reduction in target capture variability at all three
targets (paired t-test: T14 > 4.48, p < 0.001 in all three cases).
A similar pattern of results was obtained when we

analyzed target capture error within and across feedback
sessions (Fig. 13: panels d-f ). Comparing within feedback
sessions, ANOVA and post-hoc Dunnett tests identified
significant reduction in target capture error when in-
formative vibrotactile feedback was provided for each of
the three target sets relative to post-training baseline

performance (p < 0.019 in all six cases). Performance en-
hancement was specific to the information contained
within the vibrotactile feedback because target capture
errors during sham vibration far exceeded those during
the test phase for all three target sets under both feed-
back conditions (p < 0.001 in each case). A planned com-
parison of test phase performance across the two
feedback conditions found that error feedback yielded
superior reduction (vs. state feedback) in target capture
error for all three target sets (paired t-test: T14 > 4.46,
p < 0.001 in all three cases.).
Although not a main focus of our study, a comparison

of target capture performance before and after vibrotac-
tile feedback training provided evidence for a persistent,
beneficial effect of vibration training on subsequent
reaching movements performed in the absence of both

Fig. 13 Experiment 2: Population results for reaching task. Error bars represent ± 1 SEM. a-c Variability of reach endpoints for the three target sets
after collapsing across movement directions. d-f Mean absolute error |Error| relative to the center of the target. Vertical dashed lines mark the
occurrence of training. Red solid lines: significant within-group comparisons at p < 0.05. Red horizontal dashed lines: significant across-group
comparisons at p < 0.05. Blue lines: secondary analysis with p < 0.05
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visual and vibrotactile feedback (Fig. 13; blue significance
bars). MANOVA found a significant main effects of
training [Wilk’s F(2,160) = 9.256; p < 0.0005] and target
[Wilk’s F(4,320) = 340.761; p < 0.0005] on V−T− reaching,
regardless of feedback condition [Wilk’s F(2,160) = 0.080;
p = 0.923]. Subsequent ANOVA and Dunnett multiple
comparisons tests found strong improvement in
reach performance after training with both optimal
state (p < 0.05 in four of the six cases depicted in
Fig. 13) and error feedback (p < 0.05 in all 6 cases).
Finally, survey results suggest that participant prefe-

rences were task specific (Fig. 14). During reaching,
participants perceived error feedback to be more use-
ful than optimal state feedback (paired t-test: T14 =
3.42, p = 0.004). During stabilization, participants
tended to perceive optimal state feedback to be more
useful than error feedback, although the statistical sig-
nificance of this difference did not survive correction
for multiple comparisons.
Taken together, the results of this study demonstrate

that supplementary vibrotactile feedback can yield both
immediate performance enhancements during goal-
directed stabilization and reaching actions as well as
beneficial aftereffects of training that persist after vibro-
tactile feedback has been removed.

Discussion
The ultimate objective of this line of research is to de-
velop sensory substitution technologies that enhance
closed-loop control of goal-directed behaviors in people
with impaired somatosensation. We sought here to

establish the objective and subjective utility of two forms
of supplemental vibrotactile feedback – encoding of limb
state or hand position error - for enhancing real-time
control of arm stabilization and reaching behaviors in
unimpaired individuals. To mimic practical constraints
experienced by stroke survivors, many of who have lost
or impaired somatosensation in their more affected arm,
we applied the feedback to a body part not directly
involved in the action (i.e., the opposite arm). This
approach is reasonable as a first step because most
people – even neurologically intact individuals - exhibit
imperfect somatosensory control of the arm and hand in
the absence of ongoing visual feedback. Moreover,
despite the likely differences in etiology of performance
deficits in neurologically-intact individuals and those
with somatosensory impairment (e.g., hypertonia in the
contralesional arm), it also remained to be shown whether
it would even be possible to use supplemental vibrotactile
feedback applied to one arm to enhance reach and
stabilization behaviors performed by the other arm.
Here, in a series of two experiments, we demonstrate

for the first time that both vibrotactile encoding schemes
can effectively eliminate drift that naturally accrues in
the internal representation of hand position [23, 53, 60]
in the absence of ongoing visual feedback of hand posi-
tion. Enahanced kinesthetic control was most evident
when subjects stabilized the hand at the origin of the
feedback encoding space (i.e., the “home target” for both
schemes), even when prior exposure to each particular
encoding was limited to just 1 min. Both encoding
schemes similarly and immediately promoted accuracy
and precision of reaching movements directed toward
the origin of the encoding space. However, the two
forms of feedback differed in their ability to immediately
enhance reach accuracy and precision at other locations
in the arms workspace. Whereas 1 min of training did
not suffice to allow subjects to use any of the tested
forms of state feedback to successfully reach to the near
and far target sets in Experiment 1, the best of the state
feedback encoding schemes (80% hand position informa-
tion + 20% hand velocity information) and error feed-
back both improved reach accuracy and precision at
spatial targets throughout the arms reachable workspace
after ~45 min of training in Experiment 2. The beneficial
effects of state and error feedback were specific to the
information content encoded within the vibrotactile
stimuli because non-informative sham stimulation failed
to elicit any meaningful enhancement of performance in
any case. This outcome is important for efforts to de-
velop sensory substitution technologies for neurorehabil-
itation because it demonstrates that people can learn to
use easy-to-implement, opposite-arm state feedback to
improve performance of goal-directed stabilization and
reaching behaviors in the absence of ongoing visual

Fig. 14 Experiment 2: Assessment of usefulness on a 1–7 scale for
state and error feedback for three tasks. Error bars represent ± 1 SEM.
Red line: p < 0.05
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feedback. Nevertheless, for reaching, error feedback was
superior to optimal state feedback, not only on objective
measures of target capture accuracy and precision, but
also on a subjective measure of perceived utility.

Importance of information content within supplemental
vibrotactile feedback
The model simulations described in Fig. 1 suggest that
the control of systems dominated by second-order dy-
namics with delayed feedback can be enhanced by pro-
viding state feedback that adds a modest amount of
velocity information to position information (e.g., in a
ratio around 20%:80%). The reason for this is that vel-
ocity feedback is predictive of position feedback in the
sense that the phase of velocity information at any given
frequency leads position information by 90° and may
therefore enhance perception of changes in limb state.
Experiment 1 was designed to test the model predic-
tions. Although we observed minimization of hand posi-
tion drift during stabilization (Fig. 6) and optimization
of reach accuracy and precision at the center target
(Fig. 8) when vibrotactile feedback mostly encoded pos-
ition feedback, we did not observe significant variations
in the ability of participants to reject moment-by-
moment fluctuations in robotic force perturbations
when we systematically varied the composition of state
feedback. We suspect this negative outcome was due to
the limited amount of training with each different com-
bination of state feedback in the first experiment. In-
deed, a comparison of reach performance at the near
and far targets across both experiments suggests that the
cohort of individuals tested here required up to 45 min
of training with the optimal state encoding scheme to
begin to learn how to use that form of feedback. Because
training-dependent performance enhancements were
limited to drift reduction and the targeting of point-to-
point reaches (i.e., we observed no significant improve-
ment in RMSEresidual), it is likely that full integration of
supplemental kinesthetic feedback into the moment-by-
moment control of the arm (e.g., during stabilization)
requires considerably more training than the mere mo-
ments (Experiment 1) or minutes (Experiment 2) pro-
vided in the current study, and/or training more directly
focused on the stabilization task (rather than on
reaching as in the current study).
Nevertheless, our data demonstrate that it is indeed

possible to achieve usable sensory substitution without
compensating for nonlinearities in the relationship
between vibrotactile stimulus intensity and perception
(Verrillo et al., 1970; 1972), or for nonlinearities intro-
duced by the tactors themselves (Fig. 3b). A likely rea-
son for this outcome is the “soft” nature of the
nonlinearities described both by Verrillo and colleagues
and by Fig. 3b (no sharp discontinuity is present in the

stimulus-to-percept mapping). Based on our observa-
tions and participant comments, it is furthermore likely
that conscious perception of vibrotactile stimuli can
vary somewhat from day to day, and even perhaps
within a single experimental session; this did not preclude
the ability of participants to use the feedback effectively
even though we did not attempt to compensate for such
variations.
We chose not to include velocity information in our

error encoding scheme and considered a simpler form of
goal-aware feedback involving only position information.
Including error velocity feedback would not change the
“goal-aware” nature of the supplemental feedback. As
mentioned in the Background, we have already demon-
strated the efficacy of a sophisticated goal-aware en-
coding scheme that uses an optimal control model as a
“teacher” to encode position and velocity error infor-
mation within the vibrotactile information stream [58].
Here we have shown that even one of the simplest
forms of goal-aware encoding out-performs the opti-
mized state feedback encoding when tested after short-
term task training. This outcome is unlikely to change
for any other optimized goal-aware encoding scheme.
The subjective feedback provided by participants after

experiencing each form of state feedback in Experiment 1
was enlightening. During pilot testing, we observed that
many participants attempted to solve the stabilization task
by stiffening the arm rather than by using the vibrotactile
feedback as we had intended them to do. We therefore de-
veloped task instructions (and repeatedly reminded the
subjects) to avoid stiffening the arm and to use the vibra-
tion to accomplish each task. In response to investigator
queries about the utility of each mixture of state feedback
during the survey period after each trial, participants re-
ported that they did in fact use the vibration as instructed
in most cases. However, when the vibration contained
more velocity information than position information,
some participants reported that they had to temporarily
stiffen their moving arm in order to discern the position
information within the vibration signal so that they could
then make effective use of it. Thus, depending on the
value of, different state feedback encodings yielded
strikingly different subjective experiences that could elicit
different strategies for integrating the supplemental feed-
back into real-time control of the arm. This is perhaps to
be expected because the human brain naturally and fluidly
switches between impedance control, feedforward control,
and real-time feedback control depending on environmen-
tal context and the amount of training within that context
[17, 44, 54]. To characterize the integration of supplemen-
tal vibrotactile feedback of kinesthetic performance into
ongoing sensorimotor control, future efforts may
wish to quantify the occurrence of arm-stiffening
(via EMG or other means) and the relative ratio of
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impedance-to-feedback control as that ratio evolves
during long-term training with the vibrotactile dis-
play system.
Qualitative differences in the nature of state and error

feedback encodings can help explain performance differ-
ences in reach to the near and far targets in Experiment 2.
Because we defined the origin of the arm’s workspace to
be at the center of the home target, error and state feed-
back encodings were similar when was small (e.g., 0.2) but
statistically independent when = 1.0. By contrast, the ori-
gin of the error encoding scheme jumps to the current
goal location, wherever it happens to be within the work-
space. Thus, when the target jumps to a far target, the ori-
gin of error encoding jumps to that location whereas the
origin of state encoding never changes. Thus, when driven
by error feedback, test phase target capture performance
at the near and far targets in Fig. 11 closely replicated per-
formance at the home target in that same test phase, and
resembled performance at all targets driven by visual feed-
back in the familiarization phase. But whereas test phase
performance driven by optimal state feedback was far
better than the baseline and sham phases, target capture
variability and RMS error at all target sets was about twice
as great with optimal state encoding compared to that ob-
served with error encoding.
The qualitative differences between state and error

feedback encoding are also important from the perspec-
tive of implementing a practical, supplemental feedback
delivery system. Whereas it is easy to implement an
error encoding scheme during highly constrained, lab-
based stabilization and reaching tasks that utilize a ro-
botic manipulandum to measure instantaneous hand
position relative to well-defined spatial targets, it will
be much more difficult to define error feedback using
wearable technology that must predict the intent and
movement goals of the user on a moment-by-moment
basis in a unstructured, real-world environment. Al-
though we are not currently aware of technology that is
competent to perform intent and goal prediction in un-
certain environments, low-cost wearable technologies
currently integrate MEMS accelerometers, gyroscopes
and magnetometers and can be used to estimate limb
state. We do not, however, believe intent and goal pre-
diction to be insurmountable hurdles, as real-time
computing systems already are capable of providing
goal-aware feedback encodings that enhance human
performance of difficult but well-defined tasks such as
balancing an inverted pendulum while minimizing both
kinematic error and control effort [58].

Exposure to vibrotactile feedback of limb state induces
spatial learning
The tasks subjects performed in the current experiments
required them to learn how hand position in the

horizontal plane mapped onto target locations within
the vertical plane of the display screen. More specifically,
when subjects reached to visual targets, they needed to
learn an inverse kinematic map specifying how a desired
change in visual cursor position should map onto an ap-
propriate, desired change in hand position. By requiring
subjects to perform the experimental tasks using vibro-
tactile cues, we required them to learn at least two fea-
tures of an additional, interposed transformation: 1) how
hand motions influence activity within the vibrotactile
display; and 2) whether and how changes in visual target
location modulate the patterns of activity within the
vibrotactile display. Experiment 1 probed the first of
these questions and provided evidence that a state en-
coding with = 0.2 enhanced stabilization and return-to-
home reaches better than several other state encoding
schemes tested. Experiment 2 probed the second ques-
tion and provided evidence that within the time frame of
a single experimental session, error feedback out-
performed optimal state feedback in facilitating reaching,
particularly to the near and far targets.
Importantly, two experimental observations provide

evidence that state feedback did encourage subjects to
learn this additional spatial map, thus providing a
sound rationale for further development of state
feedback-based supplemental feedback systems. First,
after ~45 min of practice with optimal state feedback,
we observed performance improvements at the near
and far targets during test phase reaching with vibrotactile
feedback. Because the order of V−T+ test and V−T− base-
line phases after training was counter-balanced across
subjects, we can reject the possibility that this learning ef-
fect was due to more prolonged practice on the reaching
task in the V−T+ condition. We conclude therefore that
subjects used the optimal state feedback to improve accur-
acy and precision of their reaches. Because the near and
far targets mapped onto non-zero activation patterns in
the vibrotactile display, the observed performance en-
hancements were not confounded by enhancements
that might be due to any similarity with error encoding
(e.g., that which exists at the center target). Second, we
observed less overshoot in post-training baseline
reaches performed without ongoing vibrotactile stimu-
lation (relative to pre-training baseline), especially at
the near targets. This observation suggested that pro-
longed training with optimal state vibrotactile feedback
facilitated learning of an internal representation or
map of space that was subsequently recalled during
post-training baseline testing to guide reaches to visual
targets. Because we saw evidence of this second aspect
of spatial learning at all three target sets with state
feedback, especially with regards to target capture
error (RMSE) (Fig. 13, blue significance bars), it is pos-
sible that optimal state feedback can be as effective as
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error feedback at encouraging subjects to learn the
spatial relationships between target location, hand pos-
ition and vibrotactile stimulation. Future studies
should be designed and conducted specifically to ex-
plore how subjects learn to use supplemental vibrotac-
tile feedback to shape internal representations of body
configurations.

Potential applications of supplemental vibrotactile
stimulation
Wearable technologies designed to augment human
motor performance by providing supplemental vibrotac-
tile stimulation have many potential applications. In per-
haps its simplest form, stochastic resonance (c.f., [62]),
vibrotactile stimulation can enhance behaviors such as
standing balance [38] and grip force production [16] via
application of subsensory, random, vibrotactile signals
onto the soles of the feet or onto the tendon of finger
flexor muscles. Stochastic resonance is a nonlinear, co-
operative effect in which a weak stimulus of interest
(e.g., forces applied to cutaneous mechanoreceptors) en-
trains large-scale environmental fluctuations (e.g., the
injected noise), with the result that the sensitivity of a
nonlinear threshold stimulus detector (e.g., cutaneous
mechanoreceptor) is greatly enhanced [62]. In our study,
the beneficial effects of vibrotactile stimulation are not
the result of stochastic resonance because performance
improvements dissipated in the presence of sham
stimulation.
A recent set of experimental studies has found that

artificial activation of sensory afferents of distal arm
musculature (i.e., at the wrist) can improve control of
reaching, stabilizing and tracking behaviors performed
with the proximal arm (i.e., shoulder and elbow) by
adding excitatory drive to central and peripheral sensori-
motor control structures ([12, 13]; b). For example,
Conrad and colleagues [14] applied unmodulated, 70 Hz
wrist tendon vibration on the paretic arm of 10 stroke
survivors as they made planar, center-out arm move-
ments. Relative to performances measured before the
onset of vibrotactile stimulation, three aspects of per-
formance were enhanced during stimulation and for a
brief period after stimulation had ceased: hand position
stability at the end of reach improved; muscle activity
throughout the arm decreased, and grip pressure during
movement decreased. As discussed in [13], possible
mechanisms behind improved proximal arm control in
response to distal wrist tendon vibration may include
improved central (i.e., cortical) sensorimotor integration
within spared neural circuits already mediating control
of the hemiparetic arm or improved cortical modulation
of spinal reflex activity, which acts to elevate spinal re-
flex thresholds (thereby reducing spastic hypertonia).
The beneficial effects of vibrotactile stimulation in our

study do not share a common mechanism of action with
the effects studied by Conrad and colleagues. Whereas
Conrad and colleagues provided vibrotactile feedback
that did not itself encode any meaningful information,
the effects of our vibrotactile stimulation were specific
to the type of information encoded within the tactile
data stream.
Many research teams have proposed using vibrotactile

displays to inject useful information into the human ner-
vous system. Several recent application include the use
of tactile navigation displays for aircraft pilots seeking to
fly toward a target [59], to hover a helicopter [40], to
provide mission critical information such as which direc-
tion is down during conditions of low visibility [51], and
to enable vibrotactile transmission of spoken language
[34]. By injecting informative vibrotactile feedback to the
non-moving arm in our study, we are recruiting alter-
nate sensorimotor control pathways into the task of con-
trolling the moving arm. The results of the present study
show that doing so for neurologically intact people can
improve the accuracy of goal-directed reaching in the
absence of ongoing visual feedback, and eliminate limb
position drift during limb stabilization without visual
feedback. Doing so for stroke survivors who retain some
motor strength and the capacity to produce flexion and
extension torques in the proximal involved arm could
promote increased use of that arm by allowing them
once again to “feel” movement, thus enhancing arm con-
trol in the absence of visual feedback. Future studies
should explore the limits of this approach to vibrotactile
sensory substitution in this population by quantifying ef-
fective bandwidth of control with and without vibrotac-
tile feedback, relative to the bandwidth of control
attainable using visual feedback alone.
Although a focus on neural mechanisms is beyond

the scope of the current study, we note that vibration
and joint position sense both follow the dorsal column/
medial lemniscus system that projects through the ven-
tral posterior lateral nucleus of the thalamus to primary
sensory cortex. As shown via functional neuroimaging
[46, 53], these brain regions contribute importantly to
the real-time, closed-loop control of the distal upper
extremity. They are also susceptible to injury from the
most common form of stroke. Recent studies reveal
networks of neurons interconnecting two sides of the
gray matter at the brainstem and spinal levels as well as
intrahemispheric transcallosal connections that may
form “detour circuits” for recovery of function (for re-
view, see [22]). We therefore speculate that “detour
circuits” may provide a way for the supplemental
kinesthetic feedback we describe to tap into residual
cerebello-thalamo-cortical circuits that participate in
the real-time, closed-loop control of the contralesional
arm and hand. Results from a pilot study involving a
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small cohort of stroke survivors demonstrates that
some survivors can indeed use vibrotactile feedback ap-
plied to the ipsilesional arm to improve control of the
contralesional arm, thereby suggesting that our general
approach may have utility in this population [57]. How-
ever, it remains to be determined whether the specific
“optimal” combination of position and velocity feed-
back identified here as optimizing RMS error and target
capture variability in neurologically intact individuals
will generalize to stroke patients, or to other tasks such
as pursuit tracking of a moving target.
Subjects in the current study perceived error feedback

to be more useful than state feedback during the reach-
ing task, but exhibited no clear preference for either
form of feedback while stabilizing about the home target.
This outcome makes sense because state and error feed-
back were virtually identical at the home target in both
tasks. Either spontaneously or during the survey period
at the end of the session, every participant in Experi-
ment 2 reported that they preferred the presence of in-
formative vibration during training and test phases over
no vibration. Many participants expressed dismay or
frustration when asked to repeat the task without vibra-
tion after they had been able to practice with vibration.
These subjective results reflect positively on the user ex-
perience of wearable technologies using vibrotactile en-
coding of state and/or error feedback for the purpose of
enhancing motor performance of goal-directed actions
with the arm.
A limitation of our approach is that we were unable to

identify in all participants a common configuration of
the vibrotactile display that would allow effective dis-
crimination between activations within all tactor pairs.
Instead, tactor placements had to be individualized in 16
of the 26 participants. Even though these 16 participants
could initially feel each tactor when individually acti-
vated, they reported that for some pairs, they only felt
one tactor vibrating even when both were turned on.
The most common difficulty was interference between
the upper arm and forearm tactors. Adjusting the
upper arm tactor slightly to the right or to the left usu-
ally resolved this issue. In some cases the forearm tac-
tor instead had to be shifted. One participant did not
complete the study and was replaced because she
could not discriminate tactor vibrations despite mul-
tiple tactor adjustments. We suspect that these diffi-
culties were attributable, in part, to normal variations
in the distribution of dermatome innervations across
individuals [29]. Another common difficulty was that
the internal forearm tactor felt dull. This was typically
resolved by shifting the tactor around the muscle or
distally towards the wrist. Some participants reported
the hand tactor felt much stronger than the other tac-
tors. This perception was reduced by moving the hand

tactor towards the wrist. For most participants, adjust-
ing the tactor(s) by 1 to 2 cm was enough to fix the
problem. Preliminary psychophysical studies using the
same tactors as in the present study suggest that there
are systematic differences in vibration perception (dis-
criminability) across dermatomes in healthy human
subjects [47, 48]. However, in the current study, a few
participants demonstrated variability in vibrotactile
perception between sessions such that tactor place-
ment needed to be adjusted from one session to the
next. Future work should explore the impact of
location-dependent variations in vibrotactile percep-
tion and control, and we recommend future applica-
tions to attend carefully to this source of variability.
A second limitation of our study is that we do not

know the extent to which the frequency content of our
robotic perturbations may have exceeded the effective
closed-loop bandwidth of control using supplemental
vibrotactile feedback. The relative insensitivity of
RMSERESIDUAL errors – but not RMSEDRIFT – to the dif-
ferent λ values (Fig. 6c) suggests this may have been the
case. A future study could, for example, use a chirp-
stimulus, rotary-pursuit tracking task to identify the
closed-loop bandwidth of control for each of several dif-
ferent forms of supplemental vibrotactile feedback. We
anticipate that a pursuit task will be much more amen-
able to frequency domain analysis than stabilizing
against deterministic robotic perturbations and point-to-
point reaching as studied here, and therefore more in-
formative about frequency limitations of supplemental
vibrotactile feedback control. Care will need to be taken
when designing the tracking stimulus, however, because
we have previously found that neurologically-intact
people can readily anticipate and compensate for deter-
ministic, low-frequency force perturbations (e.g., a 6 N
force vector rotating in the horizontal plane at 0.25 Hz),
but struggle to compensate for much weaker and more
complex high-frequency sum-of-sinusoids force pertur-
bations [32], such as those employed in the current
study.

Conclusions
The results of this study have established the immediate
utility and relative merits of two forms of vibrotactile
kinesthetic feedback in enhancing stabilization and
reaching actions performed with the arm and hand in
neurotypical people. Whereas the first set of experi-
ments identified one specific combination of hand
position and velocity information that optimized state
feedback control of stabilization and reaching actions
after very limited practice, the second set found that
error feedback – a simple form of “goal-aware feed-
back” - yielded superior performance relative to opti-
mized state feedback throughout the reachable
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workspace. These results are important because they
demonstrate that the intact human brain is capable of
integrating vibrotactile kinesthetic feedback into the
ongoing control of the moving arm and hand, even
when that feedback is applied to a body part not
directly involved in the action (i.e., the other arm).
These findings provide strong empirical evidence mo-
tivating and guiding future development of sensory
substitution technologies seeking to counteract im-
paired proprioceptive sensation in stroke survivors
who retain motor capacity in the more affected arm.
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