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Abstract: Common mycorrhizal networks (CMNs) allow the transfer of nutrients between plants,
influencing the growth of the neighboring plants and soil properties. Cleistogene squarrosa (C. squarrosa)
is one of the most common grass species in the steppe ecosystem of Inner Mongolia, where nitrogen
(N) is often a key limiting nutrient for plant growth, but little is known about whether CMNs
exist between neighboring individuals of C. squarrosa or play any roles in the N acquisition of the
C. squarrosa population. In this study, two C. squarrosa individuals, one as a donor plant and the
other as a recipient plant, were planted in separate compartments in a partitioned root-box. Adjacent
compartments were separated by 37 µm nylon mesh, in which mycorrhizal hyphae can go through
but not roots. The donor plant was inoculated with arbuscular mycorrhizal (AM) fungi, and their
hyphae potentially passed through nylon mesh to colonize the roots of the recipient plant, resulting
in the establishment of CMNs. The formation of CMNs was verified by microscopic examination and
15N tracer techniques. Moreover, different levels of N fertilization (N0 = 0, N1 = 7.06, N2 = 14.15, N3 =

21.19 mg/kg) were applied to evaluate the CMNs’ functioning under different soil nutrient conditions.
Our results showed that when C. squarrosa–C. squarrosa was the association, the extraradical mycelium
transferred the 15N in the range of 45–55% at different N levels. Moreover, AM fungal colonization
of the recipient plant by the extraradical hyphae from the donor plant significantly increased the
plant biomass and the chlorophyll content in the recipient plant. The extraradical hyphae released
the highest content of glomalin-related soil protein into the rhizosphere upon N2 treatment, and a
significant positive correlation was found between hyphal length and glomalin-related soil proteins
(GRSPs). GRSPs and soil organic carbon (SOC) were significantly correlated with mean weight
diameter (MWD) and helped in the aggregation of soil particles, resulting in improved soil structure.
In short, the formation of CMNs in this root-box experiment supposes the existence of CMNs in
the typical steppe plants, and CMNs-mediated N transfer and root colonization increased the plant
growth and soil properties of the recipient plant.

Keywords: mycorrhizal network; nitrogen addition; plant growth; soil properties; 15N transfer;
Cleistogene squarrosa; Inner Mongolia

Microorganisms 2020, 8, 230; doi:10.3390/microorganisms8020230 www.mdpi.com/journal/microorganisms

http://www.mdpi.com/journal/microorganisms
http://www.mdpi.com
http://dx.doi.org/10.3390/microorganisms8020230
http://www.mdpi.com/journal/microorganisms
https://www.mdpi.com/2076-2607/8/2/230?type=check_update&version=3


Microorganisms 2020, 8, 230 2 of 17

1. Introduction

Arbuscular mycorrhizal (AM) symbiosis between higher plant roots and the fungi belonging
to the phylum Glomeromycota is one of the most common mutualistic associations in terrestrial
ecosystems [1,2]. In AM symbionts, the fungi act as an interface between plant roots and soil, thereby
helping the host plant in the acquisition of limiting soil nutrients, such as phosphorus and nitrogen
(N). One key characteristic feature of AM fungi is that their hyphae can penetrate into root cortical
cells to form intraradical structures and extend outside the roots to form extraradical hyphae in the
rhizosphere [3]. Moreover, extensively branched extraradical mycelia can interconnect neighboring
plants to form common mycorrhizal networks (CMNs) [4–6]. These CMNs can affect the distribution
of mineral nutrients like carbon [7,8], N [9], and phosphorus [10] among the connected plants.
This could ultimately influence the plant’s establishment [11,12], survival [13,14], growth [15] and
physiology [16,17]. However, the underground network is very complex, and a deep understanding
of CMN’s formation, existence and functioning requires microscopic or tracer element techniques.
The application of an N stable isotope tracer technique has confirmed the transfer of nutrients between
CMN-connected plants. For example, a CMN was established by the native AM fungi between the
grasses (Nassella pulchra, Bromus madritensis, and B. hordeaceus) and the forbs (Trifolium microcephalum,
Sanicula bipinnata, and Madia gracilis) and CMNs exhibited N communication between the plants [18].
Barto et al. (2011) also studied the transfer of allelochemicals from source plant to target plant of
Tagetes tenuifolia with the help of CMNs [19]. It is also documented that flax (C3-plant) invested little
carbon, but obtained N and phosphorous by up to 94% via CMNs from the sorghum (C4-plant) [20],
revealing the high dependency of CMN-aided nutrient acquisition from the donor plant. Therefore,
these below-ground mycorrhizal networks play important roles in the signal transduction and nutrient
sharing between the interconnected plants [21].

Besides the improvement in plant growth and establishment, the AM fungal extraradical mycelium
entangles the soil particles and facilitates their aggregation and stabilization [22], thereby improving the
soil’s physical properties, such as infiltration rate, water holding capacity, and carbon storage [23,24].
Glomalin-related soil proteins (GRSPs), produced mainly by AM fungi, exhibited substantial functioning
in cementing soil aggregates and stabilizing soil structures [18]. It has been reported that GRSPs
significantly increased soil stability in the grassland ecosystems of northeast China [25,26]. However,
no evidence is available regarding the effect of CMNs on the production of GRSPs and their functioning
on soil aggregate stability in the typical steppe.

The typical steppe of Inner Mongolia is the dominant vegetation type in semi-arid areas of northern
China [27] and plays an essential role in providing ecological services and life necessities [28,29].
However, anthropogenic activities and climate change have severely degraded steppe grasslands,
resulting in decreased soil quality and plant productivity [30–33]. This grassland system is particularly
sensitive to N enrichment because N is a major limiting soil nutrient in this region [34,35] and even a
small amount of change in soil N could have significant effects on plant growth and soil quality [36].
Therefore, N fertilization has been extensively used to increase the availability of soil N [37,38] enhance
plant production [39–41], and improve soil properties [38]. These effects can be boosted by mycorrhizal
networks that play an active role in ecosystem functioning and regulate N cycling [42,43]. It has
also been observed that increased N availability often results in improved plant productivity but
decreases the species diversity of the plants [44,45] and leads to the extinction of susceptible functional
groups [46]. Additionally, N enrichment can significantly change the diversity and abundance of soil
microbial communities [47,48], causes dormancy, decreases the diversity of the active soil microbial
community [49], and weakens the plant–microbe interactions [49]. Global N enrichment is considered
to be one of the major threats to the structure and functioning of the ecosystem because of its various
negative effects on biotic communities [50]. Therefore, besides the importance of mycorrhizal networks
for improving plant growth and soil properties, it is also important to study how the changing
environment, such as an increasing amount of terrestrial N deposition, would affect the CMNs’
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functioning. Filling this knowledge gap will enable better predictions of the consequence of a change
in CMNs functioning under global changing scenarios.

Cleistogene squarrosa is a common perennial grass species in the typical steppe of Inner Mongolia.
Due to its dominance in various grassland systems, the importance of C. squarrosa has been recognized
for the development of a sustainable grassland system. Moreover, mycorrhizal networks play a
significant role in stabilizing the long-term dominance of plant species in an ecosystem [51]. Therefore,
it is important to find the existence of CMNs in the typical steppe of Inner Mongolia and their
importance for the growth and development of C. squarrosa and its neighboring plants. This research
was designed to examine the existence of CMNs between different individuals of C. squarrosa species,
and to evaluate the functioning of CMNs across an N gradient. We hypothesize that CMNs exist
between individual plants of the same species and, if so, we further address the following key questions:
How could CMNs affect the plant growth and soil properties of the neighboring plants? How would
the functioning of CMNs change under different levels of N?

2. Materials and Methods

2.1. Experimental Design

Partitioned root-boxes were constructed and C. squarrosa plants were grown in separate
compartments to test the existence and functioning of CMNs between two plant individuals under
four different N levels. As shown in Figure 1, the root-box was composed of five compartments, each 5
cm long, 5 cm wide and 12 cm high. Two adjacent compartments were separated by a nylon mesh of
37 µm to restrict the root passage but allow mycorrhizal hyphae go through. From left to right, the
first compartment was the labeled hyphal compartment (LHC) where 15N was applied, the second
and the fourth compartments were two root hyphal compartments (RHC1 and RHC2), and in each a
fifteen-day old pregerminated seedling of C. squarrosa was transplanted, the third compartment was
a hyphal compartment (HC) because hyphae from RHC1 could extend into this space, and the fifth
compartment was designated as a non-labeled hyphal compartment (NLHC).Microorganisms 2020, 8, 230 4 of 18 

 

 
Figure 1. Schematic diagram of five-compartment root-box to grow C. squarrosa seedlings. The plant 
receiving AM fungal inoculum was designated as the donor plant, while the plant without inoculum 
was the recipient plant. The compartments were separated from each other via 37 µm mesh that only 
allowed the hyphae to pass, but not the roots. The black lines with the plant show the roots, while red 
lines show the common mycorrhizal network. 

2.2. Soil, Inoculum and Planting 

The soil was collected from a typical steppe of Inner Mongolia (43°38′55.9″N, 116°09′06.3″E) and 
mixed in an equal proportion with sand (1:1, v/v). It was then sieved with 2 mm mesh and sterilized 
with two cycles of the autoclave at 121 °C, 0.11 Mpa for 2 h. Each compartment of the experimental 
equipment was filled with 1 kg of sterilized soil. The mycorrhizal fungal inoculum was the soil 
collected randomly from root zones of three native grass species, C. squarrosa, Leymus chinensis, and 
Stipa grandis, because these plant species showed low host specificity [5]. Collected soil samples were 
bulked, mixed and stored at 4 °C for AM fungal inoculation. Such soil inoculum consists of soil, the 
dried root fragments, AM fungal spores, and hyphae, and other microorganisms. 

The seeds of C. squarrosa were surface sterilized with 70% ethanol for 45 s and washed with 
distilled water. The seeds were sown on Petri dishes, and four weeks old seedlings were transplanted 
into the root-box. The plant with 70 g of soil containing AM fungal propagules transplanted into the 
RHC1 compartment was designated as a donor plant, while the plant in the RHC2 compartment 
receiving no AM fungal inoculum was called a recipient plant. 

To eliminate the effect of non-AM microorganisms, all root-boxes of mycorrhizal and non-
mycorrhizal treatments were treated with 15 mL non-sterile soil sievate/microbial wash to include 
the effect of soil microorganisms other than AM fungi because, during the autoclave of soil samples, 
biotic factors were eliminated. In this, non-sterilized soil samples were mixed with water to make a 
soil solution, which was sieved through 38 µm mesh so that AM fungi were suspended on the sieve 
and other microorganisms were passed through 38 µm mesh with the solution. Then, the obtained 
solution of the microbial wash was applied to include the effect of other microorganisms, so that the 
actual effect of AM fungi could be assessed. 

Figure 1. Schematic diagram of five-compartment root-box to grow C. squarrosa seedlings. The plant
receiving AM fungal inoculum was designated as the donor plant, while the plant without inoculum
was the recipient plant. The compartments were separated from each other via 37 µm mesh that only
allowed the hyphae to pass, but not the roots. The black lines with the plant show the roots, while red
lines show the common mycorrhizal network.



Microorganisms 2020, 8, 230 4 of 17

The experiment consisted of two AM fungal treatments (mycorrhizal treatment and
non-mycorrhizal controls) and four levels of N addition (0, 7.06, 14.15, and 21.19 mg/kg, designated
as N0, N1, N2, and N3, respectively), being fully crossed, and each treatment combination being
replicated three times, and therefore resulting in a total of 24 root-boxes. For mycorrhizal treatment,
the donor plant in the RHC1 compartment received AM fungal inoculum, while the recipient plant in
the RHC2 compartment received no AM fungal propagules. For non-mycorrhizal controls, no AM
fungal inoculum was added in either RHC1 or RHC2.

2.2. Soil, Inoculum and Planting

The soil was collected from a typical steppe of Inner Mongolia (43◦38′55.9”N, 116◦09′06.3”E) and
mixed in an equal proportion with sand (1:1, v/v). It was then sieved with 2 mm mesh and sterilized
with two cycles of the autoclave at 121 ◦C, 0.11 Mpa for 2 h. Each compartment of the experimental
equipment was filled with 1 kg of sterilized soil. The mycorrhizal fungal inoculum was the soil
collected randomly from root zones of three native grass species, C. squarrosa, Leymus chinensis, and
Stipa grandis, because these plant species showed low host specificity [5]. Collected soil samples were
bulked, mixed and stored at 4 ◦C for AM fungal inoculation. Such soil inoculum consists of soil, the
dried root fragments, AM fungal spores, and hyphae, and other microorganisms.

The seeds of C. squarrosa were surface sterilized with 70% ethanol for 45 s and washed with
distilled water. The seeds were sown on Petri dishes, and four weeks old seedlings were transplanted
into the root-box. The plant with 70 g of soil containing AM fungal propagules transplanted into
the RHC1 compartment was designated as a donor plant, while the plant in the RHC2 compartment
receiving no AM fungal inoculum was called a recipient plant.

To eliminate the effect of non-AM microorganisms, all root-boxes of mycorrhizal and
non-mycorrhizal treatments were treated with 15 mL non-sterile soil sievate/microbial wash to
include the effect of soil microorganisms other than AM fungi because, during the autoclave of soil
samples, biotic factors were eliminated. In this, non-sterilized soil samples were mixed with water to
make a soil solution, which was sieved through 38 µm mesh so that AM fungi were suspended on
the sieve and other microorganisms were passed through 38 µm mesh with the solution. Then, the
obtained solution of the microbial wash was applied to include the effect of other microorganisms, so
that the actual effect of AM fungi could be assessed.

All the root-boxes were placed in growth chambers with day/night temperature 24/18 ◦C, at
Beijing Forestry University, Beijing, China. The positioning of root-boxes was changed every week.
Plants were grown for 16 weeks in growth chambers.

2.3. Labeling with 15N

15N labeling was performed after 16 weeks of transplantation for 48 h just before the harvesting.
For each sample, 1.2 mg of 15N was applied in the form of solution (1 mL of 1.2 mg/mL) by
dissolving 15NH4Cl in deionized water with DMPP (3,4-dimethyl pyrazole phosphate) that inhibits the
transformation of NH4

+ into NO3
− [52] and, in the control, an equivalent amount of deionized water

was applied instead of 15N labeling. The 15NH4Cl solution was injected with a syringe into 4 cm depth
of soil at the center of each chamber of LHC. After that, no further water was applied to the plants.

2.4. Analytical Procedures

2.4.1. Plant Harvest

After 48 h of 15N labeling, the donor and recipient plants were harvested from both mycorrhizal
and non-mycorrhizal treatment. The roots were divided into two parts, one used for the determination
of mycorrhizal colonization and the remaining used for the determination of 15N. The shoot and root
samples were oven-dried at 70 ◦C for 72 h to measure dry shoot weight (DSW) and dry root weight
(DRW). The soil samples collected from the RHC1, HC, and RHC2 were also stored separately at
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4 ◦C for different analyses, like the determination of soil hyphal length density, glomalin-related soil
proteins, and soil organic carbon content.

2.4.2. Mycorrhizal Colonization, Hyphal Length Density, and Glomalin-Related Soil Proteins

About 100 root segments (each of 1 cm long) per seedling were cut and cleaned in 10% KOH
solution at 90 ◦C for 10 min and in 2% HCl solution for 10–15 min and stained with trypan blue (0.05%).
Finally, the percentage of mycorrhizal colonization was determined by using the magnified intersection
method at 200×magnification (Nikon-E100) [53], while, for hyphal length density (HLD), a 5 g soil
sample was blended with 50 mL of sodium hexametaphosphate. The supernatant was filtered through
a 0.45 µm microporous Millipore membrane by vacuum filtration. The hyphae extracted on each filter
paper were stained with 0.05% trypan blue. Finally, the hyphal length density was determined by the
grid-line intercept method at 200×magnification and expressed in mg-1 [54].

Glomalin-related soil proteins (GRSPs) were extracted according to Wright and Upadhyaya
protocol [55]. For easily extractable glomalin-related soil protein (EE-GRSP), 1 g of air-dried soil
sample was autoclaved with 8 mL of 20 mM sodium citrate (pH = 7) for 30 min at 121 ◦C. It was then
centrifuged at 5000× g for 15 min, and the supernatant was extracted and stored at 4 ◦C, while, for
total extractable glomalin-related soil protein (T-GRSP), 8 mL of 50 mM sodium citrate (pH = 8) was
autoclaved for 60 min at 121 ◦C. The supernatant obtained was stored at 4 ◦C. Finally, the protein
contents in EE-GRSP and T-GRSP supernatant were determined by using the Bradford assay with
bovine serum albumin (BSA) as a standard [56].

2.4.3. Chlorophyll Content

The chlorophyll content was measured as described by Ali [57]. Briefly, 100 mg fresh leaf
samples were ground with 8 mL of 80% acetone and centrifuged at 4000 rpm for 10 min. Finally,
the supernatant was separated, and the OD of the sample was measured at 645, 663, and 470 nm by
using UV-spectrophotometer. The equations for the determination of chlorophyll-a, chlorophyll-b, and
carotenoids are as follows

Chlorophyll a= 1.07 (OD 663) − 0.09 (OD 645) (1)

Chlorophyll b= 1.77 (OD 645) − 0.28 (OD 663) (2)

Carotenoids= OD 470 × 4 (3)

2.4.4. Determination of 15N Content

The oven-dried root and shoot samples were milled to a fine powder and sent to the Huake
Precision Stable Isotope Laboratory (Shenzhen, China) to detect 15N content. 15N abundance was found
by using an elemental analyzer coupled with isotope ratio mass spectrometer (Thermo Fisher Scientific
Inc., Waltham, MA, USA). The 15N content in tissues (shoot and root) were calculated as the product
of the tissue dry biomass and its 15N concentration (15N content = Biomass × 15N concentration). By
subtracting the average total of 15N content in control from the total 15N content in each treatment, we
got the net 15N content for each treatment. To calculate the hyphal N contribution, the net 15N content
from the recipient plant was divided by the net 15N content from the donor and recipient plants uptake
by hyphae, and to show in % age, multiplied by 100.

N transfer (%) =
15N in recipient plant

15N in donor plant + 15N in recipient plant
× 100 (4)
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2.4.5. Water-Stable Aggregates, Mean Weight Diameter and Soil Organic Carbon

The water-stable aggregates (WSA) were measured according to the wet sieving method [58]. In
short, a series of three sieves were used to collect the four aggregate size fractions: (a) 2–1 mm, (b)
1–0.5 mm, (c) 0.5–0.25 mm, (d) <0.25 mm. A total of 5 g air-dried soil samples were pre-wetted by
submerging in distilled water at room temperature for 30 min to equilibrate. The aggregate fractions
were separated manually by moving the sieves up and down by up to 3 cm in water for 2 min with 50
repetitions. After that, the aggregate fractions on each sieve were collected and oven-dried at 65 ◦C
for 48 h until a constant weight was achieved. The WSA fractions were expressed as the percentage
of WSA against the total dry soil sample. WSA stability was calculated in terms of MWD of stable
aggregates, as given below [59];

MWD (%) =
n∑

i=1

XiWi (5)

where Xi denotes the diameter of sieve (mm), Wi shows the proportion of size fractions in the total
sample weight, and n is the number size fractions (n = 4).

Soil organic carbon (SOC) content (g kg−1) was measured according to the dichromate oxidation
method [60].

2.4.6. Statistical Analysis

Two-way analysis of variance was performed to analyze the effect of two factors (mycorrhizal
treatments and N addition). A t-test was performed to specifically check whether non-mycorrhizal
controls differed from the mycorrhizal treatments. We performed the least significant difference
(LSD0.05) and Tukey test to analyze the difference between the treatments (Statistix 8, version 8.1).
Correlation analyses between the two variables were assessed using the Spearman correlation by using
SPSS 25.0 software package.

3. Results

3.1. AM Fungal Colonization and Mycorrhizal Network

Microscopic examination revealed the presence of AM fungal extraradical hyphae extending
from the donor to the recipient compartment through the 37 µm mesh (Figure S1a) and the recipient
plant roots were also colonized by the AM fungi (Figure S1b). The mycorrhizal colonization of the
donor plants was considerably higher than that of the recipient plants and significantly increased with
increasing soil N levels (Figure 2a). AM fungal hyphal length density (HLD) also varied under different
levels of N additions and significantly higher HLD was observed at N2 (4.96 ± 0.08 m g−1) (Figure 2b).

3.2. Plant Biomass and Chlorophyll Content

The inoculation of the donor plant with AM fungi increased the plant biomass of both the donor
and the recipient plant as compared to the non-mycorrhizal plants. The average dry shoot weight
(DSW) and dry root weight (DRW) were not significantly different between donor and recipient plants
in the non-mycorrhizal treatment. However, in mycorrhizal treatment where the donor plant was
inoculated with AM fungi, the average DSW (Figure S2a) and average DRW (Figure S2b) of the donor
and recipient plants was increased as compared to non-mycorrhizal treatment. Hence, the maximum
average DSWs observed at N2 for the donor and recipient plants were 3.60 and 2.86 g, respectively.
Similarly, DRW was also found at a maximum at N2 for the donor (1.48 g) and recipient (1.18 g) plants.
A significant interaction between AM fungal inoculation and N treatment was found for DRW in both
donor and recipient plants, while for DSW, only in the recipient plant was a significant interaction
effect found (Table 1).



Microorganisms 2020, 8, 230 7 of 17

Microorganisms 2020, 8, 230 7 of 18 

 

different levels of N additions and significantly higher HLD was observed at N2 (4.96 ± 0.08 m g−1) 
(Figure 2b). 

 
Figure 2. Arbuscular mycorrhizal (AM) fungi colonization and the development of common 
mycorrhizal network; (a) AM fungal colonization was observed in both donor and recipient plant; (b) 
After inoculation, extraradical hyphae were developed, which were measured from the hyphal 
compartment; the same lowercase and uppercase letters indicate non-significant differences among 
different N treatments of the respective donor and the recipient plants, while (*), shows a significant 
difference between donor and recipient plants at different N-treatments. 

3.2. Plant Biomass and Chlorophyll Content 

The inoculation of the donor plant with AM fungi increased the plant biomass of both the donor 
and the recipient plant as compared to the non-mycorrhizal plants. The average dry shoot weight 
(DSW) and dry root weight (DRW) were not significantly different between donor and recipient 
plants in the non-mycorrhizal treatment. However, in mycorrhizal treatment where the donor plant 
was inoculated with AM fungi, the average DSW (Figure S2a) and average DRW (Figure S2b) of the 
donor and recipient plants was increased as compared to non-mycorrhizal treatment. Hence, the 
maximum average DSWs observed at N2 for the donor and recipient plants were 3.60 and 2.86 g, 
respectively. Similarly, DRW was also found at a maximum at N2 for the donor (1.48 g) and recipient 
(1.18 g) plants. A significant interaction between AM fungal inoculation and N treatment was found 
for DRW in both donor and recipient plants, while for DSW, only in the recipient plant was a 
significant interaction effect found (Table 1). 

CMNs increased the chlorophyll content (Chl-a, Chl-b, and carotenoids) in the donor and 
recipient plants in the mycorrhizal treatment as compared to non-mycorrhizal treatment (Figure S3). 
For mycorrhizal treatment, chlorophyll content in the donor plants increased significantly compared 
to that in the recipient plants at a different N-treatment, while no significant difference was found in 
chlorophyll content between the donor and recipient plants of non-mycorrhizal treatment. The 
mycorrhizal and non-mycorrhizal treatments showed the highest chlorophyll content at N3, and 
lowest at N0, treatment. AM fungal inoculation and N treatment had significant interaction effects 
on Chl-b and carotenoids contents (Table 1). 

Table 1. Mean squares of absolute values for various traits under mycorrhizal and non-mycorrhizal 
treatment and significance of main treatment effects (N and Fungus) and their interaction effects (N 
× Fungus) based on two-way ANOVA. 

 

Figure 2. Arbuscular mycorrhizal (AM) fungi colonization and the development of common mycorrhizal
network; (a) AM fungal colonization was observed in both donor and recipient plant; (b) After
inoculation, extraradical hyphae were developed, which were measured from the hyphal compartment;
the same lowercase and uppercase letters indicate non-significant differences among different N
treatments of the respective donor and the recipient plants, while (*), shows a significant difference
between donor and recipient plants at different N-treatments.

Table 1. Mean squares of absolute values for various traits under mycorrhizal and non-mycorrhizal
treatment and significance of main treatment effects (N and Fungus) and their interaction effects (N ×
Fungus) based on two-way ANOVA.

Parameters
Source of Variation Nitrogen Fungus Nitrogen × Fungus Residual

df 3 1 3 14

Dry shoot weight Donor 1.50** 28.93** 0.01ns 0.02

Recipient 1.17** 14.09** 0.05* 0.01

Dry root weight Donor 0.99** 0.95** 0.05** 0.00

Recipient 0.77** 0.29** 0.02** 0.00

Chlorophyll-a Donor 0.52** 0.62** 0.00ns 0.00

Recipient 0.51** 0.18** 0.00ns 0.00

Chlorophyll-b Donor 2.03** 0.57** 0.01* 0.00

Recipient 2.01** 0.26** 0.01** 0.00

Carotenoids
Donor 41.34** 81.60** 2.71** 0.02

Recipient 33.44** 19.03** 0.96** 0.01

EE-GRSP
Donor 0.00** 0.00** 0.00** 0.00

Recipient 0.00** 0.00** 0.00** 0.00

T-GRSP
Donor 0.00** 0.17** 0.00** 0.00

Recipient 0.01** 0.14** 0.00** 0.00

SOC
Donor 15.98** 41.92** 0.73** 0.04

Recipient 15.52** 17.58** 1.54** 0.04

MWD
Donor 0.07** 0.56** 0.01** 0.00

Recipient 0.07ns 0.71** 0.01** 0.00

*, **and ns indicate the significant differences at p ≤ 0.05, p ≤ 0.01, and non-significant (p ≥ 0.05), respectively.
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CMNs increased the chlorophyll content (Chl-a, Chl-b, and carotenoids) in the donor and recipient
plants in the mycorrhizal treatment as compared to non-mycorrhizal treatment (Figure S3). For
mycorrhizal treatment, chlorophyll content in the donor plants increased significantly compared to that
in the recipient plants at a different N-treatment, while no significant difference was found in chlorophyll
content between the donor and recipient plants of non-mycorrhizal treatment. The mycorrhizal and
non-mycorrhizal treatments showed the highest chlorophyll content at N3, and lowest at N0, treatment.
AM fungal inoculation and N treatment had significant interaction effects on Chl-b and carotenoids
contents (Table 1).

3.3. 15N Transfer

The establishment of CMNs between the inoculated donor and non-inoculated recipient plant
was confirmed with the transfer of 15N from the donor to the recipient plants. The highest 15N content
was recovered at N2 treatment in the donor and recipient plants (Figure 3a) as compared to other N
treatments. 15N content in the donor plants was 5.86%, 7.40%, 23.22%, and 11.55% for N0, N1, N2,
and N3, respectively, and the difference was significant (F (3, 8) = 8.77, p = 0.006). The 15N content
recovered in the recipient plants also showed a significant difference for different N-treatments (F
(3, 8) = 5.60, p = 0.023) with the average being 7.82%, 8.24%, 18.93%, and 11% for N0, N1, N2 and
N3, respectively. Moreover, CMNs’ transfer rates of 15N from the donor to the recipient plants were
about 55.31%, 51.44%, 45.65%, and 49.59% for N0, N1, N2 and N3, respectively, and non-significant
differences were found for the transfer of 15N content from the donor to recipient plant at different
N levels (F (3, 8) = 0.28, p = 0.837) (Figure 3b). In the non-mycorrhizal treatment, no AM fungal
colonization or extraradical hyphae was observed and no 15N (%) transfer was recorded.

Microorganisms 2020, 8, 230 9 of 18 

 

levels (F (3, 8) = 0.28, p = 0.837) (Figure 3b). In the non-mycorrhizal treatment, no AM fungal 
colonization or extraradical hyphae was observed and no 15N (%) transfer was recorded. 

 

Figure 3. Role of common mycorrhizal networks (CMNs) in the recovery and transfer of 15N; (a) the 
amount of 15N uptake by mycelium and recovered in donor and recipient plants; (b) % of N15 transfer 
from donor to recipient plant with help of the mycorrhizal networks. Capital letters show the 
difference between donor, and small letters are showing differences among recipient plants at 
different treatments (N0, N1, N2, and N3). Alphabetic on the top of each bar shows the LSD0.05 
difference. 

3.4. Soil Properties 

In the mycorrhizal treatment, easily extractable glomalin-related soil protein (EE-GRSP; Figure 
S4a) and total glomalin-related soil protein (T-GRSP; Figure S4b) were higher than the non-
mycorrhizal treatment. In the mycorrhizal treatment, the production of EE-GRSP under the donor 
and recipient plants peaked at N2, averaging about 0.137 and 0.129 mg/g, respectively. T-GRSP 
content was also the highest at N2 treatment for the donor (0.432 mg/g) and the recipient (0.410 mg/g) 
plants. Significant differences were found between the donor and recipient plants in mycorrhizal 
treatments, while non-significant differences were observed for non-mycorrhizal (Figure S4). There 
was a significant interaction effect of AM fungal inoculation and N treatment on both GRSP fractions 
(Table 1). Significant differences were found for EE-GRSP and T-GRSP for different N-treatments. 

In the mycorrhizal treatment, the percentage of water-stable aggregates (WSA) at the size of 2–
1, 1–0.5, 0.5–0.25 mm was increased as compared to the non-mycorrhizal treatment (Table S1). Mean 
weight diameter (MWD) was higher in the mycorrhizal treatment as compared to the non-
mycorrhizal treatment. (Figure S5). A significant interaction between AM fungal inoculation and N 
treatment occurred for MWD (Table 1). 

Compared with the non-mycorrhizal treatment, the mycorrhizal treatment increased SOC by 
46%, 27%, 15% and 23% in the donor plant and 35%, 18%, 03%, and 18% in the recipient plant, 
respectively (Figure S6). A significant interaction was found between AM fungal inoculation and N 
treatment for SOC (Table 1). 

3.5. Relationship Between AM Fungi and Soil Properties 

Spearman correlation analysis showed that hyphal length was positively and significantly 
correlated with EE-GRSP (R = 0.979 for donor, Figure 4a; and R = 0.944 for recipient plant, Figure 4c) 
and T-GRSP (R = 0.965 for donor, Figure 4b; and R = 0.937 for recipient plant, Figure 4d). 

Figure 3. Role of common mycorrhizal networks (CMNs) in the recovery and transfer of 15N; (a) the
amount of 15N uptake by mycelium and recovered in donor and recipient plants; (b) % of N15 transfer
from donor to recipient plant with help of the mycorrhizal networks. Capital letters show the difference
between donor, and small letters are showing differences among recipient plants at different treatments
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3.4. Soil Properties

In the mycorrhizal treatment, easily extractable glomalin-related soil protein (EE-GRSP; Figure S4a)
and total glomalin-related soil protein (T-GRSP; Figure S4b) were higher than the non-mycorrhizal
treatment. In the mycorrhizal treatment, the production of EE-GRSP under the donor and recipient
plants peaked at N2, averaging about 0.137 and 0.129 mg/g, respectively. T-GRSP content was also the
highest at N2 treatment for the donor (0.432 mg/g) and the recipient (0.410 mg/g) plants. Significant
differences were found between the donor and recipient plants in mycorrhizal treatments, while
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non-significant differences were observed for non-mycorrhizal (Figure S4). There was a significant
interaction effect of AM fungal inoculation and N treatment on both GRSP fractions (Table 1). Significant
differences were found for EE-GRSP and T-GRSP for different N-treatments.

In the mycorrhizal treatment, the percentage of water-stable aggregates (WSA) at the size of 2–1,
1–0.5, 0.5–0.25 mm was increased as compared to the non-mycorrhizal treatment (Table S1). Mean
weight diameter (MWD) was higher in the mycorrhizal treatment as compared to the non-mycorrhizal
treatment. (Figure S5). A significant interaction between AM fungal inoculation and N treatment
occurred for MWD (Table 1).

Compared with the non-mycorrhizal treatment, the mycorrhizal treatment increased SOC by 46%,
27%, 15% and 23% in the donor plant and 35%, 18%, 03%, and 18% in the recipient plant, respectively
(Figure S6). A significant interaction was found between AM fungal inoculation and N treatment for
SOC (Table 1).

3.5. Relationship Between AM Fungi and Soil Properties

Spearman correlation analysis showed that hyphal length was positively and significantly
correlated with EE-GRSP (R = 0.979 for donor, Figure 4a; and R = 0.944 for recipient plant, Figure 4c)
and T-GRSP (R = 0.965 for donor, Figure 4b; and R = 0.937 for recipient plant, Figure 4d).Microorganisms 2020, 8, 230 10 of 18 

 

 

Figure 4. Linear correlation between hyphal length density and glomalin-related soil proteins 
(GRSPs) fractions; (a,b) in the donor plant; (c,d) in the recipient plants (n = 12). 

The correlation further verified the significant positive relationship between the mean weight 
diameter (MWD) with AM fungal colonization (Figure 5a,b), hyphal length (Figure 5c,d), EE-GRSP 
and T-GRSP (Figure 5e,f), SOC (Figure 5g,h) in both donor and recipient plants in the mycorrhizal 
treatment. 

Figure 4. Linear correlation between hyphal length density and glomalin-related soil proteins (GRSPs)
fractions; (a,b) in the donor plant; (c,d) in the recipient plants (n = 12).

The correlation further verified the significant positive relationship between the mean weight
diameter (MWD) with AM fungal colonization (Figure 5a,b), hyphal length (Figure 5c,d), EE-GRSP and
T-GRSP (Figure 5e,f), SOC (Figure 5g,h) in both donor and recipient plants in the mycorrhizal treatment.
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or; (g,h) soil organic carbon (SOC) in mycorrhizal treatment (n = 12).
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4. Discussion

In this study, the mycorrhizal network was established between the inoculated donor and
non-inoculated recipient plants of C. squarrosa. Inoculation in the donor plant resulted in root AM
fungal colonization and, as a result, the extraradical hyphae from a donor plant moved to the recipient
plant and formed AM fungal colonization. This AM fungal colonization in the recipient plant led to the
formation of hyphal connection between the donor and recipient plant, called a common mycorrhizal
network. This was consistent with the results of [61], who found that the inoculation of a donor plant
with AM fungi resulted in the formation of the mycorrhizal network between trifoliate orange and
white clover.

Different levels of N fertilization were applied to assess the efficiency of AM fungal colonization
and the mycorrhizal network to observe the transfer of nutrients from the donor to recipient plants
and their effects on the neighboring plants. It was found that N fertilization had a significant effect
on AM fungal colonization and soil hyphal length, which is in line with the previous findings that
N-fertilization plays an important role in increasing the AM fungal colonization [62]. As a result,
plant shoot weight, root weight and chlorophyll content in the donor and recipient plants increased as
compared to non-mycorrhizal plants. These findings are in agreement with previous studies of trifoliate
orange-white clover and flax-sorghum, and Andropogon gerardii, where plant biomass was improved as
a result of mycorrhizal networks [20,57,61,63–65]. This is because these extraradical radical hyphae
provided the increased nutrients absorption surface for the plants. The maximum 15N recovery was
found at N2 treatment in the donor and recipient plants, suggesting that the recovery of 15N decreased
at a high level of N fertilization [66]. Thus, mycorrhizal plants used the nutrients more effectively than
non-mycorrhizal plants, resulting in increased plant biomass at N2 treatment. This increase in plant
biomass provided a larger sink for 15N recovery at N2. Therefore, as a result, a lower transfer rate was
found at N2 treatment as compared to other N-treatments. Another reason could be that the recovered
15N at N2 was efficiently utilized by the donor plant to produce the higher plant biomass, and hence
found a lower transfer rate at N2, which was also reported previously [66]. Therefore, AM fungal
inoculation and CMNs formation increase plant biomass [57,63]. This effect was also observed in
maize plants [62]. We found that CMNs in C. squarrosa–C. squarrosa association significantly increased
the root and shoot weight of the recipient plant, suggesting that CMNs can enhance the plant growth
performance of the neighboring plants. The other reason for the increase in plant biomass was due to
an increase in chlorophyll content at high N level. However, the mycorrhizal plants showed higher
chlorophyll content as compared to the non-mycorrhizal plants. The higher chlorophyll content might
be due to more chloroplasts existing in the bundle sheath of inoculated plants [67]. It was also observed
the AM fungal inoculation increased the chlorophyll content in the plants [67,68]. Moreover, other
reasons might be the increased stomatal conductance, higher photosynthesis and transpiration rate,
and improved plant growth. Therefore, in the mycorrhizal plants, significant effects of N-fertilization
were found, with increased plant biomass and chlorophyll content.

The mycorrhizal network significantly improved plant growth by the redistribution of nutrients
to their neighboring plants. In this study, the mycorrhizal network transferred soil N from the donor
to recipient plants on an average of 50%. The ability of the mycorrhizal network to transfer N from
the donor to recipient plant varies from 0–80% [69]. However, much elevated N-fertilization did not
increase nutrient transfer and plant biomass because plants may face other limitations, like water,
light or space, that limit their growth [70]. However, at severe N deficiency, the AM fungi might
consume additional N sources for their own needs, and as a result, there is little or no N transfer to the
plants [71]. It is also observed that the amount of N transfer is correlated with mycorrhizal colonization
level and hyphal length density [72]. Moreover, it is well documented that the fungal partner makes
a significant contribution to the uptake in soil nutrients mediated by the mycelial network [73–76],
making a significant contribution to improve the performance of the neighboring plants.

Soil aggregability was improved with the help of CMNs, as the aggregation of soil particles of
different sizes stabilizes the soil organic carbon [77]. Soil aggregation may be influenced by various
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factors, such as soil biota, clay, and soil organic carbon [78]. It is observed that AM fungi can play
a significant role in the stabilization of soil particles by the GRSP contents released by the mycelial
network. [18]. In this study, the average EE-GRSP and T-GRSP contents were higher in mycorrhizal
treatment than non-mycorrhizal, which is consistent with the previous finding [79]. The GRSPs’
contents increased with the addition of N, and the maximum GRSP fractions were found at N2.
However, after a certain increase in N, the GRSP contents decreased, and similar findings were
observed by Sun et al. (2018). This is because, in the beginning, the addition of N quickly relieves the
N deficiency in the soil, thereby encouraging the microbial activities to stimulate the production of
GRSPs. However, after a certain increase of N results in N saturation into the soil and inhibits microbial
activities, the production of GRSPs would decrease [80]. Therefore, N addition has the potential to
increase the GRSPs in the soil [61,81]. AM fungal inoculation played a significant role in the production
of GRSPs in both the donor and recipient plants. Moreover, a significant positive correlation was found
with soil hyphal length (Figure 4), as reported previously [61,82], which improved the soil structure.
These findings are supported by researches showing that the percentage of water-stable aggregates
increases with the increase in hyphal length in the pot experiments [61,82,83]. Moreover, the long
term field experiments in grassland ecosystems also found a positive correlation of hyphal length with
water-stable aggregates [83]. In our case, we also found that the percentage of water-stable aggregates
(WSA) at sizes of 2.00–1.00 and 1.00–0.50 mm was significantly higher in the mycorrhizal treatment
as compared to non-mycorrhizal treatment (Table S1). Thus, the mycorrhizal hyphae entangle the
soil particles and stabilize the macroaggregates [84] and the GRSPs help in the binding of these
macroaggregates [85].

Besides the GRSPs, it has been widely accepted that AM fungi also play a key role in soil carbon
storage, by either depositing organic compounds such as chitin and glomalin in the rhizosphere [26,86]
or protecting the soil organic matter from the microbial decomposition through promoting aggregate
stability [87]. Mycorrhizal plants have more SOC contents than non-mycorrhizal plants in our study,
which supports previous findings [79]. Our findings also revealed that MWD significantly increased
in the mycorrhizal treatments, and a significant positive correlation of MWD was found with AM
fungal colonization, hyphal length, EE-GRSP, T-GRSP, and SOC (Figure 5). This implies that GRSPs
fractions, AM fungal colonization, hyphal length, and SOC all significantly improved the soil aggregate
stability [82,88,89]. For example, the addition of N can increase the AM fungal colonization with
a low N level [90], thereby increasing the GRSPs’ fractions in the soil [91]. However, N addition
beyond a certain level decreases the GRSPs in the soil [92]. Interestingly, the addition of N significantly
increased the SOC in the soil of mycorrhizal treatment as compared to non-mycorrhizal treatment [93].
SOC is considered an important component of soil fertility and therefore AM fungal inoculation and
the subsequent formation of CMNs enhance the soil fertility and improve the growth of donor and
recipient plants. This suggests that a common mycorrhizal network would persuade the well-developed
mycelium and GRSP fractions (EE-GRSP and T-GRSP), and SOC in the rhizosphere of the recipient
plant, resulting in the improvement of soil aggregate stability and the growth of the recipient plant.

5. Conclusions

This study revealed for the first time that CMNs exist between individuals of C. squarrosa in a
constrained environment. Colonization of AM fungi occurred in the donor roots and subsequent CMN
formation caused root colonization in the recipient plant. AM fungal inoculation increased the plant
biomass, chlorophyll content, and EE-GRSP, T-GRSP, MWD, and SOC. Moreover, the CMNs originating
from the donor plant also facilitated and improved plant growth and soil properties in the recipient
plant. These findings suggest that AM fungal inoculation and the subsequent establishment of CMNs
can play important roles in improving soil aggregation, soil fertility and plant growth. Therefore, this
study confirms the existence of mycorrhizal networks in the typical steppe of Inner Mongolia. This
provides a basis for understanding the mechanism of intra-plant communication in association with
plant growth and development in this grassland system.



Microorganisms 2020, 8, 230 13 of 17

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2076-2607/8/2/230/s1.

Author Contributions: M.A.M., methodology, software, formal analysis, writing—original draft preparation;
P.W., resources, software.; J.Z., and Y.L., investigation, writing—review and editing.; M.Z.M., formal analysis.;
B.J.; supervision, project administration, writing—review and editing. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by the Special Fund for Forest Scientific Research in the Public Welfare
(201404204-05A), the National Key Research and Development Program of China (2016YFC0501802), and the
National Natural Science Foundation of China (31770542, 31800380, 31761123001-1).

Acknowledgments: We thank Xinling Dai, Qiang Dong, Xin Guo and Yaoyao Lu for their help in sample collection
and conducting experiment. We are grateful to Zaib-un-Nisa, Sagheer Ahmad, M. Imran, M. Amir, M. Abu Bakar
Siddique, and M. Amir Siddique for their valuable suggestion and technical support to improve the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Desai, S.; Kumar, G.P.; Amalraj, L.D.; Bagyaraj, D.; Ashwin, R. Exploiting PGPR and AMF biodiversity
for plant health management. In Microbial Inoculants in Sustainable Agricultural Productivity; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 145–160.

2. Stürmer, S.L. A history of the taxonomy and systematics of arbuscular mycorrhizal fungi belonging to the
phylum Glomeromycota. Mycorrhiza 2012, 22, 247–258. [CrossRef]

3. Brundrett, M. Mycorrhizas in natural ecosystems. In Advances in Ecological Research; Elsevier: Amsterdam,
The Netherlands, 1991; Volume 21, pp. 171–313.

4. Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Elsevier-Academic Press: London, UK, 2008; p. 787.
5. Muneer, M.; Wang, M.; Jing, Z.; Zhou, X.; Wang, P.; Li, L.; Ji, B. Low host specificity of arbuscular mycorrhizal

fungi associated with dominant steppe plants in inner mongolia. Appl. Ecol. Environ. Res. 2019, 17,
12073–12089. [CrossRef]

6. Bücking, H.; Mensah, J.A.; Fellbaum, C.R. Common mycorrhizal networks and their effect on the bargaining
power of the fungal partner in the arbuscular mycorrhizal symbiosis. Commun. Integr. Biol. 2016, 9, e1107684.
[CrossRef]

7. Graves, J.; Watkins, N.; Fitter, A.; Robinson, D.; Scrimgeour, C. Intraspecific transfer of carbon between plants
linked by a common mycorrhizal network. Plant Soil 1997, 192, 153–159. [CrossRef]

8. Nakano-Hylander, A.; Olsson, P.A. Carbon allocation in mycelia of arbuscular mycorrhizal fungi during
colonisation of plant seedlings. Soil Biol. Biochem. 2007, 39, 1450–1458. [CrossRef]

9. Jalonen, R.; Nygren, P.; Sierra, J. Transfer of nitrogen from a tropical legume tree to an associated fodder
grass via root exudation and common mycelial networks. Plant Cell Environ. 2009, 32, 1366–1376. [CrossRef]
[PubMed]

10. Wilson, G.; Hartnett, D.; Rice, C. Mycorrhizal-mediated phosphorus transfer between tallgrass prairie plants
Sorghastrum nutans and Artemisia ludoviciana. Funct. Ecol. 2006, 20, 427–435. [CrossRef]

11. Dickie, I.A.; Koide, R.T.; Steiner, K.C. Influences of established trees on mycorrhizas, nutrition, and growth
of Quercus rubra seedlings. Ecol. Monogr. 2002, 72, 505–521. [CrossRef]

12. Nara, K. Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol.
2006, 169, 169–178. [CrossRef]

13. Teste, F.P.; Simard, S.W.; Durall, D.M.; Guy, R.D.; Jones, M.D.; Schoonmaker, A.L. Access to mycorrhizal
networks and roots of trees: Importance for seedling survival and resource transfer. Ecology 2009, 90,
2808–2822. [CrossRef] [PubMed]

14. Bingham, M.A.; Simard, S.W. Do mycorrhizal network benefits to survival and growth of interior Douglas-fir
seedlings increase with soil moisture stress? Ecol. Evol. 2011, 1, 306–316. [CrossRef] [PubMed]

15. Teste, F.P.; Simard, S.W.; Durall, D.M.; Guy, R.D.; Berch, S.M. Net carbon transfer between Pseudotsuga
menziesii var. glauca seedlings in the field is influenced by soil disturbance. J. Ecol. 2010, 98, 429–439.
[CrossRef]

16. Wu, B.; Nara, K.; Hogetsu, T. Can 14C-labeled photosynthetic products move between Pinus densiflora
seedlings linked by ectomycorrhizal mycelia? New Phytol. 2001, 149, 137–146. [CrossRef]

http://www.mdpi.com/2076-2607/8/2/230/s1
http://dx.doi.org/10.1007/s00572-012-0432-4
http://dx.doi.org/10.15666/aeer/1705_1207312089
http://dx.doi.org/10.1080/19420889.2015.1107684
http://dx.doi.org/10.1023/A:1004257812555
http://dx.doi.org/10.1016/j.soilbio.2006.12.031
http://dx.doi.org/10.1111/j.1365-3040.2009.02004.x
http://www.ncbi.nlm.nih.gov/pubmed/19552666
http://dx.doi.org/10.1111/j.1365-2435.2006.01134.x
http://dx.doi.org/10.1890/0012-9615(2002)072[0505:IOETOM]2.0.CO;2
http://dx.doi.org/10.1111/j.1469-8137.2005.01545.x
http://dx.doi.org/10.1890/08-1884.1
http://www.ncbi.nlm.nih.gov/pubmed/19886489
http://dx.doi.org/10.1002/ece3.24
http://www.ncbi.nlm.nih.gov/pubmed/22393502
http://dx.doi.org/10.1111/j.1365-2745.2009.01624.x
http://dx.doi.org/10.1046/j.1469-8137.2001.00010.x


Microorganisms 2020, 8, 230 14 of 17

17. Wu, B.; Nara, K.; Hogetsu, T. Spatiotemporal transfer of carbon-14-labelled photosynthate from
ectomycorrhizal Pinus densiflora seedlings to extraradical mycelia. Mycorrhiza 2002, 12, 83–88. [CrossRef]
[PubMed]

18. Wu, Q.S.; Cao, M.Q.; Zou, Y.N.; He, X.H. Direct and indirect effects of glomalin, mycorrhizal hyphae, and
roots on aggregate stability in rhizosphere of trifoliate orange. Sci. Rep. 2014, 4, 5823. [CrossRef] [PubMed]

19. Barto, E.K.; Hilker, M.; Müller, F.; Mohney, B.K.; Weidenhamer, J.D.; Rillig, M.C. The fungal fast lane:
Common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLoS ONE 2011, 6, e27195.
[CrossRef] [PubMed]

20. Walder, F.; Niemann, H.; Mathimaran, N.; Lehmann, M.F.; Boller, T.; Wiemken, A. Mycorrhizal networks:
Common goods of plants shared under unequal terms of trade. Plant Physiol. 2012, 159, 789–797. [CrossRef]

21. Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis; Academic Press: Cambridge, MA, USA, 2010.
22. Leifheit, E.F.; Veresoglou, S.D.; Lehmann, A.; Morris, E.K.; Rillig, M.C. Multiple factors influence the role of

arbuscular mycorrhizal fungi in soil aggregation—A meta-analysis. Plant Soil 2014, 374, 523–537. [CrossRef]
23. Bronick, C.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [CrossRef]
24. Six, J.; Frey, S.; Thiet, R.; Batten, K. Bacterial and fungal contributions to carbon sequestration in

agroecosystems. Soil Sci. Soc. Am. J. 2006, 70, 555–569. [CrossRef]
25. Zhang, S.; Li, Q.; Zhang, X.; Wei, K.; Chen, L.; Liang, W. Effects of conservation tillage on soil aggregation

and aggregate binding agents in black soil of Northeast China. Soil Tillage Res. 2012, 124, 196–202. [CrossRef]
26. Li, X.; Zhang, J.; Gai, J.; Cai, X.; Christie, P.; Li, X. Contribution of arbuscular mycorrhizal fungi of sedges to

soil aggregation along an altitudinal alpine grassland gradient on the T ibetan P lateau. Environ. Microbiol.
2015, 17, 2841–2857. [CrossRef] [PubMed]

27. Ren, H.; Xu, Z.; Huang, J.; Clark, C.; Chen, S.; Han, X. Nitrogen and water addition reduce leaf longevity of
steppe species. Ann. Bot. 2010, 107, 145–155. [CrossRef] [PubMed]

28. Du, B.; Zhen, L.; De Groot, R.; Goulden, C.; Long, X.; Cao, X.; Wu, R.; Sun, C. Changing patterns of basic
household consumption in the Inner Mongolian grasslands: A case study of policy-oriented adoptive
changes in the use of grasslands. Rangel. J. 2014, 36, 505–517. [CrossRef]

29. Ren, Y.; Lü, Y.; Fu, B. Quantifying the impacts of grassland restoration on biodiversity and ecosystem services
in China: A meta-analysis. Ecol. Eng. 2016, 95, 542–550. [CrossRef]

30. Bai, Y.; Wu, J.; Clark, C.M.; Pan, Q.; Zhang, L.; Chen, S.; Wang, Q.; Han, X. Grazing alters ecosystem
functioning and C: N: P stoichiometry of grasslands along a regional precipitation gradient. J. Appl. Ecol.
2012, 49, 1204–1215. [CrossRef]

31. Christensen, L.; Coughenour, M.B.; Ellis, J.E.; Chen, Z.Z. Vulnerability of the Asian typical steppe to grazing
and climate change. Clim. Chang. 2004, 63, 351–368. [CrossRef]

32. Kang, L.; Han, X.; Zhang, Z.; Sun, O.J. Grassland ecosystems in China: Review of current knowledge and
research advancement. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2007, 362, 997–1008. [CrossRef]

33. Xia, J.; Niu, S.; Wan, S. Response of ecosystem carbon exchange to warming and nitrogen addition during
two hydrologically contrasting growing seasons in a temperate steppe. Glob. Chang. Biol. 2009, 15, 1544–1556.
[CrossRef]

34. Bai, Y.; Wu, J.; Xing, Q.; Pan, Q.; Huang, J.; Yang, D.; Han, X. Primary production and rain use efficiency
across a precipitation gradient on the Mongolia plateau. Ecology 2008, 89, 2140–2153. [CrossRef]

35. Hooper, D.U.; Johnson, L. Nitrogen limitation in dryland ecosystems: Responses to geographical and
temporal variation in precipitation. Biogeochemistry 1999, 46, 247–293. [CrossRef]

36. Kieft, T.L.; White, C.S.; Loftin, S.R.; Aguilar, R.; Craig, J.A.; Skaar, D.A. Temporal dynamics in soil carbon and
nitrogen resources at a grassland-shrubland ecotone. Ecology 1998, 79, 671–683.

37. Gong, X.Y.; Chen, Q.; Dittert, K.; Taube, F.; Lin, S. Nitrogen, phosphorus and potassium nutritional status of
semiarid steppe grassland in Inner Mongolia. Plant Soil 2011, 340, 265–278. [CrossRef]

38. Bai, Y.; Wu, J.; Clark, C.M.; Naeem, S.; Pan, Q.; Huang, J.; Zhang, L.; Han, X. Tradeoffs and thresholds in
the effects of nitrogen addition on biodiversity and ecosystem functioning: Evidence from inner Mongolia
Grasslands. Glob. Chang. Biol. 2010, 16, 358–372. [CrossRef]

39. Vitousek, P.M.; Aber, J.D.; Howarth, R.W.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.;
Tilman, D.G. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 1997, 7,
737–750. [CrossRef]

http://dx.doi.org/10.1007/s00572-001-0157-2
http://www.ncbi.nlm.nih.gov/pubmed/12035731
http://dx.doi.org/10.1038/srep05823
http://www.ncbi.nlm.nih.gov/pubmed/25059396
http://dx.doi.org/10.1371/journal.pone.0027195
http://www.ncbi.nlm.nih.gov/pubmed/22110615
http://dx.doi.org/10.1104/pp.112.195727
http://dx.doi.org/10.1007/s11104-013-1899-2
http://dx.doi.org/10.1016/j.geoderma.2004.03.005
http://dx.doi.org/10.2136/sssaj2004.0347
http://dx.doi.org/10.1016/j.still.2012.06.007
http://dx.doi.org/10.1111/1462-2920.12792
http://www.ncbi.nlm.nih.gov/pubmed/25630567
http://dx.doi.org/10.1093/aob/mcq219
http://www.ncbi.nlm.nih.gov/pubmed/21084404
http://dx.doi.org/10.1071/RJ14021
http://dx.doi.org/10.1016/j.ecoleng.2016.06.082
http://dx.doi.org/10.1111/j.1365-2664.2012.02205.x
http://dx.doi.org/10.1023/B:CLIM.0000018513.60904.fe
http://dx.doi.org/10.1098/rstb.2007.2029
http://dx.doi.org/10.1111/j.1365-2486.2008.01807.x
http://dx.doi.org/10.1890/07-0992.1
http://dx.doi.org/10.1007/BF01007582
http://dx.doi.org/10.1007/s11104-010-0577-x
http://dx.doi.org/10.1111/j.1365-2486.2009.01950.x
http://dx.doi.org/10.1890/1051-0761(1997)007[0737:HAOTGN]2.0.CO;2


Microorganisms 2020, 8, 230 15 of 17

40. Zhou, X.; Wang, Y.; Zhang, P.; Guo, Z.; Chu, C.; Du, G. The effects of fertilization on the trait–abundance
relationships in a Tibetan alpine meadow community. J. Plant Ecol. 2015, 9, 144–152. [CrossRef]

41. Yang, Z.; van Ruijven, J.; Du, G. The effects of long-term fertilization on the temporal stability of alpine
meadow communities. Plant Soil 2011, 345, 315–324. [CrossRef]

42. Bragazza, L.; Bardgett, R.D.; Mitchell, E.A.; Buttler, A. Linking soil microbial communities to vascular plant
abundance along a climate gradient. New Phytol. 2015, 205, 1175–1182. [CrossRef]

43. Balser, T.C.; Firestone, M.K. Linking microbial community composition and soil processes in a California
annual grassland and mixed-conifer forest. Biogeochemistry 2005, 73, 395–415. [CrossRef]

44. Stevens, C.J.; Dise, N.B.; Mountford, J.O.; Gowing, D.J. Impact of nitrogen deposition on the species richness
of grasslands. Science 2004, 303, 1876–1879. [CrossRef]

45. Clark, C.M.; Tilman, D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands.
Nature 2008, 451, 712. [CrossRef] [PubMed]

46. Suding, K.N.; Collins, S.L.; Gough, L.; Clark, C.; Cleland, E.E.; Gross, K.L.; Milchunas, D.G.; Pennings, S.
Functional-and abundance-based mechanisms explain diversity loss due to N fertilization. Proc. Natl. Acad.
Sci. USA 2005, 102, 4387–4392. [CrossRef] [PubMed]

47. Ma, W.; Jiang, S.; Assemien, F.; Qin, M.; Ma, B.; Xie, Z.; Liu, Y.; Feng, H.; Du, G.; Ma, X. Response of microbial
functional groups involved in soil N cycle to N, P and NP fertilization in Tibetan alpine meadows. Soil Biol.
Biochem. 2016, 101, 195–206. [CrossRef]

48. Zhou, J.; Jiang, X.; Zhou, B.; Zhao, B.; Ma, M.; Guan, D.; Li, J.; Chen, S.; Cao, F.; Shen, D. Thirty four years of
nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in
northeast China. Soil Biol. Biochem. 2016, 95, 135–143. [CrossRef]

49. Kearns, P.J.; Angell, J.H.; Howard, E.M.; Deegan, L.A.; Stanley, R.H.; Bowen, J.L. Nutrient enrichment induces
dormancy and decreases diversity of active bacteria in salt marsh sediments. Nat. Commun. 2016, 7, 12881.
[CrossRef] [PubMed]

50. Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on freshwater,
marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196. [CrossRef]

51. Simard, S.W.; Durall, D.M. Mycorrhizal networks: A review of their extent, function, and importance. Can. J.
Bot. 2004, 82, 1140–1165. [CrossRef]

52. Zerulla, W.; Barth, T.; Dressel, J.; Erhardt, K.; von Locquenghien, K.H.; Pasda, G.; Rädle, M.; Wissemeier, A.
3,4-Dimethylpyrazole phosphate (DMPP)—A new nitrification inhibitor for agriculture and horticulture.
Biol. Fertil. Soils 2001, 34, 79–84. [CrossRef]

53. Mcgonigle, T.P.; Miller, M.H.; Evans, D.G.; Fairchild, G.L.; Swan, J.A. A new method which gives an objective
measure of colonization of roots by vesicular—Arbuscular mycorrhizal fungi. New Phytol. 1990, 115, 495–501.
[CrossRef]

54. Jakobsen, I.; Abbott, L.; Robson, A. External hyphae of vesicular-arbuscular mycorrhizal fungi associated
with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol. 1992,
120, 371–380. [CrossRef]

55. Wright, S.F.; Upadhyaya, A. Extraction of an abundant and unusual protein from soil and comparison with
hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 1996, 161, 575–586. [CrossRef]

56. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing
the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [CrossRef]

57. Saddique, M.A.B.; Ali, Z.; Khan, A.S.; Rana, I.A.; Shamsi, I.H. Inoculation with the endophyte Piriformospora
indica significantly affects mechanisms involved in osmotic stress in rice. Rice 2018, 11, 34. [CrossRef]
[PubMed]

58. Nimmo, J.R.; Perkins, K.S. 2.6 Aggregate stability and size distribution. Methods Soil Anal. Part 4 Phys.
Methods 2002, 4, 317–328.

59. Van Bavel, C. Mean weight-diameter of soil aggregates as a statistical index of aggregation 1. Soil Sci. Soc.
Am. J. 1950, 14, 20–23. [CrossRef]

60. Lu, R. Methods of Soil and Agrochemistry Analysis; China Agricultural Science and Technology Press: Beijing,
China, 2000; pp. 62–141.

61. Zhang, Z.-Z.; Lou, Y.-G.; Deng, D.-J.; Rahman, M.M.; Wu, Q.-S. Effects of common mycorrhizal network on
plant carbohydrates and soil properties in trifoliate orange–white clover association. PLoS ONE 2015, 10,
e0142371. [CrossRef]

http://dx.doi.org/10.1093/jpe/rtv043
http://dx.doi.org/10.1007/s11104-011-0784-0
http://dx.doi.org/10.1111/nph.13116
http://dx.doi.org/10.1007/s10533-004-0372-y
http://dx.doi.org/10.1126/science.1094678
http://dx.doi.org/10.1038/nature06503
http://www.ncbi.nlm.nih.gov/pubmed/18256670
http://dx.doi.org/10.1073/pnas.0408648102
http://www.ncbi.nlm.nih.gov/pubmed/15755810
http://dx.doi.org/10.1016/j.soilbio.2016.07.023
http://dx.doi.org/10.1016/j.soilbio.2015.12.012
http://dx.doi.org/10.1038/ncomms12881
http://www.ncbi.nlm.nih.gov/pubmed/27666199
http://dx.doi.org/10.1016/S0269-7491(99)00091-3
http://dx.doi.org/10.1139/b04-116
http://dx.doi.org/10.1007/s003740100380
http://dx.doi.org/10.1111/j.1469-8137.1990.tb00476.x
http://dx.doi.org/10.1111/j.1469-8137.1992.tb01077.x
http://dx.doi.org/10.1097/00010694-199609000-00003
http://dx.doi.org/10.1016/0003-2697(76)90527-3
http://dx.doi.org/10.1186/s12284-018-0226-1
http://www.ncbi.nlm.nih.gov/pubmed/29799607
http://dx.doi.org/10.2136/sssaj1950.036159950014000C0005x
http://dx.doi.org/10.1371/journal.pone.0142371


Microorganisms 2020, 8, 230 16 of 17

62. Crespo, R. Impact of Arbuscular Mycorrhizal Fungi on the Physiology of Maize Genotypes under Variable
Nitrogen and Phosphorus Levels. Ph.D. Thesis, University of Nebraska-Lincoln, Lincoln, NE, UAS, 2015.

63. Zhang, Y.-C.; Chun-Yan, L.; Qiang-Sheng, W. Mycorrhiza and Common Mycorrhizal Network Regulate the
Production of Signal Substances in Trifoliate Orange (Poncirus trifoliata). Not. Bot. Horti Agrobot. Cluj Napoca
2017, 45, 43–49. [CrossRef]

64. Weremijewicz, J.; Janos, D.P. Common mycorrhizal networks amplify size inequality in Andropogon gerardii
monocultures. New Phytol. 2013, 198, 203–213. [CrossRef]

65. Ullah, S.; Muhammad, B.; Amin, R.; Abbas, H.; Muneer, M. Sensitivity of arbuscular mycorrhizal fungi
in old-growth forests: Direct effect on growth and soil carbon storage. Appl. Ecol. Environ. Res. 2019, 17,
13749–13758.

66. Hamel, C.; Barrantes-Cartin, U.; Furlan, V.; Smith, D. Endomycorrhizal fungi in nitrogen transfer from
soybean to maize. Plant Soil 1991, 138, 33–40. [CrossRef]

67. Arumugam, R.; Rajasekaran, S.; Nagarajan, S. Response of Arbuscular mycorrhizal fungi and Rhizobium
inoculation on growth and chlorophyll content of Vigna unguiculata (L) Walp Var. Pusa 151. J. Appl. Sci.
Environ. Manag. 2010, 14, 113–115. [CrossRef]

68. Valentine, A.; Osborne, B.; Mitchell, D. Interactions between phosphorus supply and total nutrient availability
on mycorrhizal colonization, growth and photosynthesis of cucumber. Sci. Hortic. 2001, 88, 177–189.
[CrossRef]

69. He, X.; Xu, M.; Qiu, G.Y.; Zhou, J. Use of 15N stable isotope to quantify nitrogen transfer between mycorrhizal
plants. J. Plant Ecol. 2009, 2, 107–118. [CrossRef]

70. Jach-Smith, L.C.; Jackson, R.D. N addition undermines N supplied by arbuscular mycorrhizal fungi to native
perennial grasses. Soil Biol. Biochem. 2018, 116, 148–157. [CrossRef]

71. Püschel, D.; Janoušková, M.; Hujslová, M.; Slavíková, R.; Gryndlerová, H.; Jansa, J. Plant–fungus competition
for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply. Ecol.
Evol. 2016, 6, 4332–4346. [CrossRef] [PubMed]

72. Ames, R.; Reid, C.; Porter, L.; Cambardella, C. Hyphal uptake and transport of nitrogen from two 15N-labelled
sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol. 1983, 95, 381–396.
[CrossRef]

73. Read, D.; Francis, R.; Finlay, R. Mycorrhizal mycelia and nutrient cycling in plant communities. In Special
Publications Series of the British Ecological Society; Blackwell: London, UK, 1985; pp. 193–217.

74. McNeill, A.; Wood, M. Fixation and transfer of nitrogen by white clover to ryegrass. Soil Use Manag. 1990, 6,
84–86. [CrossRef]

75. Van Kessel, C.; Singleton, P.W.; Hoben, H.J. Enhanced N-transfer from a soybean to maize by vesicular
arbuscular mycorrhizal (VAM) fungi. Plant Physiol. 1985, 79, 562–563. [CrossRef]

76. Martins, M. The role of the external mycelial network of arbuscular mycorrhizal fungi: III. A study of
nitrogen transfer between plants interconnected by a common mycelium. Rev. Microbiol. 1997, 29, 228–233.
[CrossRef]

77. Andruschkewitsch, R.; Koch, H.-J.; Ludwig, B. Effect of long-term tillage treatments on the temporal dynamics
of water-stable aggregates and on macro-aggregate turnover at three German sites. Geoderma 2014, 217,
57–64. [CrossRef]

78. Spohn, M.; Giani, L. Water-stable aggregates, glomalin-related soil protein, and carbohydrates in a
chronosequence of sandy hydromorphic soils. Soil Biol. Biochem. 2010, 42, 1505–1511. [CrossRef]

79. Wang, Z.-G.; Bi, Y.-L.; Jiang, B.; Zhakypbek, Y.; Peng, S.-P.; Liu, W.-W.; Liu, H. Arbuscular mycorrhizal fungi
enhance soil carbon sequestration in the coalfields, northwest China. Sci. Rep. 2016, 6, 34336. [CrossRef]
[PubMed]

80. Yu, P.; Zhu, F.; Su, S.; Wang, Z.; Yan, W. Effects of nitrogen addition on red soil microbes in the Cinnamomum
camphora plantation. Huan Jing Ke Xue = Huanjing Kexue 2013, 34, 3231–3237.

81. Garcia, M.O.; Ovasapyan, T.; Greas, M.; Treseder, K.K. Mycorrhizal dynamics under elevated CO2 and
nitrogen fertilization in a warm temperate forest. Plant Soil 2008, 303, 301–310. [CrossRef]

82. Wu, Q.-S.; Wang, S.; Srivastava, A. Mycorrhizal hyphal disruption induces changes in plant growth,
glomalin-related soil protein and soil aggregation of trifoliate orange in a core system. Soil Tillage Res. 2016,
160, 82–91. [CrossRef]

http://dx.doi.org/10.15835/nbha45110731
http://dx.doi.org/10.1111/nph.12125
http://dx.doi.org/10.1007/BF00011805
http://dx.doi.org/10.4314/jasem.v14i4.63282
http://dx.doi.org/10.1016/S0304-4238(00)00205-3
http://dx.doi.org/10.1093/jpe/rtp015
http://dx.doi.org/10.1016/j.soilbio.2017.10.009
http://dx.doi.org/10.1002/ece3.2207
http://www.ncbi.nlm.nih.gov/pubmed/27386079
http://dx.doi.org/10.1111/j.1469-8137.1983.tb03506.x
http://dx.doi.org/10.1111/j.1475-2743.1990.tb00810.x
http://dx.doi.org/10.1104/pp.79.2.562
http://dx.doi.org/10.1590/S0001-37141998000400011
http://dx.doi.org/10.1016/j.geoderma.2013.10.022
http://dx.doi.org/10.1016/j.soilbio.2010.05.015
http://dx.doi.org/10.1038/srep34336
http://www.ncbi.nlm.nih.gov/pubmed/27748365
http://dx.doi.org/10.1007/s11104-007-9509-9
http://dx.doi.org/10.1016/j.still.2016.02.010


Microorganisms 2020, 8, 230 17 of 17

83. Degens, B.; Sparling, G.; Abbott, L. Increasing the length of hyphae in a sandy soil increases the amount of
water-stable aggregates. Appl. Soil Ecol. 1996, 3, 149–159. [CrossRef]

84. Kohler-Milleret, R.; Le Bayon, R.-C.; Chenu, C.; Gobat, J.-M.; Boivin, P. Impact of two root systems, earthworms
and mycorrhizae on the physical properties of an unstable silt loam Luvisol and plant production. Plant Soil
2013, 370, 251–265. [CrossRef]

85. Martin, S.; Mooney, S.; Dickinson, M.; West, H. The effects of simultaneous root colonisation by three Glomus
species on soil pore characteristics. Soil Biol. Biochem. 2012, 49, 167–173. [CrossRef]

86. Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Elsevier-Academic Press: London, UK, 2008; pp. 1–9.
87. Tisdall, J.; Smith, S.; Rengasamy, P. Aggregation of soil by fungal hyphae. Soil Res. 1997, 35, 55–60. [CrossRef]
88. Zou, Y.-N.; Srivastava, A.; Ni, Q.-D.; Wu, Q.-S. Disruption of mycorrhizal extraradical mycelium and changes

in leaf water status and soil aggregate stability in rootbox-grown trifoliate orange. Front. Microbiol. 2015, 6,
203. [CrossRef]

89. Presley, D.R.; Sindelar, A.J.; Buckley, M.E.; Mengel, D.B. Long-term nitrogen and tillage effects on soil physical
properties under continuous grain sorghum. Agron. J. 2012, 104, 749–755. [CrossRef]

90. Treseder, K.K.; Allen, M.F. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: A
model and field test. New Phytol. 2002, 155, 507–515. [CrossRef]

91. Treseder, K.K.; Turner, K.M.; Mack, M.C. Mycorrhizal responses to nitrogen fertilization in boreal ecosystems:
Potential consequences for soil carbon storage. Glob. Chang. Biol. 2007, 13, 78–88. [CrossRef]

92. Treseder, K.K. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in
field studies. New Phytol. 2004, 164, 347–355. [CrossRef]

93. Sun, L.; Jing, H.; Wang, G.; Liu, G. Nitrogen addition increases the contents of glomalin-related soil protein
and soil organic carbon but retains aggregate stability in a Pinus tabulaeformis forest. PeerJ 2018, 6, e5039.
[CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0929-1393(95)00074-7
http://dx.doi.org/10.1007/s11104-013-1621-4
http://dx.doi.org/10.1016/j.soilbio.2012.02.036
http://dx.doi.org/10.1071/S96065
http://dx.doi.org/10.3389/fmicb.2015.00203
http://dx.doi.org/10.2134/agronj2011.0311
http://dx.doi.org/10.1046/j.1469-8137.2002.00470.x
http://dx.doi.org/10.1111/j.1365-2486.2006.01279.x
http://dx.doi.org/10.1111/j.1469-8137.2004.01159.x
http://dx.doi.org/10.7717/peerj.5039
http://www.ncbi.nlm.nih.gov/pubmed/30002954
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Experimental Design 
	Soil, Inoculum and Planting 
	Labeling with 15N 
	Analytical Procedures 
	Plant Harvest 
	Mycorrhizal Colonization, Hyphal Length Density, and Glomalin-Related Soil Proteins 
	Chlorophyll Content 
	Determination of 15N Content 
	Water-Stable Aggregates, Mean Weight Diameter and Soil Organic Carbon 
	Statistical Analysis 


	Results 
	AM Fungal Colonization and Mycorrhizal Network 
	Plant Biomass and Chlorophyll Content 
	15N Transfer 
	Soil Properties 
	Relationship Between AM Fungi and Soil Properties 

	Discussion 
	Conclusions 
	References

