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Abstract

Checkpoint activation during S phase modulates transcription. In response to replication arrest, the fission yeast Cds1
checkpoint kinase maintains the normal S-phase transcriptional program by regulating MBF, the S-phase transcription
factor. We show that similar regulation occurs in response to DNA damage during S-phase. We test the relative
contributions to replication-stress resistance of transcriptional regulation and the two other major checkpoint functions:
cell-cycle arrest and fork stabilization. We show that, although transcriptional regulation provides only modest resistance
relative to fork stabilization, it contributes significantly to cell survival. Finally, we investigate the roles of two specific
transcripts: mik1 and mrc1. These results demonstrate the general importance of checkpoint regulation of G1/S transcription
in response to replicative stress and elucidate the specific roles of Mik1 and Mrc1 in the checkpoint.
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Introduction

In response to inhibition of DNA replication, the replication

checkpoint arrests the cell cycle before mitosis, stabilizes stalled

replication forks and regulates S-phase transcription [1,2]. The

transcriptional branch of the checkpoint response up-regulates

genes thought to be important for cells to survive prolonged

replication arrest. The replication checkpoint, also known as the

S-M checkpoint, is commonly induced by hydroxyurea (HU)

treatment. Hydroxyurea is a competitive inhibitor of ribonucleo-

tide reductase which interferes with deoxyribonucleotide synthesis,

resulting in deoxyribonucleotide depletion, fork stalling and

checkpoint activation [3]. A related checkpoint is activated by

DNA damage during replication. The S-phase DNA damage

checkpoint, also known as the intra-S checkpoint, is commonly

induced by methyl methanesulfonate (MMS) treatment, which

methylates DNA, generating adducts that are recognized as

damage primarily during S phase.

The replication checkpoint and S-phase DNA damage

checkpoints are mechanistically closely related. Whether they are

two distinct checkpoints or one checkpoint activated by different

replication stresses is somewhat of a semantic question. They both

rely on the central checkpoint kinase Rad3, the fission yeast

homolog of human ATR and budding yeast Mec1, and the

downstream checkpoint effector kinase Cds1, homolog of Chk2

and Rad53. They have the same two major functions: cell-cycle

arrest and replication fork stabilization. However, it is unclear if

the mechanisms of fork stabilization are the same. Furthermore,

the replication checkpoint regulates transcription by maintaining

the normal G1/S transcriptional program through regulation of

MBF, the S-phase transcription factor [4,5]. This function has

been reported in response to S-phase DNA damage that block

replication forks [4], but not for general DNA damage, such a IR-

induced double-stand breaks, which are thought to activate the

checkpoint independently of replication forks.

Although checkpoint regulation of transcription has been shown

to contribute to resistance to replication stress [4,5], it is not clear

how important it is relative to the other checkpoint functions.

Furthermore, it is unclear which of the approximately 20 MBF-

dependent G1/S transcripts involved in origin licensing, replica-

tion, repair and other functions are important for the checkpoint

function or what role they might play in the checkpoint [5–7]. We

address these questions by showing that the S-phase DNA damage

checkpoint regulates S-phase transcription, by directly testing the

relative importance of cell-cycle arrest, fork stability and

transcriptional regulation and by identifying the roles of specific

transcripts in the checkpoint.

Materials and Methods

Cell culture
The strains used are listed in Table 1. They were created and

maintained using standard methods and conditions [8]. Briefly,

cells were grown in yeast extract with supplements (YES) media at

30uC, with the exception of yFS632 cells, which were grown in

Edinburgh minimal media supplemented with leucine, uracil,

adenine and histidine (LUAH) and with thiamine as needed. The

expression from the nmt1 promoter was induced by growing cells

in LUAH without thiamine for 16–18 hours at 30uC. For time

courses, cells were synchronized by centrifugal elutriation and

treated with 10 mM hydroxyurea or 200 grays ionizing radiation

(IR) at time 0 or 0.015% MMS at 60 minutes. For IR, a Faxitron
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Cabinet X-ray system Model RX-650 was used at 10 Gray/

minute. The delay in MMS treatment prevents cells form arresting

in the first G2. For acute sensitivity assays, cells were incubated

with either 10 mM HU or 0.03% MMS for the indicated times

before plating. Colonies were counted after 7 days at 30uC.

RNA analysis
RNA was prepared for Northern blots probed with random-

prime labeled cdc22, stripped and reprobed with adh1 [5]. cdc22

levels were normalized to adh1 and then all time courses were

normalized to asynchronous wild-type controls included on all

gels. The 20 minute time point for the wild-time course was set

to 1.

Flow cytometry
Asynchronous cells were grown to an OD600 1.0, sampled

before adding 10 mM HU, then collected after 4 hours of HU

treatment. Cells were washed once, resuspended in fresh media,

and sampled every 20 minutes. Collected cells were fixed in 70%

ethanol and processed for flow cytometry. Isolated nuclei were

prepared as previously described and analyzed on a Becton-

Dickinson FACScan flow cytometer [9]. The average S-phase

progression was calculated by measuring the mean of the S-phase

peak as a percentage of the position of between the means of the

1C and 2C contents.

Results

cdc22 Transcription is Maintained During Activation of
the S-Phase DNA Damage Checkpoint but not by
Activation of the G2 DNA Damage Checkpoint

Blocking replication by HU treatment up-regulates G1/S gene

transcription [4–7,10]. To determine if other S-phase checkpoints

induce a transcriptional response, we followed the expression

of cdc22, an MBF-dependent transcript encoding ribonucleotide

reductase. RNA from cells synchronized in G2 by elutriation and

treated with 10 mM HU or 0.015% MMS was analyzed by

Northern blotting. As shown in Figure 1, both HU and MMS

treated cells maintained cdc22 mRNA level when arrested in S

phase. However, neither checkpoint induced G1/S transcription

in G2 prior to passage through mitosis and entry into the

subsequent S phase.

In order to determine if checkpoint-induced transcription is also

activated by the G2 DNA damage checkpoint, we irradiated G2

synchronized cells. We followed septation index and cdc22

transcript levels every 20 minutes after elutriation (Figure 1). Cells

treated with 200 Gray of ionizing radiation septated 40 minutes

later than untreated cells (120 minutes and 160 minutes in control

and treated sample, respectively). We observed a similar G1/S

peak of cdc22 expression 40 minutes later in irradiated cells than

untreated cells (100 minutes and 140 minutes control and treated,

respectively). However, we failed to observe any measurable

increase of cdc22 transcripts during G2. Therefore, our data

suggest that MBF-dependent transcription is activated by the

checkpoint only during S phase and not during G2.

Checkpoint Dependent Regulation of G1/S Phase
Transcription is Beneficial during Replication Stress

Activation of the S-phase checkpoints lead to three major

outcomes: a cell-cycle arrest before mitosis, stabilization of

replication forks and maintenance of G1/S transcription. To

investigate the importance of checkpoint-mediated transcription

relative to the other two functions, we built strains that lack one or

more functions but maintained the other functions of the

checkpoints (Table 2). For a strain that lacks all three functions of

the checkpoints, we used rad3D, which lacks the central checkpoint

kinase. For a strain that is compromised for the transcriptional

response and fork stabilization function but proficient in preventing

mitosis, we used cds1D; this stain lacks the S-phase checkpoints but is

able to arrest in G2 via the Chk1-dependent G2 DNA damage

checkpoint [11]. For a strain that lacks the cell-cycle arrest and fork

stabilization functions, but has constitutive S-phase transcription

that mimics checkpoint-activated MBF-dependent transcription, we

used rad3D cdc10-2E. cdc10-2E encodes a version of the Cdc10

subunit of the MBF G1/S transcription factor containing two

serine-to-glutamic-acid substitutions that mimics Cds1 checkpoint

phosphorylation and constitutively activates MBF [5]. For a strain

that lacks fork stabilization function but retains cell-cycle arrest and

constitutive G1/S transcription, we used cds1D cdc10-2E. Finally, for

a strain in which only cell-cycle arrest is compromised, we use an

nmt1:pyp3 mik1D. In this strain, regulation of the two major

checkpoint targets required for preventing mitosis, Cdc25 and

Mik1, is disrupted [12]. Regulation of Cdc25, the tyrosine

phosphatase responsible for dephosphorylating Cdc2 and driving

entry into mitosis, is disrupted by constitutive expression of Pyp3,

another phosphatase that can dephosphorylate Cdc2 even if Cdc25

is inhibited by the checkpoint. Regulation of Mik1, a Cdc2 tyrosine

kinase activated by the checkpoint, is disrupted by deletion.

Therefore nmt1:pyp3 mik1D cells do not arrest in G2 upon activation

of the checkpoints.

In order to confirm that introduction of the cdc10-2E allele

confers constitutive activation of MBF-dependent gene transcrip-

tion in our strains, we measured the expression of cdc22 in

asynchronous cultures. Samples were collected from asynchro-

nously growing culture treated with 10 mM HU or 0.03% MMS

for 4 hours. As previously reported, wild type cells up-regulate

cdc22 transcription about 4 fold upon checkpoint activation [5].

Maintenance of S-phase transcription is checkpoint dependent, as

both rad3D and cds1D are unable to maintain high transcription of

cdc22 (Figure 2). Conversely all of the cdc10-2E strains constitu-

tively express cdc22 mRNA. These data confirm that MBF-

dependent transcription is regulated by both the replication

checkpoint and the S-phase DNA damage checkpoint.

To test the effect of MBF-dependent transcription on viability

during replicative stress, we compared the survival of rad3D or

cds1D cells with that of rad3D cdc10-2E or cds1D cdc10-2E in HU

and MMS. rad3D and cds1D cells are extremely sensitive to HU,

with cds1D cells being slightly but reproducibly less sensitive

(Figure 3A). In both strains, the constitutive expression of G1/S

Table 1. List of strains.

yFS625 h- leu1-32 ura4-D18 cdc10 (kanMX6)

yFS626 h+ leu1-32 ura4-D18 cdc10-2E (kanMX6)

yFS627 h- leu1-32 ura4-D18 cdc10 (kanMX6) cds1::ura4

yFS628 h- leu1-32 ura4-D18 cdc10 (kanMX6) rad3::ura4

yFS629 h- leu1-32 ura4-D18 cdc10-2E (kanMX6) cds1::ura4

yFS630 h+ leu1-32 ura4-D18 cdc10-2E (kanMX6) rad3::ura4

yFS632 h+ leu1-32 ura4-D18 mik1::ura4 nmt1:pyp3 (kanMX6)

yFS643 h+ leu1-32 ura4-D18 ade6-704 cdc10-2E (kanMX6) rad3::ura4 mik1::LEU2

yFS644 h+ leu1-32 ura4-D18 cdc10-2E (kanMX6) cds1::ura4 mik1::LEU2

yFS645 h+ leu1-32 ura4-D18 cdc10-2E (kanMX6) rad3::ura4 mrc1:kanMX6

yFS646 h+ leu1-32 ura4-D18 cdc10-2E (kanMX6) cds1::ura4 mrc1:ura4

doi:10.1371/journal.pone.0006944.t001

S-Phase Checkpoint Transcripts
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transcripts caused by cdc10-2E was modestly but reproducibly

beneficial for survival (Figure 3A). rad3D cells are also extremely

sensitive to MMS and constitutive expression of G1/S transcripts

makes these cell moderately more resistant (Figure 3B). In

contrast, cds1D cells are quite resistant to MMS. Nonetheless,

constitutive expression of G1/S transcripts also makes these cell

moderately more resistant (Figure 3B).

To test the importance of cell-cycle arrest in the S-phase

checkpoints, we measured the sensitivity of nmt1:pyp3 mik1D cells to

HU and MMS. nmt1:pyp3 mik1D cells are not acutely sensitive to

either treatment. They lose viability only after 5 hours in HU, as

the cells accumulate with a cut phenotype caused by cytokinesis

after an abnormal mitosis of the unreplicated genome. This result

is consistent with the observation that rad3D cells, which lack the

cell-cycle arrest, are not dramatically more sensitive to HU than

Table 2. S-phase checkpoint separation-of-function strains.

Transcription G2 Arrest Fork Stability

wild type + + +

nmt1:pyp3 mik1D + 2 +

cds1D cdc10-2E + + 2

cds1D 2 + 2

rad3D cdc10-2E + 2 2

rad3D 2 2 2

doi:10.1371/journal.pone.0006944.t002

Figure 1. cdc22 mRNA is up regulated during an HU-induced replication checkpoint and an MMS-induced S-phase DNA damage
checkpoint, but not during an IR-induced G2 DNA damage checkpoint. Wild type (yFS625) cells were synchronized in early G2 by centrifugal
elutriation, treated with 10 mM HU, 0.015% MMS or 200 grays of ionizing radiation and followed through a synchronous cell cycle. Samples were
taken every 20 minutes for RNA isolation and visual inspection of septation. A) Septation index of treated cultures and untreated controls. B) cdc22
mRNA level in treated cultures and untreated controls, normalized to adh1 levels and to the 20 minute timepoint of the untreated sample. C)
Northern blots quantitated in B. Blots were probed with cdc22, stripped and reprobed with adh1 as a loading control.
doi:10.1371/journal.pone.0006944.g001

S-Phase Checkpoint Transcripts
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cds1D cells, which retain it (Figure 3A). Furthermore, nmt1:pyp3

mik1D are not significantly more sensitive to MMS at any point in

the time course (Figure 3B).

The MBF-Dependent Transcripts mik1 and mrc1 are
Involved in Resistance to Replicative Stress

To test the importance of specific G1/S transcripts, we repeated

the sensitivity experiments in strains lacking either of two MBF-

dependent transcripts: mik1, which encodes a kinase that inhibits

the G2/M transition by phosphorylating Cdc2, and mrc1, a

protein involved in Cds1 activation and fork stabilization. We

chose these two genes because the S-phase expression of both have

been proposed to play checkpoint-independent roles in resistance

to replicative stress, suggesting that their continued checkpoint-

dependent expression may be a critical role of the transcriptional

function of the S-phase checkpoints [13,14].

Expression of mik1 plays a role in resistance to both HU and

MMS. In the cds1D background, which retains a Chk1-dependent

cell-cycle arrest that can regulate Mik1 [11,15], constitutive

expression of mik1 plays an important role. It is responsible for the

bulk of the cdc10-2E-dependent resistance to HU (Figure 4A). In

the rad3D background, which lacks any cell-cycle arrest,

constitutive expression of mik1 provides modest resistance to both

treatments, accounting for about half of the resistance due to

cdc10-2E-dependent G1/S transcript expression (Figure 4B,C).

The expression of mrc1 also plays a role in resistance to both HU

and MMS. In the rad3D background, mrc1 expression provides

modest resistance to HU, and it is required for all of the cdc10-2E-

dependent resistance to MMS (Figure 4A,C). However, in the

cds1D background, it plays no significant role in resistance to HU.

The MBF Target mik1 Delays Premature Mitosis
To better understand the role of Mik1 in resistance to

replicative stress, we examined the cell-cycle phenotypes of our

strains. We synchronized cells in G2, treated them with 10 mM

HU and followed cell-cycle progression by septation index for two

consecutive cell cycles (Figure 5). As previously reported, rad3D
cells arrested in S phase with HU enter a premature mitosis,

Figure 2. cdc22 mRNA transcription is up-regulated in a
checkpoint- and MBF-dependent manner. Northern blot analysis
of cdc22 transcript levels in asynchronous wild-type (yFS625), cdc10-2E
(yFS626), cds1D (yFS627), cds1D cdc10-2E (yFS629), rad3D (yFS628),
rad3D cdc10-2E (yFS630) and nmt1:pyp3 mik1D (yFS632) cells untreated
or treated with 10 mM HU or 0.03% MMS for 4 hours.
doi:10.1371/journal.pone.0006944.g002

Figure 3. Importance of the transcriptional function of the S-
phase checkpoints. Wild-type (yFS625), cds1D (yFS627), cds1D cdc10-
2E (yFS629), rad3D (yFS628), rad3D cdc10-2E (yFS630) and nmt1:pyp3
mik1D (yFS632) cells were treated with 10 mM HU or 0.03% MMS for
the indicated times and then plated. Colonies were counted after 7
days. The relative percentage survival was calculated by dividing the
number of viable colonies from each timepoint by the number of viable
colonies before the addition of HU or MMS. n = 3; error bars indicate
SEM and are often obscured by the data symbols.
doi:10.1371/journal.pone.0006944.g003

S-Phase Checkpoint Transcripts
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producing a so-called cut phenotype, between 180 and 240

minutes (Figure 5A)[16]. The rad3D cdc10-2E double mutant cells

begin to cut at approximately the same time, but the percent of cut

cells was reduced significantly. This reduction in the frequency of

premature mitosis requires expression of mik1, since the rad3D
cdc10-2E mik1D cells cut to the same extent as the rad3D cells. mrc1

has no apparent role in regulating entry into mitosis, since rad3D
cdc10-2E mrc1D cells delay mitosis to the same extent as rad3D
cdc10-2E cells.

Similarly, we found that mik1 expression contributes to cell cycle

delay in cds1D cdc10-2E cells. cds1D cells arrest in HU for about

6 hours and then begin to leak into mitosis (Figure 5B). cds1D

Figure 4. Importance of mik1 and mrc1 in the transcriptional function of the S-phase checkpoints. cds1D (yFS627), cds1D cdc10-2E
(yFS629), cds1D cdc10-2E mik1D (yFS644), cds1D cdc10-2E mrc1 (yFS646), rad3D (yFS628), rad3D cdc10-2E (yFS630), rad3D cdc10-2E mik1D (yFS643) and
rad3D cdc10-2E mrc1D (yFS645) cells were treated with 10 mM HU or 0.03% MMS for the indicated times and analyzed as in Figure 3.
doi:10.1371/journal.pone.0006944.g004

Figure 5. mik1 plays major role in reducing premature mitosis in rad3D cdc10-2E and cds1D cdc10-2E cells. cds1D (yFS627), cds1D cdc10-2E
(yFS629), cds1D cdc10-2E mik1D (yFS644), cds1D cdc10-2E mrc1 (yFS646), rad3D (yFS628), rad3D cdc10-2E (yFS630), rad3D cdc10-2E mik1D (yFS643)
and rad3D cdc10-2E mrc1D (yFS645) cells were synchronized in early G2 by centrifugal elutriation and followed through a synchronous cell cycle in
the presence or absence of 10 mM HU. Samples were taken every 20 minutes for visual inspection of septation.
doi:10.1371/journal.pone.0006944.g005

S-Phase Checkpoint Transcripts
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cdc10-2E cells remain arrested for the duration of the experiment

in a mik1-dependent manner. cds1D cdc10-2E mik1D cells enter

mitosis at the same rate as cds1D cells, whereas cds1D cdc10-2E

mrc1D cells enter mitosis at the same rate as cds1D cdc10-2E cells.

The MBF Target mrc1 is Involved in Recovery from
Replication Stress

Mrc1 has two functions: it plays an important role in

transmitting checkpoint signaling during S phase and it has an

important checkpoint-independent role during replication [14,17].

To test the hypothesis that constitutive expression of mrc1

contributes to a checkpoint-independent stabilization of replica-

tion forks, we assayed for recovery of replication from an HU

arrest (Figure 6). We treated asynchronous cultures with 10 mM

HU for 4 hours, released them in fresh media and collected

sample for flow cytometry for every 20 minutes. The wild type cells

and cdc10-2E cells finished replication within 60 minutes after

release from HU block. rad3D cells do not recover well from HU

arrest, achieving an average of less than 40% replicated after 180

minutes. rad3D cdc10-2E cells recover better from HU arrest,

replicating faster than rad3D cell and reaching greater than 50%

replicated by 180 minutes. To determine the beneficial role of mik1

and mrc1 in rad3D cdc10-2E cells, we performed the same

experiment with rad3D cdc10-2E mrc1D and rad3D cdc10-2E mik1D
cells. We observed S-phase progression in rad3D cdc10-2E mik1D
cells similar to rad3D cdc10-2E. However S-phase progression in

rad3D cdc10-2E mrc1D cells is similar to rad3D alone, suggesting

that the increased recovery provided by transcription of MBF

target genes is due primarily to the expression of mrc1.

Discussion

In this study, we examine the role of checkpoint regulation of

G1/S transcription in the cellular response to replication stress.

We show that G1/S transcription is regulated in response to DNA

damage, as well as replication inhibition, during S phase, but that

this regulation is not a general DNA damage response, since it is

not activated in response to DNA damage during G2. We further

compare the relative importance of the three major function of the

S-phase checkpoint – cell-cycle arrest, fork stabilization and

transcriptional regulation – and show that, although cell cycle

regulation and transcription contribute to resistance to replication

stress, they are minor factors compared to fork stabilization in

response to both DNA damage and replication arrest. Finally, we

analyze the specific contribution of two G1/S transcripts to the

checkpoints and identify specific roles for them in replicative stress

resistance.

In response to replicative stress, the S-phase checkpoints

maintains S-phase levels of MBF-dependent G1/S transcription.

In previous work, we showed that activation of the HU-induced

replication checkpoint maintains S-phase levels of MBF-depen-

dent G1/S transcription by directly regulating the MBF

transcription factor [5]. In particular, we showed that cdc10-2E

constitutively activates MBF-dependent G1/S transcription. cdc10-

2E encodes an allele of the Cdc10 subunit of the MBF G1/S

transcription factor that mimics Cds1 checkpoint phosphorylation

by the substitution of two serines with glutamates. Here, we show

that MBF-dependent transcription is also regulated by the S-phase

DNA damage checkpoint. Transcription of cdc22, the canonical

MBF transcript encoding the large subunit of ribonucleotide

reductase, is maintained during MMS-induced activation of the S-

phase DNA damage checkpoint (Figure 1). This regulation is

checkpoint-dependent and MMS treatment does not further

induce cdc22 expression in cdc10-2E, which mimics checkpoint

activation of MBF, suggesting that there is no MBF-independent

checkpoint regulation of cdc22 (Figure 2). However, this regulation

of MBF is not a general checkpoint response, because cdc22 is not

up regulated by activation of the G2 DNA damage checkpoint.

Although 200 gray of ionizing radiation fully activates the G2

DNA damage checkpoint [18] and in our experiments imposes a

40-minute cell-cycle delay, it does not induce MBF-dependent

transcription (Figure 1). Previous work showed modest induction

of MBF-dependent transcripts 60 minutes after irradiation with

500 grays, suggesting that MBF may be regulated by chronic

activation of the G2 DNA checkpoint [19].

To investigate the contribution of checkpoint-regulated tran-

scription to cellular survival of replicative stress relative to the two

other major checkpoint function, cell-cycle arrest and fork

stabilization, we built strains that lack one or more of these

functions (Table 2). rad3D cells lack all checkpoint functions. cds1D
cells retain the cell-cycle arrest function, because, in the absence of

Cds1, Rad3 can arrest cells via Chk1. nmt1:pyp3 mik1D cells lack

the cell-cycle arrest function because they lack both G2 targets of

the checkpoints [12]. In addition, it should be noted that this arrest

defect affects not only the direct cell-cycle arrest function of the

checkpoint, but also the indirect cell-cycle arrest function provided

by checkpoint-dependent expression of mik1 [see below and

20,21]. G1/S transcription can be restored in rad3D and cds1D
cells by mimicking checkpoint phosphorylation of MBF with the

cdc10-2E allele. We have been unable to test a strain that lacks only

the transcription function because we have not been able to

identify mutations that prevent checkpoint-dependent MBF

activation without also compromising normal cell-cycle MBF

regulation [5]. Although these strains generally affect the function

described above, it should be noted that they may also affect other

currently unrecognized functions. Nonetheless, in broad outline

they serve to suggest which of the known functions of the

checkpoint are most important in dealing with replicative stress.

We tested these separation-of-function strains for their sensitivity

to acute exposure to both HU, which causes nucleotide depletion

and replication arrests, but does not directly damage DNA, and

MMS, which causes alkylation damage to DNA. Both rad3D and

cds1D cells are extremely sensitive to HU. The small but

Figure 6. mrc1 plays major role in recovery from replicative
stress in rad3D cdc10-2E cells. rad3D (yFS628), rad3D cdc10-2E
(yFS630), rad3D cdc10-2E mrc1D (yFS645) and rad3D cdc10-2E mik1D
(yFS643) cells were treated with 10 mM HU for 4 hours, washed,
resuspended in fresh media and collected every 20 minutes for flow
cytometry. S-phase progression was calculated by measuring the mean
of the S-phase peak as a percentage of the position of between the
means of the 1C and 2C contents.
doi:10.1371/journal.pone.0006944.g006

S-Phase Checkpoint Transcripts

PLoS ONE | www.plosone.org 6 September 2009 | Volume 4 | Issue 9 | e6944



reproducible difference between the sensitivity to HU of rad3D cells,

which lack all checkpoint function, and cds1D cells, which lack the

fork-stabilization and transcriptional functions, but retain the cell-

cycle arrest function, suggest that cell-cycle arrest provides a modest

resistance to HU, presumably by delaying premature mitosis in

some cells long enough for them to survive until they are returned to

HU-free media (Figure 3). This result is consistent with the

observation that nmt1:pyp3 mik1 cells, which lack only the cell-cycle

arrest function, are resistant to brief exposure to HU, but are more

sensitive at later timepoints, with 72% lethality at 5 hours, and are

sensitive to chronic exposure to HU (CD, unpublished data).

Presumably, during brief HU exposure, fork stabilization is

sufficient for survival, allowing cells to restart replication once the

HU is removed, but at later timepoints premature mitosis kills cells

even with stably stalled forks [22].

Restoration of extended MBF-dependent transcription provides

modest, but reproducible, resistance to HU in both rad3D and cds1D
cells, comparable in degree to the resistance provided by the cell-

cycle arrest function of the checkpoint. Comparisons between cds1D
and cds1D cdc10-2E, rad3D and rad3D cdc10-2E, rad3D and cds1D,

and nmt1:pyp3 mik1 and wild-type cells all show a roughly 3- to 10-

fold increase in sensitivity when the cell-cycle or transcriptional

function is removed (Figure 3A). These are quite modest effects with

uncertain biological significance. However, they do agree with

previous work showing a role for transcriptional regulation in

resistance to chronic HU treatment [4,5]. Furthermore, over-

expression of Res2, an MBF subunit and MBF target, suppresses the

sensitivity of checkpoint mutants to chronic HU exposure, possibly

by constitutively activating MBF-dependent transcription [6]. In

contrast to the modest effect of transcriptional regulation, loss of the

fork-stabilization phenotype is associated with a increased sensitivity

of several orders of magnitude (Figure 3A). These conclusions are

consistent with previous work showing recovery from replicative

stress is a critical function of the checkpoint [22,23].

In response to MMS-induced S-phase DNA damage, cell-cycle

arrest and fork stabilization appear to play redundant roles in

providing resistance. Loss of neither cell-cycle arrest in nmt1:pyp3

mik1 cells nor fork stabilization in cds1D cells causes significant

sensitivity to MMS (Figure 3B). However, loss of both functions in

rad3D cells leads to profound sensitivity. These results suggest that

cells can survive MMS-induced DNA damage either by stabilizing

forks and repairing the damage in S phase or by arresting in G2

and repairing the damage caused by lack of fork stabilization.

Furthermore, transcription plays a more significant role in

response to MMS than HU, suggesting that one or more MBF-

dependent transcript can provide checkpoint-independent resis-

tance to MMS-induced DNA damage.

The role of checkpoint regulation of S-phase transcription in

resistance to replicative stress raises the question of which specific

transcripts provide this resistance. It is unlikely that all transcripts

are beneficial. For instance, continued expression of the cdc18

replication-initiation gene might be expected to complicate recovery

from replication stress by promoting refiring of origins [24]. On the

other hand the genes encoding Mik1 and Mrc1 are strong candidate

for playing an important role in resistance to replication stress

[13,14]. To investigate the role of specific MBF-dependent

transcripts in resistance to replicative stress, we repeated the acute

sensitivity assays in strains lacking either mik1, which encodes a

tyrosine kinase that phosphorylates Cdc2 and inhibits mitosis [25],

or mrc1, which encodes a replication fork protein involved in fork

stabilization [14,17]. We chose these two genes because the S-phase

expression of both have been proposed to play checkpoint-

independent roles in resistance to replicative stress, suggesting that

their continued checkpoint-dependent expression may be a critical

role of the transcriptional function of the S-phase checkpoints

[13,14]. Our approach of deleting the genes in question suffers from

the complication that we lose both basal and induced expression,

but it does test whether, in the absence of these genes, checkpoint-

dependent expression of other genes can contribute to replicative-

stress resistance. Nonetheless, in future work it would be interesting

to express these genes from appropriately-strong constitutive

promoters to directly test the importance of their induction.

The checkpoint-dependent transcription of both mik1 and

mrc1 provide resistance to replicative stress. In the cds1D
background in response to HU, the effect is due primarily to

mik1, with cds1D cdc10-2E mrc1D cells being as resistant as cds1D
cdc10-2E cells, but cds1D cdc10-2E mik1D cells being as sensitive as

cds1D cells. These results are consistent with the cds1D cells being

able to regulate Mik1 in a Chk1-dependent manner, but only if it

is expressed [15].

The checkpoint-dependent transcription of mik1 also provides

resistance to replicative stress in the rad3D background, in which

other cell-cycle arrest mechanisms are abrogated. In response to

both HU and MMS, rad3D cdc10-2E mik1D cells are more sensitive

than rad3D cdc10-2E cells. The role of Mik1 in providing resistance

to replicative stress in the absence of the checkpoint is presumably

to prevent premature mitosis by inhibiting Cdc2 via tyrosine

phosphorylation (Figure 5 and[13]). This conclusion is consistent

with the observation that constitutively expressed Mik1 kinase in

cdc10DC4 (a dominant allele of cdc10 resulting in constitutive over

expression of MBF-regulated genes) plays a role in increased cell

length in division [21].

The importance of mrc1 as a transcriptional target of the

checkpoints is apparent in the rad3D background. In response to

MMS, rad3D cdc10-2E mrc1D cells are as sensitive as rad3D cells. The

situation is somewhat different in the rad3D background in response

to HU. Here, the rad3D cdc10-2E mrc1D cells are slightly less sensitive

than rad3D cells, suggesting that other MBF-dependent transcript

contribute to resistance in the absence of mrc1. However, the rad3D
cdc10-2E mrc1D cells are as sensitive to HU as cds1D cells, suggesting

that loss of mrc1 inactivates the Cds1-dependent fork-stabilization

function and that the MBF-dependent resistance to HU is due to

another function, possibly the cell-cycle arrest function. The fact that

mrc1 expression effects rad3D cells, but not cds1D cell, suggests that

Mrc1 requires Cds1 in a checkpoint-independent manner for at least

some of its fork stabilization functions. The role of Mrc1 in providing

resistance to replicative stress in the absence of the checkpoint is

presumably to stabilize stalled forks and allow them to recover

(Figure 6 and [26]). In particular, Mrc1 may negatively regulate

Cdc45 and the MCM helicase, rendering stalled forks capable of

resuming replication [27].

Our results show that the regulation of MBF-dependent G1/S

transcription by the S-phase checkpoints provides a modest but

reproducible resistance to replicative stress. Furthermore, they

implicate mrc1 and mik1 as critical targets of MBF in the

transcriptional response to replication stress. Since both Mrc1 and

Mik1, as well as the checkpoint regulation of G1/S transcription,

are conserved throughout eukaryotes, it is likely that this mechanism

of resistance is a general response to replicative stress.
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