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Phase dependent hypothalamic activation
following trigeminal input in cluster
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Abstract

Background: Task-free imaging approaches using PET have shown the posterior hypothalamus to be specifically
activated during but not outside cluster headache attacks. Evidence from task related functional imaging
approaches however is scarce.

Methods: Twenty-one inactive cluster headache patients (episodic cluster headache out of bout), 16 active cluster
headache patients (10 episodic cluster headache in bout, 6 chronic cluster headache) and 18 control participants
underwent high resolution brainstem functional magnetic resonance imaging of trigeminal nociception using
gaseous ammonia as a painful stimulus.

Results: Following trigeminonociceptive stimulation with ammonia there was a significantly stronger activation
within the posterior hypothalamus in episodic cluster headache patients out of bout when compared to controls.
When contrasting estimates of the pain contrast, active cluster headache patients where in between the two other
groups but did not differ significantly from either.

Conclusion: The posterior hypothalamus might thus be hyperexcitable in cluster headache patients outside the
bout while excitability to external nociceptive stimuli decreases during in bout periods, probably due to frequent
hypothalamic activation and possible neurotransmitter exhaustion during cluster attacks.
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Introduction
In most Task-free imaging approaches like H2O-PET
and restingstate fMRI, the posterior hypothalamus has
been shown to be specifically activated during but not
outside cluster headache attacks with activity levels nor-
malising after pain relieve due to sumatriptan adminis-
tration [1–3]. Furthermore, hypothalamic restingstate
connectivity is altered in cluster headache patients as
compared to healthy controls [4, 5] thus suggesting a
crucial role of this brain area in the pathophysiology of

cluster headache Evidence from Task-related functional
imaging approaches however is scarce – to our knowledge
there are to date no stimulation fMRI studies in cluster
headache patients although investigating the trigeminal
nociceptive functioning in active and inactive cluster head-
ache might add important information to our current un-
derstanding of cluster headache pathophysiology. There is
however some evidence of altered nociceptive and auto-
nomic functioning in cluster headache: temporal nocicep-
tive processing seems to be facilitated during the active
cluster headache phases while markers of supraspinal pain
control might be defective [6]. Accordingly, in cluster head-
ache patients there is evidence for trigeminonociceptive
facilitation on brainstem level [7]. Here we hypothesized
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that hypothalamic processing of trigeminal nociceptive
stimuli might be altered in cluster headache patients
as compared to healthy controls. We investigate active
and non-active cluster headache patients using a well-
established paradigm for functional magnetic reson-
ance imaging of trigeminal nociception.

Methods
Participants
Cluster headache patients were recruited via the Head-
ache Outpatient Department of the University Medical
Center Eppendorf in Hamburg, Germany, and a local
database between August 2014 and November 2016. Pa-
tients were divided into 2 groups: active cluster head-
ache (including both episodic cluster headache patients
in bout and chronic cluster headache patients) and in-
active cluster headache (episodic cluster headache pa-
tients out of bout). Three patients participated both in
the active state and in the inactive state. Control partici-
pants did not suffer from any severe neurological or in-
ternal illness and had no history of pain or headache
diseases including migraine, cluster headache and fre-
quent tension type headache. Written informed consent
was obtained from all participants.

Experimental paradigm
Participants underwent one session of event-related
fMRI using a previously established protocol of stan-
dardized nociceptive stimulation of the nasal mucosa
using gaseous ammonia [8–13]. Additionally, 3 of the
episodic cluster headache patients underwent a second
identical session within bout period. Each session con-
sisted of three parts, during which 4 different stimuli
were presented in pseudorandomized order ensuring no
two identical stimuli directly followed each other. Each
stimulus was preceded by a reaction task and followed
by a rating procedure during which intensity and un-
pleasantness of the respective stimulus had to be rated.
The 4 stimuli were gaseous ammonia as an activator of
trigeminonociceptive afferents within the nasal mucosa,
rose odour as a purely olfactory stimulus, air puffs as a
control condition and a rotating checkerboard as visual
stimulus. The gaseous stimuli were presented via a Tef-
lon tube within the participants’ nostril (in case of clus-
ter headache patients on the site of the cluster pain)
using a custom built olfactometer. The visual stimulus
was presented via a beamer-mirror system that was also
used for presentation of the reaction task and the rating
procedure. Presentation software was used for stimulus
presentation, timing and logging of experimental data.

Image acquisition
MRI images were acquired on a 3 T scanner (Siemens
TIM TRIO) using a 32-channel head coil. All participants

lay supine on the back in the scanner. Echoplanar images
were recorded via a protocol optimized for high resolution
brainstem imaging (voxel sizes 1.25 × 1.25 × 2.5mm3, TR
2.61 s, TE 27ms, 38 axial slices, FoV 216 × 108mm2,
matrix: 172 × 86, flip angle 80°, GRAPPA-accelerated).
High resolution T1 weighted images were acquired using
an MPRAGE sequence (voxel size 1 × 1 × 1mm3, TR 2.3 s,
TE 2.98ms, FoV 192 × 256 × 240mm3, slice orientation:
sagittal, flip angle 9°, inversion time 1.1 s).

Preprocessing
Preprocessing was performed using SPM 12. Preprocess-
ing steps included slice timing, image realignment,
spatial normalization and warping into MNI space via a
segmentation-normalization sequence consisting of co-
registration of the structural images to the mean func-
tional image, segmentation of the structural images and
normalisation of functional images using segmentation
parameters of the structural image of each subject. After
normalization, images were smoothed using a 4 mm full
width at half maximum Gaussian kernel.

Flipping
Cluster headache patients were stimulated on the site of
the cluster. Accordingly, to make the stimulation site
homonymous, images of the right sided cluster-headache
patients were left-right flipped to match the stimulation
site of the other patients using the in-built function
fslswapdim of FSL.

Physiological denoising
Heart- and breathing rate were recorded via a respira-
tory belt and pulsoxymetry and included in the first level
analysis as nuisance regressors using the selective aver-
aging method of Deckers et al., that has in detail been
described elsewhere [14].

Statistical analysis
1st level
Statistical analysis was done using SPM12 and Matlab
version R2014b. First level general linear model included
3 sessions with 4 experimental regressors: ammonia,
rose odour, air and checkerboard stimulation. Button
presses, anticipation phase, 12 movement regressors (re-
alignment parameters) and 18–20 physiological regres-
sors of cardiac and breathing state were included as
nuisance regressors. In case of the gaseous stimuli, a
delta function at event-onset was convolved with the
hemodynamic response function. The checkerboard was
modelled using a box-car function with a duration of 4 s.

2nd level
For the second level analysis, the first level pain-contrast
images (ammonia > air) of the individual participants
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were entered into an Anova consisting of the following
groups: inactive cluster headache (out of bout), active
cluster headache (ECH in bout and CCH) and healthy
controls. Results were generally regarded significant at
p < 0.05, corrected for multiple comparisons using the
family wise error rate (FWE). As the posterior hypothal-
amus was a predefined region of interest, we performed a
small volume correction using a 6mm sphere around the
peak coordinates reported for the posterior hypothalamus
by Maniyar et al. transferred to the left side (− 6, − 6, − 12)
[15], to which FWE-correction was restricted.

Results
Fifty-five participants where included in the final analysis
(21 episodic cluster headache patients out of bout, 16 ac-
tive cluster headache patients (10 eCH in bout, 6 CCH)
and 18 control participants). Three episodic cluster
headache patients were scanned twice: in- and outside
the active period. Among the active group, 9 patients
took prophylactic medication balanced by 6 patients
within the inactive group. Details can be found in
Table 1. Statistical analysis of the intensity and unpleas-
antness ratings of the ammonia-stimulus revealed no
statistically significant differences between the three
groups. A plot of intensity and unpleasantness of the
ammonia stimulus can be found in Fig. 1.
Following trigeminonociceptive stimulation with ammo-

nia (ammonia > air), we found in the functional imaging
data a significantly stronger activation within the posterior
hypothalamus (x = − 4, y = − 11, z = − 11, T = 3.80, p <
0.05, small-volume-FWE-corrected) in episodic cluster
headache patients out of bout when compared to controls.
When looking at the contrast estimates of the pain con-
trast, active cluster headache patients (CCH and ECH in
bout) where in between the two other groups but did not
differ significantly from either. Figure 2 shows a T-score
map of the contrast eCH out of bout vs. controls and a
plot of contrast estimates of the 3 groups.

Discussion
The posterior part of the hypothalamus has been shown
to be activated during acute cluster headache attacks in
various studies, starting with early H2O-PET studies and
continuing to recent fMRI studies [1–3, 16–18]. To date,
no studies exist which investigated cluster headache

patients using task related designs in functional imaging.
Our data of 37 patients using trigeminal nociceptive input
as a task (but outside the cluster headache attack) corrob-
orate hypothalamic involvement in cluster headache
pathophysiology. We note that trigeminal nociceptive in-
put activates the posterior part of the hypothalamus, a
brain area which is associated with cluster headache
pathophysiology [19], and not the hypothalamus proper.
Whilst it is undoubted that it is indeed crucial for cluster
headache pathophysiology [20], the correct anatomical de-
nomination is a much discussed issue [21–23]. For the
sake of convenience we keep the wording of the original
report [2] and consistently refer to this area as posterior
hypothalamus. Regarding the site of activation, our data
are in line with previous studies showing the activation ip-
silateral to the site of cluster headache [2, 16]. However,
different from what we expected, hypothalamic activity
levels following trigeminal nociceptive stimulation were
highest in patients out of bout, i.e. with inactive cluster,
and not within the active group. As there were patients
taking medication within both cluster groups, it is rather
unlikely that the difference we describe is simply due to
an effect of medication. The hypothalamus is involved in
processing and modulation of painful trigeminal stimuli
via various fiber connections of different hypothalamic nu-
clei to the spinal trigeminal nucleus, the PAG, the poster-
ior Raphe nucleus and others [10, 18]. Additionally, there
are efferent fiber connections of the spinal trigeminal nu-
cleus that directly activate hypothalamic nuclei [19] and
the hypothalamus has been shown to be activated in re-
sponse to trigeminonociceptive stimulation in healthy
subjects [10]. It is thus strategically positioned for inte-
grating painful stimuli with signals of energy homeostasis
and circadian rhythmicity. Cyclic activity changes within
the hypothalamus might constitute the neuronal basis for
the beginning of the cluster bout and especially the initi-
ation of a cluster headache attack [24]. Since the posterior
hypothalamus is thus frequently activated in active cluster
headache (eCH in bout and cCH), these frequent episodes
of activation might lead to neurotransmitter exhaustion
and hypo-excitability of this area to external stimuli. To
our knowledge there are to date no studies directly inves-
tigating hypothalamic responses to external stimuli in
cluster headache patient. One behavioral measure often
discussed to be influenced by hypothalamic activity is the

Table 1 Characteristics of the investigated patients groups

Age Sex Years of cluster
headache

Number of patients
taking prophylactic medication

Medication taken

Active Cluster Headache 50,0833333 12 m, 4 f 13,203,125 9 Verapamil (2), Verapamil+Topiramate (1),
Lithium (2), Prednisolon (1), Allegro (1),
Verapamil+Allegro (1), Almotriptan (1)

Inactive Cluster Headache 45,2,380,952 18 m, 3 f 14,55 6 Verapamil (3),Topiramate (1), Verapamil +
Topiramate (2)
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Fig. 1 Intensity and unpleasantness ratings of the ammonia stimulus among the three study groups. Bars depict the mean within each group. Error bars
indicate standard error of mean. No significant differences were observed regarding intensity and unpleasantness ratings between the three study groups

Fig. 2 T-score map of the second level anova, contrast inactive cluster headache > controls. Visualization threshold p < 0.001. Significant
activation (p < 0.05, small-volume-FWE-corrected) was observed within the posterior hypothalamus ipsilateral to the site of cluster headache and
trigeminal nociceptive stimulation (x = − 4, y = − 11, z = − 11, T = 3.80, k = 12 voxels). The bar plot indicates contrast estimates and 95%-
confidential intervals for the three groups at the maximum of posterior hypothalamic activation

Schulte et al. The Journal of Headache and Pain           (2020) 21:30 Page 4 of 6



nociceptive blink reflex. Studies point towards altered ha-
bituation of the blink reflex in cluster headache patients in
the bout and in one study also out of bout [7, 25, 26], but
findings are not homogeneous and partly contradicting
[27]. Hypothalamic involvement in this mechanism is
therefore likely but not proven. The alterations in blink re-
flex habituation might thus point towards altered hypo-
thalamic functioning in cluster headache but can not help
us to explain the current results since other trigeminono-
ciceptive sites of conduction might be involved in mediat-
ing blink reflex habituation. The theory of a hypothalamic
exhaustion and hypoexcitability in active cluster headache
is thus a viable explanation although there is currently no
direct experimental evidence to support it. It could ac-
count for the fact that, other than expected, hypothalamic
activation following nociceptive stimulation of the nasal
mucosa was not highest within the active cluster group
but within the group of inactive episodic cluster headache
patients.

Conclusions
Our data suggest that the posterior hypothalamus might
be hyperexcitable in cluster headache patients but only
outside the bout while excitability (to external nociceptive
stimuli) decreases during in bout periods, possibly due to
frequent hypothalamic activation during cluster attacks.
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