
TYPE Perspective

PUBLISHED 01 August 2022

DOI 10.3389/fmedt.2022.946367

OPEN ACCESS

EDITED BY

N. Ravi Sundaresan,

Indian Institute of Science (IISc), India

REVIEWED BY

Yunfeng Chen,

University of Texas Medical Branch at

Galveston, United States

Georgios Tsivgoulis,

National and Kapodistrian University of

Athens, Greece

*CORRESPONDENCE

Simone Schoenwaelder

simone.schoenwaelder@hri.org.au

Xuyu Liu

xuyu.liu@sydney.edu.au

SPECIALTY SECTION

This article was submitted to

Pharmaceutical Innovation,

a section of the journal

Frontiers in Medical Technology

RECEIVED 17 May 2022

ACCEPTED 05 July 2022

PUBLISHED 01 August 2022

CITATION

Liu JST, Ding Y, Schoenwaelder S and

Liu X (2022) Improving treatment for

acute ischemic stroke—Clot busting

innovation in the pipeline.

Front. Med. Technol. 4:946367.

doi: 10.3389/fmedt.2022.946367

COPYRIGHT

© 2022 Liu, Ding, Schoenwaelder and

Liu. This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Improving treatment for acute
ischemic stroke—Clot busting
innovation in the pipeline

Joanna Shu Ting Liu1,2, Yiran Ding3,

Simone Schoenwaelder1,2* and Xuyu Liu1,3*

1Heart Research Institute, The University of Sydney, Sydney, NSW, Australia, 2Faculty of Medicine

and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia, 3Faculty

of Science, School of Chemistry, The University of Sydney, Sydney, NSW, Australia

Acute ischemic stroke is a consequence of disrupted blood flow to the

brain, caused by thrombosis—the pathological formation of occlusive clots

within blood vessels, which can embolize distally to downstream tissues and

microvasculature. The highest priority of stroke treatment is the rapid removal

of occlusive clots and restoration of tissue perfusion. Intravenous thrombolysis

is the pharmacological standard-of-care for the dissolution of blood clots,

wherein thrombolytic drugs are administered to restore vessel patency. While

the introduction of recombinant tissue-plasminogen activator (rtPA) in 1996

demonstrated the benefit of acute thrombolysis for clot removal, this was

countered by severe limitations in terms of patient eligibility, lytic e�cacy,

rethrombosis and safety implications. Development of safer and e�cacious

treatment strategies to improve clot lysis has not significantly progressed

over many decades, due to the challenge of maintaining the necessary

e�cacy-safety balance for these therapies. As such, rtPA has remained the sole

approved acute therapeutic for ischemic stroke for over 25 years. Attempts

to improve thrombolysis with coadministration of adjunct antithrombotics

has demonstrated benefit in coronary vessels, but remain contraindicated

for stroke, given all currently approved antithrombotics adversely impact

hemostasis, causing bleeding. This Perspective provides a brief history of

stroke drug development, as well as an overview of several groups of

emerging drugs which have the potential to improve thrombolytic strategies

in the future. These include inhibitors of the platelet receptor glycoprotein

VI and the signaling enzyme PI3-Kinase, novel anticoagulants derived from

hematophagous creatures, and proteolysis-targeting chimeras.
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A brief history of stroke treatment

Stroke is the 2nd leading cause of death and long-term

disability worldwide. Acute ischemic stroke (AIS) accounts for

85% of all strokes and is a consequence of pathological blood

clotting (thrombosis) occluding vessels supplying the brain.

The disruption of blood flow to cerebral tissue rapidly leads

to depletion of oxygen and nutrient supply. During stroke, 1.9

million neuronal cells are lost per minute. Moreover, every

hour that treatment is delayed, and the occlusive clot persists is

estimated to equate to 3.6 years of aging. Annually, ∼16 million

strokes occur worldwide, causing over 5.5 million deaths. Stroke

additionally has a huge socioeconomic and financial impact,

causing a loss of ∼$100 billion per year in projected healthcare

costs and lost productivity.

The development of pharmacotherapies for AIS to rescue

blood supply to the brain was primarily inspired by fibrinolysis,

which describes an endogenous process of clot removal after

clot formation in response to vessel injury, wherein the

endogenous serine protease tissue plasminogen activator (tPA)

initiates fibrin degradation through catalytic conversion of

plasminogen to plasmin. Plasmin mediates the degradation of

fibrin polymers that play an important role in stabilizing the

platelet thrombus, thereby promoting blood clot dissolution and

vascular reperfusion.

Recombinant tPA (rtPA) was first synthesized via

recombinant DNA technologies by Genentech in 1982,

with the aim to amplify the endogenous fibrinolytic pathway.

rtPA interacts with surface-bound fibrin on the thrombus to

activate plasminogen and amplify fibrin dissolution and clot

lysis/removal. rtPA was successfully employed in the treatment

of renal vein thrombosis (1) as well as acute myocardial

infarction (AMI) (2), these studies demonstrating a restoration

of perfusion in humans and dogs respectively. It was not until a

landmark study in human patients with AIS (3), when rtPA was

approved for clinical use in 1996 by the United States Food and

Drug Administration, where it was found to greatly improve

functional stroke outcomes based on the National Institutes of

Health Stroke Scale (NIHSS) and modified Rankin Scale (mRS)

for neurologic disability.

Since 1982, several variations/iterations of rtPA have

been generated, differing in activity, half-life, fibrin-specificity,

and efficacy- including alteplase, tenecteplase, and reteplase.

Alteplase remains the gold standard for clinical thrombolytic

therapy and is utilized most readily worldwide (4). On the

other hand, the single-chain deletion variant reteplase, has been

shown to be better suited toward restoration of coronary patency

in AMI (5). Although demonstrating lesser fibrin specificity

than alteplase, reteplase has a greater half-life (∼18 mins) (6),

and can be administered via a double bolus (7). This reduced

fibrin binding specificity is also suggested to allow reteplase

to disengage and infiltrate the clot more freely. Tenecteplase,

historically approved for AMI, has enhanced specificity for

fibrin, an extended half-life compared to other rtPA alternatives

(∼22 mins), decreased binding affinity for PAI-1 (with increased

resistance), and more practically, can be administered as a single

bolus (8). It has been the focus of numerous comparative studies

to alteplase (9), as well as recent clinical trials [NCT04797013 {as

described in Li et al. (10)}, NCT04071613]. However, it has yet

to attain FDA approval, despite its off-label use for intravenous

thrombolysis (IVT). Further details can be found here: Chester

et al. (4).

Reperfusion therapy for ischemic
stroke

Of highest priority for stroke treatment is removal of the

blood clot without causing downstream embolism, leading to

reopening (recanalization) of occluded vessels, and restoration

of blood flow to cerebral tissue (reperfusion), the latter

strongly predictive of a favorable outcome. Two primary

methods are employed to achieve recanalization/reperfusion:

IVT and endovascular thrombectomy (EVT) (11). Patient

suitability to these procedures is limited by strict assessment

criteria including stroke onset, duration, and symptoms,

absence/presence of salvageable tissue- verified by imaging

(computerized tomographic angiography and magnetic

resonance imaging), and the geographical location of patients

(regional vs. major city).

IVT refers to the intravenous administration of a

thrombolytic drug, given with the aim of clot lysis to recanalize

blood vessels and prevent further ischemic damage to tissues

and organs. For over 25 years, rtPA has remained the sole

approved therapeutic for IVT in AIS. This is despite numerous

limitations, namely extensive exclusion criteria (12) and

limitations on the administration time window (within 4.5 h

stroke onset) (13), along with its potential to increase risk of

intracranial hemorrhage (ICH) in 6–7% of patients (14)).

In contrast, EVT is achieved via x-ray directed mechanical

clot retrieval through insertion of a catheter and stent. It is

the more effective therapeutic treatment strategy (15), however

is only applied to large-vessel occlusion strokes (LVO-stroke),

estimated to make up 24–46% of stroke cases (16). Another

drawback for EVT is the requirement of medical infrastructure,

equipment, and trained personnel, which is often lacking in

non-metropolitan areas.

Despite decades of research, a single clot-busting drug

remains available for the treatment of stroke, and its

performance for LVO-stroke is poor [15–30% success (17, 18)].

Patients with LVOs who are fortunate enough to receive timely

mechanical clot removal are likely to attain better outcomes.

However, only an estimated 27% of these patients who attain

successful reperfusion after EVT are disability-free at 90
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days, with a suspected role for incomplete microcirculatory

reperfusion contributing to these suboptimal clinical benefits

(19). Although tremendous efforts have been afforded to

improve treatment options and overcome barriers to reduce

the time for obtaining stroke treatment, ultimately only a small

proportion of stroke sufferers receive optimal therapy.

Improving stroke therapy—Ongoing
problems with adjunctive
thrombolytics

Current IVT guidelines advise the use of early rtPA

administration (up to 4.5 h) based on clinical studies

demonstrating improvement in thrombus resolution within

this time frame (20). However, under strict eligibility criteria,

only about 10% of AIS patients receive rtPA clinically, and of

these, recanalization is successful in only 40–50% (21). One

major “side-effect” of thrombolysis is the release of clot-bound

thrombin upon cleavage of fibrin polymers, which can in turn

stimulate further platelet activation and thrombin generation,

leading to re-thrombosis in∼34% of cases (22).

In the past two decades, a great deal of effort has been

afforded into the development of adjunctive antithrombotics

to counter the procoagulant state developed during rtPA

administration. Due to the successful use of antithrombotic

therapies in the treatment of AMI (for example heparin and

aspirin in coronary fibrinolysis) (23), similar approaches have

been tested for AIS. Administration of heparin has also been

shown to be somewhat beneficial in improving functional

outcomes (24, 25). However, more recent studies of heparin

therapy in stroke, both in the presence of EVT and/or IVT,

show no promising efficacy beyond rtPA alone, with evidence

of increased bleeding at moderate heparin doses (MR CLEAN-

MED) (26, 27).

The direct thrombin inhibitor (DTI) argatroban has

also been shown to enhance the clot-lysis potential of

IVT in microcirculation and prevent vascular reocclusion

in animal stroke models (28, 29). Its anticoagulation

activity has also been extensively studied in patients with

heparin-induced thrombocytopenia (HIT) syndrome and

demonstrated to be a safe and effective alternative for heparin.

A pilot study, ARTSS (Argatroban with tPA for Stroke

Study), evaluated the safety of rtPA in combination with

argatroban, with significant improvement in complete or

partial recanalization reported. However, symptomatic and

asymptomatic ICH occurred in 4.6 and 23% of patients

respectively, with 10.8% mortality within the first 7 days as a

result of extensive hemorrhagic infarction in the brain (30).

These studies have highlighted the problems associated with

exacerbation of hemorrhagic transformation when employing

existing anticoagulation therapy for AIS in combination

with rtPA.

In addition to anticoagulants, ample evidence exists

to suggest that adjunctive antiplatelet therapy improves

recanalization and decreases reocclusion events (31). This is

further supported by studies demonstrating that platelet-rich

clots are more resistant to tPA-mediated lysis (32). However,

like anticoagulants, all currently approved antiplatelets are also

unable to preserve the hemostatic balance, and severely increase

the risk of ICH when used in the acute setting with IVT. An

example of this is tirofiban, a platelet glycoprotein (GP)IIbIIIa

(integrin αIIbβ3) receptor antagonist, which demonstrated

fatal bleeding prognoses and a death rate of 8% (33, 34). A

similar occurrence was observed with the GPIIbIIIa inhibitor

abciximab, which reportedly increased ICH risk by 6 times (35).

Additional studies have continued to titrate the doses of

these antithrombotics in an attempt to find a safer combination

therapy, investigating argatroban and the GPIIb/IIIa-specific

antiplatelet eptifibatide (integrilin) (CLEAR-FDR—Study of the

Combination Therapy of rtPA and Eptifibatide to Treat Acute

Ischemic Stroke, NCT01977456) (36), which was determined

safe to proceed to Stage 3 trials. Another notable ongoing trial

is MOST [Multi-arm Optimization of Stroke Thrombolysis]

(NCT03735979), investigating if argatroban or eptifibatide

improve functional stroke outcomes (assessed via modified

Rankin scores) compared to gold standards and placebos,

with an estimated 2023 completion. A summary of adjunctive

alteplase used together with various antithrombotic agents can

be viewed in detail in (33).

In summary, current pharmacological reperfusion therapies

(IVT) continue to be limited by lack of efficacy, re-thrombosis,

and a short therapeutic treatment window. The application

of anticoagulant or antiplatelet agents, whilst effective

in facilitating thrombolysis and enhancing the rates of

successful recanalization in AMI trials, is still confounded

by the increased risk of hemorrhagic transformation in

the brain. Therefore, a significant push in stroke research

is to identify new therapeutic interventions that work

synergistically with rtPA to facilitate clot dissolution, whilst

maintaining an adequate safety profile- namely preservation

of hemostasis. Additional efforts to target inflammation

and neuronal toxicity are also ongoing and will not be

discussed herein.

Though this Perspective focuses on facilitating IVT,

it is important to note emerging thrombolytics and

treatment strategies can also be applied to EVT, as these

techniques are commonly used in tandem clinically. For

instance, adjunct therapies also appear promising in the

treatment of large vessel occlusions (LVOs). This has been

shown in Phase 2 trials of tenecteplase against alteplase,

where the former demonstrated improved recanalization

and functional grading in LVO patients undergoing

EVT (37).

An extended view of promising clinical trials can be found

here: (38).
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Promising druggable targets in
platelets and clinical trials

Despite advances in antithrombotic therapy, the major issue

remains—how can pathological thrombosis be targeted without

exacerbating bleeding, particularly in the setting of the brain?

This unmet clinical need and commercial gap persists to this day,

despite significant research efforts underway to improve adjunct

treatments for thrombolysis and stroke treatment.

GPVI

A promising antiplatelet approach may lie in targeting

the GPVI platelet receptor, which is crucially involved in the

interaction of platelets with collagen and additionally performs

as an important adhesion receptor for fibrin (39). More recently,

studies have demonstrated that stroke patients express more

GPVI (40), highlighting the potential of targeting platelet

buildup via this receptor in stroke. In its best recognized role,

dimerized GPVI binds collagen and regulates the stabilization

of platelet adhesion and eventual thrombus formation. GPVI-

deficient individuals have a reduced or limited bleeding

propensity (41, 42), though these people are extremely rare.Mice

deficient in GPVI have further demonstrated protection against

thromboembolism (43), suggesting GPVI to be a promising

antiplatelet target. Furthermore, irreversible GPVI abrogation

by the monoclonal antibody (mAb) JAQ1 in mice confers

protection against thrombosis, however results in receptor

shedding and acute thrombocytopenia.

A GPVI fusion protein—Revacept—has recently been

investigated in human Phase 2 clinical trials. This protein

was shown to indirectly inhibit platelet function through

prevention of collagen binding. These studies demonstrated

that Revacept reduced arterial thrombosis, embolization, and

plaque rupture without impeding hemostasis (44). It was also

shown to inhibit platelet interaction with von Willebrand

factor through blocking collagen access at the vascular injury

site—downregulating platelet adhesion and aggregation (45).

However, whilst Revacept reduced thrombosis and conferred

less bleeding, whether it has potential to improve rtPA-mediated

thrombolysis remains to be investigated. Another GPVI mAb,

Glenzocimab (ACT017) (46) has recently completed Phase

1/2a clinical trials (NCT03803007), demonstrating good safety,

tolerability and dose escalation data. These studies are now

recruiting for Phase 2b/3 trials (NCT05070260), investigating

IVT with rtPA within 4.5 h of stroke onset.

PI3K inhibitors

A successful antithrombotic approach, at least in preclinical

settings, has been the targeting of molecules and secondary

messengers involved in platelet signaling pathways that activate

the major platelet integrin αIIbβ3. An example of this is

phosphoinositide (PI) 3-kinase (PI3K), which is downstream

of integrin αIIbβ3 (outside-in platelet signaling) and platelet

P2Y12 receptor-signaling. In this context, PI3K (predominantly

via p110 beta isoform) (47), plays an important role in

sustaining the high affinity state of integrin αIIbβ3 for fibrinogen

(48). Inhibition of PI3Kβ reduces integrin αIIbβ3 adhesion

and dynamic clot formation, in both in vitro and in vivo

models of thrombosis (49)—however, this is not accompanied

by additional hemorrhagic risk, favorably presenting PI3Kβ

as a potentially safe therapeutic target for designing anti-

platelet drugs.

AZD6482 is a selective and reversible PI3Kβ inhibitor

which has undergone several Phase 1 human clinical trials

demonstrating antiplatelet efficacy, with no adverse effects on

bleeding (50, 51). It has moreover been demonstrated to be

safer when combined with other antiplatelets when compared

to dual antiplatelet therapy (52). However, the efficacy and

safety of AZD6482 as an adjunct to IVT for use in stroke has

yet to be determined, with Phase 2a trials scheduled for late

2022 (NCT05363397).

Drugs derived from hematophagous
creatures

Salivary proteins of hematophagous animals are broadly

recognized as a rich source of antithrombotic leads that possess

low toxicity and immunogenicity and other privileged attributes

that are hard to design using small-molecule approaches. It

is therefore not surprising to witness the increasing influx of

these natural products into clinical trials, with the archetypal

anticoagulant hirudin (derived from Hirudo medicinalis) and

its structural analogs, i.e., bivalirudin and lepirudin, being

extensively used clinically for a variety of thromboembolic

disorders arising from abnormal thrombin generation.

The activity and function of thrombin are tightly regulated

by two positively-charged exosites (I and II) that flank

the active site (53). Exosite I acts as the binding site of

fibrinogen, positioning it to the active site, which is followed

by proteolysis to form fibrin, whilst heparin binds to exosite

II and subsequently recruits antithrombin III to irreversibly

inhibit the activity of thrombin. Many natural inhibitors

of thrombin, i.e., hirudin, hijack both exosite I and the

active site to effectively terminate fibrinogen binding and

clot formation. A new class of bivalent thrombin inhibitors

has been recently developed based on the exosite I and

active-site binding scaffolds of variegin derived from the

tropical bont tick Amblyomma variegatum (54). Variegin has

improved affinity (Ki = 277 pM), selectivity, and almost double

the in vivo half-life compared to that of the standard-of-

care bivalirudin–a therapeutic analog of hirudin–(Ki = 1780
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pM) (55). Through iterative optimization, ultravariegin was

developed as a lead analog possessing 445-fold (Ki = 4 pM)

greater inhibitory activity than bivalirudin with 1,000,000-

fold selectivity for thrombin over other clotting factors (54).

Importantly, variegin/ultravariegin also demonstrated improved

ability to preserve the hemostatic capacity, providing three to

seven-fold wider therapeutic windows in rodent thrombosis

and bleeding models as compared to unfractionated heparin

(UFH) and bivalirudin. When used in combination with dual

antiplatelet therapy (aspirin and ticagrelor) in a porcine model

of stent thrombosis, variegin/ultravariegin significantly reduced

the thrombotic potential with a five to seven-fold lower bleeding

time than UFH/bivalirudin. Nevertheless, further studies are

required to determine if this class of bivalent thrombin

inhibitors can be applied adjunctively with rtPA in the treatment

of acute coronary syndromes and AIS.

Recently, Payne and co-workers identified another new class

of bivalent thrombin inhibitors derived from the bush tick

Haemaphysalis longiconis (53) that exert their potent inhibitory

activity by blocking the active site and exosite II simultaneously,

with post-translational sulfation at two conserved tyrosine

residues providing significant improvement in the thrombin

inhibitory activity. The anticoagulation efficacy of these

privileged scaffolds (termed madanin-1 and chimadanin) has

been validated in multiple clotting assays, shedding new light

on the rational design of peptide substitutes of heparin to

prevent the cause of HIT. However, their role in preservation of

hemostatic capacity in animal models remains to be determined.

Proteolysis targeting chimeras (PROTACs)

Studies of knockout animals have substantially enhanced our

understanding of the signaling convergence and divergence in

hemostasis and thrombosis and provide an important index to

predict the safety and efficacy of therapeutic inhibition of target

proteins. However, effective techniques for conditional protein

removal in adult animals are still urgently required especially for

studying embryonic lethal proteins.

FIGURE 1

(A) Targeted protein degradation mediated by PROTAC molecules; (B) Targeted protein degradation as a potential therapeutic strategy to

modulate platelet activity in response to biochemical stimulation and shear force.
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Recently, a new class of molecules called PROteolysis

TArgeting Chimeras (PROTACs) has been described that

enable the controlled degradation of specific protein targets

for applications in therapeutic discovery (56). PROTACs are

bifunctional molecules that simultaneously bind a protein of

interest (POI) and a ubiquitinating enzyme (called an E3

ligase) to generate a ternary complex, leading to selective

ubiquitination of the POI and degradation through the

proteosome (Figure 1A). Unlike gene knockout, this chemical

approach is capable of degrading target proteins without the

need for genetic manipulation, preserving the integrity of

the genome– and is thus especially suitable for studying the

pathophysiological functions of embryonic lethal proteins and

treatment of acute conditions (i.e., AIS) and short-term illness.

Rao and co-workers demonstrated that protein targets can

be degraded systematically and quickly (24–72 h) in living

animals, including pigs and rhesus monkeys, showcasing the

cost-effectiveness and time-efficiency of this methodology for

phenotypic characterization in live animals (57). PROTACs

have also been utilized to target pro-inflammatory and

procoagulant mediators involved in stroke, as demonstrated

in (58), where therapeutic degradation of BET proteins

enhanced neuroprotection.

At present, PROTAC molecules are mainly deployed to

combat cancers and neurodegenerative diseases due to their high

efficacy and selectivity over classic inhibitors (59). However,

targeted protein degradation has the potential to provide safer

and more ethical method of protein depletion in studies

of thrombosis/stroke and serves as a novel alternative to

CRISPR/Cas9 and Cre/lox systems, enabling target depletion

to be accomplished in a time-efficient manner. Furthermore,

this platform technology may find broad utility in therapeutic

innovation that targets promising antiplatelet approaches, or

any potential proteins biasing toward thrombosis with less

bleeding risks (Figure 1B), wherein the PROTAC molecule

invoking endogenous degradation machineries can be an

effective therapeutic in of itself.

Conclusion

The development of safer and more effective adjunct

treatments for stroke is dependent upon the identification of

the “holy grail” of antithrombotics, the so-called magic bullet

that can provide the balance between efficacy and safety. While

emerging technologies will undoubtedly identify increasing

targets to pursue in this endeavor, there are several are several

promising candidate targets and emerging drugs that have

been identified with potential to fulfill this role. Therapies

that can dampen the platelet activation, whilst maintaining

a level of functionality to preserve haemostasis, including

inhibitors of PI3Kb and GPVI, are currently being (or about

to be) put through their paces in Phase 2 clinical trials as

adjunct therapies for thrombolytic treatment of acute ischaemic

stroke. Further to this, novel anticoagulant molecules found

in “mother nature” that can neutralize thrombin have also

shown potential, and some (i.e., variegin and ultravariegin)

have entered comprehensive preclinical assessment. Critically,

future clinical evaluation of any emerging antithrombotics must

consider their safety when utilized in conjunction with existing

therapies, as the majority of stroke patients take antiplatelet

and/or “blood-thinning” medications. While we await the

outcomes of these and other important clinical trials, it is hoped

that one or more of these, alone or combined, may facilitate the

safe removal of stroke-causing clots and prevent rethrombosis,

leading to improved patient outcomes and reduced mortality

in a similar way to that already employed for coronary

thrombolysis. Whilst difficult to predict the frontrunner in

this pursuit, when identified, this “magic bullet” (or bullets)

will ultimately represent a game changer for patients suffering

from ischaemic stroke, with potential to improve the survival

rates and quality of life for a significant number of stroke

sufferers worldwide.
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