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Abstract

Protein kinases of the MARK family phosphorylate tau protein in its repeat domain and thereby
regulate its affinity for microtubules and affect the aggregation of tau into Alzheimer paired helical
filaments. We are searching for low molecular weight compounds to interfere with the activity of
MARK and its pathways. Here we summarize structural features of MARK and cellular pathways of

regulation.

Introduction

Kinases of the MARK (microtubule-associated protein
(MAP)-microtubule affinity regulating kinase)/Par-1 fam-
ily play important roles in several contexts relevant for
Alzheimer's disease (AD) research. The best-known prop-
erty is that these kinases phosphorylate the tau protein in
its repeat domain. The consequence is that tau looses its
affinity for microtubules and detaches from them. The
microtubules become destabilized, and the unbound tau
is free to undergo abnormal aggregation. This process rep-
resents one of the hallmarks of AD. Furthermore, the sites
on tau phosphorylated by MARK (KXGS motifs in the
repeat domain) appear early in AD [1], MARK protein is
elevated in neurofibrillary tangles in AD brain [2], and
MARK phosphorylation sites on tau are elevated early in
transgenic mouse models of tauopathy [3,4].

Apart from neurodegeneration, MARK and its homo-
logues belong to a set of conserved proteins that are essen-
tial for establishing cellular polarity, which is crucial for
the development of an organism. Because of this property,
these proteins were initially named Par (for 'partition-
defective'), since mutations in the gene products lead to
defects in the partitioning of the Caenorhabditis elegans
zygote [5]. The combination of Par genes has since been
discovered and studied in many contexts, notably in
polarity development in the fruit fly [6] and in the estab-
lishment of polarized epithelial cells [7]. Besides tau, a
number of other MARK target proteins have been identi-
fied. They include the MAPs related to tau (for example,
MAP2, MAP4 and their isoforms) [8], other MAPs (for
example, doublecortin), or proteins involved in phospho-
rylation signaling and 14-3-3 binding (for example,
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Cdc25, PTPH1, and KSR1) [9]. In particular, the Par genes
are involved in neuronal differentiation [10], and the
activity of MARK2/Par-1 is necessary for the outgrowth of
cell processes, neurites, and dendritic spines [11-13].

Our search for MARK was prompted by the observation of
the phoshorylated KXGS motifs in tau protein and their
strong effect on microtubule affinity. The kinase was iden-
tified and cloned on the basis of this property [14,15]. The
kinase subfamily contains four members, termed
MARK1-4, encoded on chromosomes 1, 11, 14, and 19 in
the human genome. MARK belongs to the AMPK (adeno-
sine-monophosphate activated protein kinase) branch of
the CAMK (calcium/calmodulin-dependent protein
kinase) group of kinases [16]. The kinase is relatively large
(nearly 800 residues), contains several domains, and
appears to be regulated by multiple pathways. Two of
these were already anticipated when the kinase was origi-
nally isolated because two residues in the so-called 'activa-
tion loop' of the catalytic domain were phosphorylated.
Subsequent work showed that phosphorylation of the
first site (T208 in the MARK2 sequence) activated the
kinase, whereas the second site was inhibitory (S212).
Activation by phosphorylation at T208 can be achieved by
the upstream kinase MARKK/TAO-1 [17], or alternatively
by the kinase LKB1 [18]. Inactivation by phosphorylation
at S212 is achieved by the glycogene synthase kinase 33
(GSK3B) [19]. Because of the relationship to tau phospho-
rylation in neurofibrillary pathology, we are interested in
low molecular weight compounds by which the activity of
MARK can be modulated. One example is that of hymeni-
aldisine, which inhibits MARK and other kinases by bind-
ing in the catalytic pocket [12,20]. Here we summarize
some structural features of MARK and mechanisms of reg-
ulation that may serve as entry points for pharmacological
intervention.

MARK structure

The major domains of MARK (Figure 1A) include an
amino-terminal header, the kinase catalytic domain, the
ubiquitin-associated (UBA) domain, a spacer domain,
and the carboxy-terminal tail domain (containing the
'kinase-associated domain' (KA1)). All four MARK iso-
forms have a similar domain composition. UBA domains
can be found by sequence homology in several other
AMPK-related kinases, such as the salt-induced kinases
SIK1-3 (also termed SIK, QIK and QSK) and the brain-
selective kinases BRSK1/2 (also termed SAD kinase) [21].
Predictions based on structure suggest 3-helix bundles
resembling the UBA domain at analogous positions for
several further kinases of the AMPK family, such as
NUAK1/ARK5 (AMPK-related kinase 5; but not NUAK2/
SNARK (sucrose non-fermenting 1 (SNF1)/AMPK-related
kinase)), AMPKa1/2, MELK (maternal embryonic leucine
zipper kinase), NIM1 (non-inducible immunity 1), SNRK
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Diagrams of MARK and tau. (A) Top: bar diagram represent-
ing the domain structure of MARK family kinases. Residue
numbers refer to the sequence of the longest isoform of
human MARK2. The domains include the header domain, the
kinase catalytic domain, the common docking (CD) site, the
ubiquitin-associated (UBA) domain, the spacer domain, and
the tail domain, which contains the 'kinase-associated
domain' (KAI). Bottom: bar diagram of tau protein, highlight-
ing the repeat domain and the KXGS motifs that can be
phosphorylated by MARK. (B) Phylogenetic branch of the
AMPK-related kinases and their position in the human
kinome (modified from [16]). Closed squares and circles indi-
cate UBA and KAI domains recognized on the basis of
sequence similarity by Prosite [36]. Open squares and circles
label kinases where UBA and KA| domains are not predicted
by sequence, because the homology is too weak, but only on
the basis of secondary structure elements (determined using
PSIPRED [37]).
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(SNF1-related kinase), and HUNK (hormonally upregu-
lated Neu-associated kinase) (Figure 1B).

The carboxy-terminal KA1 domains are only predicted for
a subset of the AMPK family kinases, MARK1-4,
AMPKa1/2, BRSK1/2 (alias SADK-A/B) and MELK (Figure
1B). Among the domains of MARK, three have been
solved structurally at high resolution: the catalytic domain
together with the UBA domain (by X-ray diffraction) [22-
24]; and the tail domain (by NMR spectroscopy) [25]. If
not stated otherwise, residue numbers refer to MARK2
[UniProt: Q7KZI7], which is the isoform that has been
resolved at the highest resolution so far [PDB: 2Y8G].

Figure 2
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The catalytic domain (Figure 2A) has a bi-lobal structure
typical of protein kinases, with a conserved active site cleft
between the two lobes. The smaller amino-terminal lobe
(approximately 80 residues) consists mainly of -strands
(B1 to B5) and a single, prominent a-helix (helix C), and
the larger carboxy-terminal lobe (approximately 170 resi-
dues) is mostly a-helical. Both lobes contribute structural
elements to the active site that are essential for the cata-
lytic activity: the P-loop (phosphate-binding loop, also
known as glycine-rich loop, G-loop), the catalytic loop,
and the activation loop (also called T-loop). The P-loop,
at the tip of the f1-B2 hairpin (GKGNFA in all MARK iso-
forms, residues 60-65 in MARK?2), is rather flexible in the
apo-state. In the active complex it locks in to the nucle-
otide and helps to position the y-phosphate of the nucle-

MARK

HHR23A

Structure of the catalytic and ubiquitin-associated (UBA) domain of MARK. (A) Ca trace of the inactive catalytic domain of
MARK with carboxy-terminal extension, in the inactive apo state. The nucleotide binding site is marked by an ATP molecule
represented by transparent spheres (grey). The catalytic domain is drawn in blue (amino-terminal lobe) and purple (carboxy-
terminal lobe) except for the P-loop (cyan) and the T-loop or activation loop (including its amino-terminal anchor; yellow). The
drawing is based on the coordinates of MARKI [PDB: 2HAK] [23]. The activation segment is variable and, in most cases, par-
tially invisible in the crystal structures. Two complete conformations of the T-loop are shown in superposition; these corre-
spond to molecules E and F of the MARKI crystal structure. The carboxy-terminal extension of the catalytic domain comprises
the common docking (CD) site and linker (pale green and green) and the UBA domain (red), which binds to the amino-termi-
nal-lobe, at the rear side of the active site. (B) Top: Overlay of the UBA domain of MARKI (red) and that of HHR23A (light
blue) [PDB: 1IFY] [38]. Bottom: schematic drawing showing the orientation of the helices in both structures. The carboxy-ter-
minal helix (alpha3) of the UBA domain in MARK is inverted compared to the conventional orientation exemplified by
HHR23A. The figure was generated with PyMOL [39].
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otide for transfer to the substrate's phosphorylation site
(by analogy to known structures of active protein kinase
complexes). The catalytic loop (residues 171-183), part
of the C-lobe, is located at the other side of the catalytic
cleft, opposite to helix C and the P-loop. The catalytic
loop contains an RD motif consisting of a highly con-
served, catalytically active aspartate (D175), which is pre-
ceded by an arginine residue. In RD kinases that are
regulated by T-loop phosphorylation, this arginine is
assumed to interact with the primary phosphorylation site
of the T-loop [26].

The T-loop is anchored to the base of the active site cleft
via the Mg?+ binding loop starting with the DFG motif
(residues 193-195). In inactive MARK, the T-loop is par-
tially disordered and assumes a variety of conformations.
It is folded over the cleft in the inactive state (Figure 2A)
so that the access of the substrate peptide and ATP are
blocked. As with many other RD kinases, activation of
MARK can be achieved by phosphorylating the T-loop (at
T208). By analogy with the structure of other kinases in
the active state, phosphorylation of this residue likely trig-
gers reorientation and stabilization of the T-loop leading
to an 'active' conformation that allows binding of the sub-
strate molecule (Figure 3).

helix C

helix E

Figure 3
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The catalytic domain has a carboxy-terminal extension
that starts with a highly charged four residue motif (ExxE,
x = E or D, except for MARK4, EGEE) that resembles the
common docking (CD) site in MAP kinases [27] and may
represent an attachment of upstream or downstream reg-
ulatory cofactors. This motif is followed by an extended
chain of amino acid residues that ends with the UBA
domain, a small, globular domain that binds close to the
amino terminus of the catalytic domain. The generic UBA
domain consists of three short helices (a1-3) folded in a
characteristic helical bundle. In all MARK crystals that
have been solved so far, including constructs from MARK
isoforms 1, 2, and 3, the UBA domain is unusually folded:
helix a3 is inverted compared to the typical fold (Figure
2B).

Mechanisms of MARK regulation

As described above, MARK/Par-1 kinases can be activated
by phosphorylation of a conserved threonine in the acti-
vation loop, T208 in MARK?2 (Figure 4). Two upstream
activating kinases have been identified, MARKK/TAO-1
[17] and LKB1 [18]. MARK?2 purified from brain is, at least
partially, also found to be phosphorylated at a second site,
S$212, adjacent to T208 [15]. This particular serine can be
phosphorylated by GSK3p and, as a result, MARK

T208(p)
R

activation
& Ipop

Model of conformational changes in the catalytic domain of MARK2. The model is based on the X-ray structure of MARK2
[PDB: 1Y8G] [24]. The catalytic loop (grey) is located deep in the cleft between the small and the large lobes of the kinase
domain (blue). The ubiquitin-associated (UBA) domain (red) in the back is linked to the large lobe by a stretch that contains the
common docking (CD) site (green). (A) In the inactive state, the catalytic loop (yellow; partly disordered and modeled here as
dotted line) is folded back into the cleft and resides underneath the ATP-binding loop (P-loop). Both T208 and S212 point to
the right and are accessible for kinases, for example, T208 to MARKK [17] and $212 to GSK3p [19]. (B) In the activated state,
phosphorylation of the T208 (indicated by red sphere) results in a reorientation of the activation loop. It becomes folded out
of the cleft and resides between helix C and helix F, stabilized by interactions of the pT208 to residues in helix C. S212 is now
fixed by hydrogen bonds towards K177 and D175 in the catalytic loop (grey). The catalytic pocket opens up and allows entry
of ATP (violet) and substrate (tau peptide, cyan), which aligns with the catalytic (grey) and the activation loop (yellow). (C)
Phosphorylation of S212, or mutation to alanine or glutamate, disrupts the stabilizing interaction between the activation loop
(yellow) and the catalytic loop (grey), resulting in an inactive kinase. Furthermore, it is likely that the phosphate of pS212 (indi-
cated by a red sphere) will interfere with the correct alignment of the substrate within the catalytic cleft.
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Modes of regulating MARK. The diagram summarizes known
or plausible modes of MARK regulation that would affect the
phosphorylation of tau and hence the stability of microtu-
bules and the aggregation of tau. Activation via phosphoryla-
tion by MARKK (red) or LKBI (grey) at T208 in the
activation loop [17,18]. Inhibition by binding of PAKS5 (green)
to the catalytic domain [30]. Inhibition via phosphorylation by
GSK3p (blue) at S212 in the activation loop [19]. Regulation
by interaction of the UBA domain with ubiquitin (cyan) (not
proven but suggested by X-ray structure) [24]. Regulation by
interaction of the CD motif with a cofactor (yellow), in anal-
ogy with MAP kinases where upstream or downstream
kinases can be bound [24,27]. Localization by interaction of
the catalytic domain with the adaptor protein 14-3-3 (violet)
(in analogy with Drosophila Par-1) [30,31]. This interaction
does not depend on prior phosphorylation of MARK. Locali-
zation and probably inhibition by interaction of the spacer
domain with 14-3-3 (violet), after prior phosphorylation by
atypical protein kinase C (aPKC; orange), which creates a 14-
3-3 binding motif on MARK [32,33]. Interaction between the
carboxy-terminal tail and the amino-terminal header or cata-
lytic domain (dotted line), creating a folded and inhibited
MARK molecule (proposed for the yeast homolog Kin-1)
[34].

becomes inactive. The inhibitory phosphorylation by
GSK3B even overrides previous activation by MARKK or
LKB1 at T208 [19]. These findings confirm earlier data,
where site-directed mutagenesis of this residue to a phos-
phoserine-mimicking glutamate suggested that phospho-
rylation might be inhibitory [17]. X-ray analysis of the
catalytic domains of MARK1 and MARK2 confirm the
important function of this particular serine in stabilizing
the activation loop [23,24]. This is illustrated in the struc-
tural model of MARK2 (Figure 3). In the inactive state of
the kinase, the activation loop folds deep into the catalytic
cleft, blocking the entry of the ATP and the substrate pep-
tide (tau). Upon activation, the activation loop folds out
of the catalytic cleft and resides between helix C and helix
F, opening the cleft for ATP and the substrate. In this con-
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formation, the S212 forms hydrogen bonds to the cata-
lytic aspartate (D175) and a nearby lysine (K177), as
proposed for PKA (PKA residues are T201, D166, and
K168) [28]. This interaction, together with the contacts of
the phosphorylated T208 to helix C, fixes the activation
loop in the open conformation that is crucial for activity.
Mutation of S212 to either alanine or glutamate disrupts
this stabilizing interaction, and the same is achieved when
S$212 is phosphorylated. Since the activation loops of the
four MARK isoforms are nearly identical in sequence,
these results are likely to hold for all.

The activity of MARK is additionally regulated by several
mechanisms that all lead to reduced activity (Figure 4)
[29]. First, the activity is modulated by interaction with
other proteins. Using a yeast two-hybrid screen, we iden-
tified the Ste20-kinase PAKS5, which can bind to the cata-
lytic domain of MARK, resulting in inhibition [30].
Furthermore, MARK can also interact with the scaffold
protein 14-3-3/Par-5 (one of the conserved polarity
genes). Two different modes have been proposed for this
interaction: 14-3-3 can bind in a phosphorylation-inde-
pendent manner to a fragment containing the catalytic
domain and the linker to the UBA domain of MARK/Par-
1 [31]. Alternatively, 14-3-3 can bind to the spacer
domain after phosphorylation by atypical protein kinase
C [32,33]. These interactions not only regulate MARK spa-
tially by altering its localization, but also inhibit the cata-
lytic activity of the enzyme, probably by stabilizing the
inhibitory interaction of the tail domain with the amino-
terminal header or the catalytic domain ([34], and our
unpublished data). The structural analysis of MARK [24]
suggests further regulatory interactions with yet unknown
proteins and the UBA domain - for example, poly-ubiqui-
tin - leading to intracellular signaling. Finally, the CD site
is known in MAP kinases for multiple interactions with
upstream and downstream effectors [27]; this motif can
be found in all MARK isoforms [24].

List of abbreviations used

AD: Alzheimer's disease; AMPK: adenosine monophos-
phate-activated protein kinase; BRSK1/2: brain-selective
kinase 1/2; CD: common docking; GSK3p: glycogene syn-
thase kinase 3B; MAP: microtubule-associated protein;
MARK: MAP-microtubule affinity regulating kinase;
MELK: maternal embryonic leucine zipper kinase; SNF1:
sucrose non-fermenting 1; UBA: ubiquitin-associated.
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