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Polyproteins are chains of covalently conjoined smaller proteins

that occur in nature as versatile means to organize the proteome

of viruses including HIV. During maturation, viral polyproteins are

typically cleaved into the constituent proteins with different

biological functions by highly specific proteases, and structural

analyses at defined stages of this maturation process can

provide clues for antiviral intervention strategies. Recombinant

polyproteins that use similar mechanisms are emerging as

powerful tools for producing hitherto inaccessible protein targets

such as the influenza polymerase, for high-resolution structure

determination by X-ray crystallography. Conversely, covalent

linking of individual protein subunits into single polypeptide

chains are exploited to overcome sample preparation

bottlenecks. Moreover, synthetic polyproteins provide a

promising tool to dissect dynamic folding of polypeptide chains

into three-dimensional architectures in single-molecule structure

analysis by atomic force microscopy (AFM). The recent use of

natural and synthetic polyproteins in structural biology and major

achievements are highlighted in this contribution.
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Introduction
Polyproteins composed of covalently linked individual

proteins with different biological functions are prevalent

in nature. For instance SARS coronavirus, the agent that

causes severe acute respiratory syndrome, realizes its entire

proteome from two large polyproteins, each encoded by a
www.sciencedirect.com 
long single open reading frame (ORF) [1]. The expressed

SARS polyproteins are then processed into the individual

functional protein subunits by the action of highly specific

proteases also encoded by the ORFs [1,2]. A further

example is human immune deficiency virus (HIV) which

causes acquired immune deficiency syndrome (AIDS).

The RNA genome of this retrovirus is organized in three

major genes gag, pol and env, which encode for polyproteins

and undergo proteolytic processing at defined stages dur-

ing maturation [3]. Recombinant polyprotein approaches

mimicking viral polyproteins have recently emerged as a

powerful means to express high-value protein complexes

for structure determination [4,5�]. Recently, the long elu-

sive influenza polymerase has been produced successfully

from a self-processing synthetic polyprotein, enabling

high-resolution structure determination [6��,7]. Polypro-

tein fusions which are not processed by protease, but

remain covalently conjoined by engineered linkers have

been instrumental to obtain important insight into numer-

ous essential physiological processes including multidrug

efflux, co-translational protein targeting or enzymatic pro-

cessing of chromatin, among others [8��,9,10,11�,12��].
Moreover, single-chain engineering approaches linking

protein domains into novel, artificial polyproteins have

resulted in new classes of high-affinity binder molecules

as potential protein therapeutics [13] and accelerated

elucidation of mechanisms governing protein folding by

single-molecule techniques [14]. Thus, polyprotein tech-

nologies have recently gained prominence as particularly

useful tools for unlocking previously often inaccessible

protein samples to detailed structural and mechanistic

studies, as illustrated in the following. In this contribution,

the use of polyproteins in structural biology is discussed, by

highlighting recently determined structures of naturally

occurring polyproteins on one hand and by reviewing

recent structural studies where recombinant polyprotein

constructions were utilized on the other.

Natural polyproteins
Polyproteins are used in nature by many viruses to

structure their proteome. As a consequence, viral poly-

proteins are an intense focus of research efforts for nu-

merous reasons [15–17]. For instance, inhibition by small

molecules of proteases that process polyproteins during

viral maturation can provide a powerful handle to combat

viral disease [2,18–20]. In HIV, the physical infrastructure

of the virus is provided by the gag gene which gives rise to

the precursor Gag (group specific antigen) polyprotein

[21]. Viral protease processes Gag during maturation into

several proteins and spacer peptides dictating immature
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and mature viral capsid structure [22]. Maturation is a

two-stage process. Precursor Gag polyprotein first forms a

hexameric lattice at the plasma membrane of an infected

cell. This induces budding and release of immature viral

particles. Proteolytic processing of Gag then rearranges

the viral structure to the mature form [23]. Inhibition of

Gag-processing protease enabled preparation of imma-

ture retroviral capsids suitable for structure analysis by

electron cryo-tomography and subtomogram averaging

methods (Figure 1) [24–26,27��]. Comparison of the

structures of HIV Gag protein in reconstituted tubular

arrays on one hand and in intact virus particles on the

other, provided unprecedented insights into the confor-

mational plasticity of this precursor polyprotein [26,27��].
The studies also revealed that retroviral capsid proteins

can adopt different quaternary arrangements during virus

assembly, notwithstanding conserved tertiary structures

[27��].

A different, less frequently encountered type of natural,

non-viral polyproteins are so-called tandemly repetitive

polyproteins (TRPs). TRPs are also produced as large

precursor proteins and then processed by proteases into

several copies of proteins with similar function. TRPs are
Figure 1

HIV

Natural polyprotein structures. Polyproteins, prevalent in biology, are illustra

immature capsid determined by electron cryo-tomography revealing molecu

unit of the ABA-1 nematode polyprotein allergen derived from nuclear magn

single-chain, multi-domain long-chain acyl-CoA carboxylase, LCC [34]. CT s

and BC for biotin carboxylase components.
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made of consecutively arranged repeats of amino-acid

stretches. Examples of known TRPs include polyprotein

lipid binding proteins of nematodes [28] and filaggrins,

which are keratinocyte produced TRPs crucial to health

and appearance of skin [29,30]. The solution structure of a

mature, post-translationally processed repeat unit of a

TRP, ABA-1A from the nematode polyprotein allergen

of Ascaris, was determined, representing the first structure

of this class of proteins [31]. ABA-1A adopts a novel fold

comprising two juxtaposed four-helical bundles that share

a long central alpha-helix (Figure 1). Nematode polypro-

tein allergens have no known counterpart in humans. The

Ascaris ABA-1A structure therefore may serve as a starting

point for the development of new drugs and therapeutic

intervention strategies against disease states caused by

these intestinal parasites.

An inverse ‘polyprotein’ concept of covalently linking

functional protein units into long modular polypeptide

chains characterizes mega-enzymes that functionally ar-

range multiple domains into ordered assembly lines for

the production of a wide variety of bioactive molecules.

Modular polyketide synthases (PKS) and their metazoan

homologs, fatty acid synthases (FAS) belong to this class
LCC

ABA-1A
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of catalysts [32,33]. Recently, the structure and function

of a modular multi-domain long-chain acyl-CoA carbox-

ylase from Mycobacterium avium was elucidated [34]. The

crystal structure revealed extensive swapping of function-

al domains in the holo-enzyme which is a homo-hexamer

(Figure 1). Thus, four intertwined protomers are involved

in completing one catalytic reaction cycle [34].

Synthetic polyproteins
Influenza polymerase produced from a recombinant

polyprotein

The highly successful strategy of viruses to utilize poly-

proteins to their advantage has found its equivalent

in recombinant technology. A synthetic polyprotein,
Figure 2
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expressed recombinantly in baculovirus-infected insect

cells, has enabled the structure determination of influenza

polymerase. Despite its common appearance, a detailed

understanding of the molecular mechanisms of the virus

that causes influenza has remained elusive. More than

40 years ago, the influenza polymerase was discovered, a

key protein complex that replicates the genetic material of

the virus [35,36]. Atomic resolution information on the

structure and function of this protein machine is essential,

as it may open up important avenues for drug discovery.

However, the influenza polymerase remained inaccessible

for decades — to produce this valuable protein complex

for detailed analysis, proved to be a seemingly insur-

mountable technical challenge. This has now changed
Nter
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ed to express influenza polymerase complex in high quality and

. The polymerase was expressed from a single open reading frame

ts PA, PB1 and PB2 and a fluorescent protein (CFP). A second, yellow

ral genome as an expression performance marker. The resulting

olysis mediated by TEV. The polyprotein construct is shown

een the subunits (adapted from [6��]). The C-terminal part of PB1 and

l linker design (boxed). (b) Crystal structure of influenza polymerase

 is colored in blue, PB1 in green and PB2 in red. RNA substrate is

ated. The structure motif formed by PB1 C-terminal domain and PB2

B1 C-terminus are marked.
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dramatically with structures of influenza polymerase

complex determined by X-ray crystallography [6��,7].

These break-through studies provide unprecedented

insight into the inner workings of this viral protein

machine. This revolution in understanding influenza

was brought about by applying a polyprotein strategy

to produce influenza polymerase recombinantly, in the

quality and quantity required for high-resolution struc-

tural and functional analysis (Figure 2). The strategy

applied recapitulates the mechanism adopted by SARS

coronavirus. A single ORF was constructed encoding for

a highly specific protease, NIa, from tobacco etch virus

(TEV), fused in frame with consecutively arranged PA,

PB1 and PB2 subunits of the polymerase. At the far end of

the polyprotein, a reporter protein was inserted to track

protein production ‘in real-time’ during expression, by

recording fluorescence [5�]. All protein units within the

polyprotein were spaced apart by customized linkers

containing the specific site for cleavage by the TEV

protease, purification tag sequences and spacer residues

(Figure 2). The polyproteins encoding for influenza

polymerases were successfully expressed with the Multi-

Bac baculovirus insect cell expression system developed

for producing multiprotein complexes [37].
Figure 3
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Sample preparation bottlenecks resolved by synthetic

polyproteins that remain uncleaved

The polyprotein encoding for influenza polymerase was

proteolytically cleaved into the constituent protein sub-

units to yield the sample that crystallized. Conversely,

engineering of individual proteins into covalently linked

polypeptide chains can also accelerate structure determi-

nation considerably. These ‘polyproteins’ remain con-

joined as single-chains during sample preparation and

structure determination. Particularly prominent examples

for such single-chain engineering include the insertion of

T4 lysozyme into the primary sequence of G-protein

coupled receptors (GPCRs) to facilitate crystallogenesis

[38]. In a variation of this approach, the catalytic domain of

Pyrococcus abysii glycogen synthase was recently used to

stabilize an intracellular loop of the human OX2 orexin

receptor to determine its crystal structure bound to an

insomnia drug [39].

Elaborate single-chain engineering into polyproteins was

applied to determine the architecture of the bacterial

multidrug efflux pump AcrABZ-TolC [8��]. In this study,

the efflux pump was assembled by preparing two

single-chain polypeptide fusions, AcrB-AcrA-AcrB and
PRC1

p40

IL-23

MA12

Ring1B

Bmi1

UbcH5c

L1

L
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 single polypeptide chains were used to obtain suitable sample for

eutralize human interleukin Il-23 (p19 and p40) [13] and the first

x (PRC) 1 ubiquitylation module, bound to a nucleosome [12��]. Linker
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AcrA-AcrZ, respectively, each conjoined by extended

glycine/serine rich linkers. TolC was co-expressed with

the AcrA-AcrZ fusion. This strategy resulted in a recon-

stituted complex with the correct stoichiometry enabling

structure determination by hybrid methods. Fitting of

crystal coordinates into EM densities allowed to model

AcrBZ/AcrA interactions (Figure 3) as well as the holo-

complex containing TolC.

Single-chain engineering likewise enabled the develop-

ment of alphabodies, a novel scaffold representing a

promising alternative to antibodies for various biomedical

and biotechnological applications [13]. Alphabodies com-

prise in silico designed short individual alpha-helical

protein segments that are then conjoined by covalent
Figure 4
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closed state is shown on the right (adapted from [11�]).
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linkers into single-chain antiparallel coiled-coils that are

highly stable and suitable for affinity maturation. The

crystal structure of a complex with human interleukin

(IL-23) revealed the structural basis of IL-23 antagonism

by the alphabody, MA12 (Figure 3).

Covalent linking of subunits of a protein complex was

required to obtain the first crystal structure of a histone-

modifying enzyme complex bound to a nucleosome core

particle [12��]. Polycomb repressor complex (PRC) 1, an

essential regulator of cell fate, comprises an activity to

ubiquitylate nucleosomal histone H2A at residue K119.

PRC1 uses its E3 ubiquitin ligase subunits, Ring1B and

Bmi1, together with an E2 ubiquitin-conjugating enzyme,

UbcH5c for this purpose. The E2–E3 complex was
large
ribosomal
subunit

signal sequence
SRP

[GGGGSGGGGS]3

smallsmall

      

subunitsubunit

ribosomalribosomal

C

FtsY A FtsY NG

Ffh MFfh NG
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l recognition particle (SRP) protein subunit Ffh (green) and the SRP

 (left). NG domains are marked. The dashed line indicates the

le polypeptide construct is illustrated on the right, detailing the

lycine/serine rich linker connecting FtsY with Ffh, and the Ffh NG

 of SRP/FtsY bound to a translating ribosome were elucidated by

in orange. EM density and fitted models of the ‘early’ and

bserved as illustrated by the overlay of the EM densities and the

 of the ribosome-SRP-FtsY co-translational targeting complex in the
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Figure 5
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Polyprotein single-molecule structural biology. The setup of atomic

force microscopy of polyproteins is shown in a schematic

representation (adapted from [14]). The polyprotein is tethered to the

gold support resting on the piezoelectronic positioning stage (bottom)

on one end, and the tip of a cantilever made of silicon nitride on the

other. A laser beam is focused on the back of the cantilever (top). The

cantilever is displaced by the force that acts on the polyprotein chain

resulting in change of the deflection of the laser beam, recorded by a

photodetector. Increasing force causes each domain of the

polyprotein to unfold, resulting in characteristic spikes in a force/

extension diagram (inset).
produced using an engineered single-chain fusion of

Ring1B to UbcH5c to overcome the low affinity and

salt-sensitive E2–E3 interaction. The resulting single-

chain construct was co-expressed with Bmi1 to produce

the trimeric complex which was purified and reconstituted

with nucleosome core particles, and crystallized [12��].
The structure showed two copies of PRC1 E2–E3 complex

bound to one nucleosome, revealing intricate interactions

(Figure 3).

SRP pathway revealed by single-chain protein

engineering

Around one third of the proteins in living cells are delivered

to the plasma membrane. This is carried out by a univer-

sally conserved, complex mechanism involving ribosomes

that are translating mRNA into membrane-bound nascent

polypeptide chains, the signal recognition particle, SRP

and the SRP receptor, FtsY [9,40,41]. Snapshots of this

elaborate process were obtained by single particle electron

cryo-microscopy and biochemical analysis [9,10�,11�,42–
44]. These studies revealed SRP binding to ribosome

nascent chain complexes [42], followed by the ‘early’

[44], ‘proofreading’ [10�] and ‘closed’ [11�] states upon

FtsY binding and GTP hydrolysis. Successful structure

determination critically relied on stabilizing SRP binding

to FtsY. This was achieved by covalently linking the SRP

subunit Ffh with FtsY into a single polypeptide chain

with virtually wild-type activity (Figure 4).

Polyprotein single-molecule structural biology
Transient unfolding and refolding of proteins can be an

essential feature of protein structure space in living

organisms, for example in the translocation of proteins

into and across cellular membranes or the muscle stroke.

The use of atomic force microscopy (AFM) has emerged

as a powerful technique to probe protein structure,

enabling analysis of the mechanical stability and folding

pathway of protein specimens at the single-molecule

level. By means of a stretching force, applied through a

microscopic cantilever to a biological target fixed to a

support and recorded by the deflection of a laser beam,

the analyzed protein is unfolded to an extended state

(Figure 5).

Historically, polyproteins were used in single-molecule

AFM to measure unique mechanical fingerprint profiles

of a protein response to the applied mechanical force

[14,45�]. The muscle protein titin is a prominent example

[46–48]. Titin consists of several hundred repeated pro-

tein domains including fibronectin and immunoglobulin-

like folds. The use of polyproteins in single-molecule

AFM results in considerable improvement of the statisti-

cal evaluation of singular domains within the polyprotein

chain [14]. This can be exploited in the analysis of

homomeric polyproteins that are constructed genetically

or by chemical fusion reaction from identical copies of the

same protein species of choice. Moreover, in addition to
Current Opinion in Structural Biology 2015, 32:139–146 
providing a clear fingerprint, polyproteins also have the

advantage that a larger number of events can be recorded

per experiment as compared to only one event if mono-

meric proteins are used.

For these reasons polyproteins emerge as work-horses of

single-molecule structural biology by AFM. Numerous

polyproteins have been analyzed for their mechanical

properties by using this technique, including poly-I27,

derived from the I-band region of Titin, oligo-calmodulin,

poly-ubiquitin, polyproteins made of the virulence factor

GB1 of Peptostreptococcus magnus [46–54] and others, pro-

viding unique insights into biological folding/unfolding

mechanisms. The availability of a large and growing

number of well characterized homomeric specimens fur-

thermore enables now the construction of chimeric poly-

proteins as a tool to study mechanically uncharacterized

proteins, by using the unique fingerprints of the known

protein unit as a reference [14,45�].

Conclusions
Natural and synthetic polyproteins are at the core of con-

temporary structural biology. Analysis of viral polyproteins
www.sciencedirect.com
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and the architectural consequences of their processing

during maturation not only furthers our understanding of

viral mechanisms but provides important clues for drug

design to combat viral diseases. Synthetic polyproteins are

emerging as invaluable tools to accelerate research by

unlocking hitherto inaccessible proteins for high resolution

structure determination. Artificial polyproteins obtained

by singe-chain protein engineering approaches are instru-

mental to overcome sample production bottlenecks and

provide novel means to illuminate biological mechanisms,

including folding and unfolding properties at the single-

molecule level. We anticipate a major increase in the use of

polyproteins in structural biology as valuable tools to tackle

large and complex biological systems in the future.
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