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Abstract: Chicken gout resulting from nephropathogenic infectious bronchitis virus (NIBV) has
become a serious kidney disease problem in chicken worldwide with alterations of the metabolic
phenotypes in multiple metabolic pathways. To investigate the mechanisms in chicken responding to
NIBV infection, we examined the global transcriptomic and metabolomic profiles of the chicken’s
kidney using RNA-seq and GC–TOF/MS, respectively. Furthermore, we analyzed the alterations in
cecal microorganism composition in chickens using 16S rRNA-seq. Integrated analysis of these three
phenotypic datasets further managed to create correlations between the altered kidney transcriptomes
and metabolome, and between kidney metabolome and gut microbiome. We found that 2868 genes
and 160 metabolites were deferentially expressed or accumulated in the kidney during NIBV infection
processes. These genes and metabolites were linked to NIBV-infection related processes, including
immune response, signal transduction, peroxisome, purine, and amino acid metabolism. In addition,
the comprehensive correlations between the kidney metabolome and cecal microbial community
showed contributions of gut microbiota in the progression of NIBV-infection. Taken together, our
research comprehensively describes the host responses during NIBV infection and provides new clues
for further dissection of specific gene functions, metabolite affections, and the role of gut microbiota
during chicken gout.

Keywords: metabolomics; transcriptomic; microbiomes; torrelation analysis; nephropathogenic
infectious bronchitis virus

1. Introduction

Gout is a urate crystal deposition disease that occurs when supersaturation of individual tissues
with urate arises, leading to the construction of monosodium urate (MSU) crystals in and around the
joints, abdomen, and organs [1,2]. It is worth noting that in addition to its occurrence in humans,
gout is one of the common diseases that plague poultry and causes huge economic losses to the
poultry industry worldwide [3]. Avian gout is commonly divided into visceral gout and joint gout,
and the typical clinical pathology of visceral gout is hyperuricemia. According to reports, various
aviaries from all over the world have visceral gout, which has become one of the most commonly
diagnosed causes of fatality in poultry [4,5]. In the poultry industry, visceral gout can be caused
by many factors, including vitamin A deficiency, high dietary calcium, renal insufficiency, chicken
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astrovirus (CAstV), and NIBV [4,6,7]. Currently, NIBV that causes visceral gout in chicken has become
a research hotspot [6,8].

NIBV has become the most common IBV strain in the commercial poultry industry. It is a gamma
Coronavirus in the Coronavirus family that exhibit strong renal tropism and has become one of the
most familiar pathogens that induce visceral gout outbreaks [9–11]. Initially, some IBV strains have
been called nephropathogenic IBV because the starting respiratory infection was followed by a heavy
kidney infection. A large number of previous research findings indicate that clinical symptoms of
nephropathogenic IBV strains infection include increased water consumption, depression, watery
droppings, and significant mortality. Notably, necropsy of chicks that died during nephropathogenic
IBV infection showed enlarged and pale kidneys and monosodium urate crystal deposition in the renal
tubules and ureters [12]. According to histopathology, NIBV replicates on the epithelial surface of the
kidney and causes particle degeneration, vacuolation, and desquamation of the tubular epithelium,
as well as massive infiltration of heterophilic granulocytes in the stroma [13]. However, there is a
substantial lack of understanding of the pathogenesis of NIBV infection. In addition, it is well known
that the gut microbial community is closely associated with the progression of diseases, and Inoue
et al. also confirmed that hepatitis C virus infection is associated with gut dysbiosis [14]. In our
study, we focus on the cecum as organs of particular interest as they harbor the highest microbial cell
densities (up to 1011 cells g−1) and are significant sites for recycling of urea, water regulation, and
carbohydrate fermentations [15,16]. Therefore, we suspect that the gut microbiota may be associated
with the progression of visceral gout induced by NIBV infection.

Nowadays, omics technology is increasingly being used to understand intricate biological
systems and reveal the molecular characteristics behind complex cellular phenotypes [17,18].
Applications of omics platforms include the identification of genes (genomics), messenger RNA
(mRNA, transcriptomics), proteins (proteomics), and metabolites (metabolomics). Moreover, the
research of the gut microbiota (microbiomics) has brought increasing concern due to its important
affection for different diseases [19]. Many scholars have used multi-omics analysis to make great
progress in deciphering the pathogenesis of diseases, such as Alzheimer’s disease [20], familial type 1
diabetes [21], autoimmune diseases [22], and cardiovascular diseases [23]. However, to date, there has
been very few omics analyses for the study of poultry diseases, and in particular, as far as we know,
there is no omics analysis for the study of the pathogenesis of NIBV infection.

The antiviral and metabolic changes caused by viruses result in a highly complicated process
that requires the coordination of diverse intertwined signalling and metabolic pathways. Therefore,
a large-scale and comprehensive analysis of viral target tissues is needed to better understand the
pathogenesis of the NIBV infection. We first replicated the visceral gout model by infecting chickens
with NIBV and conducted an integrated transcriptomic, metabolomics, and microbiomics analyses.
The characterization of these identified genes, metabolites, and microbiota clearly reflected the
dynamic changes in the biological processes in chickens with NIBV infection. Overall, our research
comprehensively describes the host responses during NIBV infection and provides new clues for
further dissection of specific gene functions, metabolite affections, and the role of gut microbiota during
chicken gout.

2. Materials and Methods

2.1. Virus Strains

The virulent IBV strain that was used was the SX9 strain which was isolated and stored by the
College of Animal Science and Technology, Jiangxi Agriculture.

2.2. Experimental Design

Two hundred forty Hy-Line Brown variety birds (1-day-old; Guohua Co. Ltd., Nanchang, Jiangxi,
China) were stochastically split into two experimental rooms: A control room (Con, n = 120) and a
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diseased room (Dis, n = 120). Birds in each experimental room were randomly divided into three
subgroups (30 birds for each subgroup), with ad libitum access to food and water. Each chicken of Dis
groups was intranasally injected with 0.2 mL 105 median embryo lethal doses of strain SX9 at 28 days
of age [24], while the Con group intranasally received 0.2 mL of sterile physiological saline. At 38 days
of age, four chicken randomly chosen per subgroups were euthanized by carbon dioxide inhalation,
then dislocated their cervical vertebra. The samples in a group were pooled and dead birds were not
used for analysis. Ten serum samples were randomly collected from surviving chickens in the Con
and Dis groups before euthanasia that were used for uric acid test. Six biological replicates of kidney
samples were extracted from each group making a total of 12 samples that were used for GC–TOF/MS
analysis. Four biological replicates of kidney samples were collected from each group giving a total of
eight samples that were used for RNA-seq analysis. Six biological replicates of cecal contents from
each group were collected giving a total of 12 samples that were used for 16S rRNA gene sequencing
analysis (Figure 1a shows the experimental design).

2.3. Histopathology

The isolated kidney tissues were fixed by immersion in 10% neutral formalin at room temperature
for over 48 h. Tissues were then routinely processed; H&E staining was performed and a section per
chicken was observed under the optical microscope.

2.4. Metabolomics Analysis

Metabolite extraction, metabolite derivatization, metabolite detection, and data analysis followed
those of Yang et al. [25]. First, methanol (Vmethanol:Vchlorofrom = 3:1) was used as an extraction
liquid, and L-2-chlorophenylalanine (1 mg/mL stock in dH2O) was added as an internal standard.
The metabolites are then derivatized with the methoxy amination hydrochloride (20 mg/mL in
pyridine) and the STFA regent (1% TMCS, v/v). Finally, GC–TOF/MS analysis was performed using an
Agilent 7890 gas chromatograph system coupled with a Pegasus HT time-of-flight mass spectrometer.
The energy was –70 eV in electron impact mode. After 6.04 min of solvent delay, mass spectrometry
data were acquired in full-scan mode with an m/z range of 50–500 at a rate of 20 spectra per second.

Chroma TOF4.3X software (LECO Corporation, St. Joseph, MI, USA) and the LECO-Fiehn Rtx5
database were used for raw peak exacting, data baseline filtering and calibration, peak alignment,
deconvolution analysis, peak identification, and integration of the peak area. SIMCA14 software
package (Umetrics, Umea, Sweden) was used for further data analysis, including principal component
analysis (PCA) and orthogonal projections to latent structures-discriminate analysis (OPLS-DA).
In addition, commercial databases including Kyoto Encyclopedia of Genes and Genomes (KEGG,
http://www.genome.jp/kegg/) and National Institute of Standards and Technology (NIST, http://
www.nist.gov/index.html) were utilized to search for metabolic pathways. MetaboAnalyst (http:
//www.metaboanalyst.ca) was used for pathway enrichment analysis.

2.5. Transcriptomics Analysis

RNA preparation, library preparation, RNA-sequencing, and data analysis followed those of
Yang et al. [26]. First, total RNA was extracted from each kidney sample individually using TRIzol
reagent (Invitrogen, Burlington, ON, Canada). We further used the NanoDrop 2000 (Thermo, Waltham,
MA, USA) to measure the RNA concentration, and the Agilent Bioanalyzer 2100 system (Agilent
Technologies, CA, USA) to assess the RNA integrity. Library preparation was performed as described
by Li et al. [27]. Briefly, a total amount of 1 µg RNA per sample was used for the RNA sample
preparations. Sequencing libraries were generated using NEBNext UltraTM RNA Library Prep Kit
for Illumina (NEB, Ipswich, MA, USA) and index codes were added to attribute sequences to each
sample. The library fragments were purified with AMPure XP system (Beckman Coulter, Beverly, CA,
USA). At last, PCR products were purified (AMPure XP system) and library quality was assessed on
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the Agilent Bioanalyzer 2100 system. Finally, the constructed cDNA libraries were sequenced by an
Illumina Hiseq Xten platform.

Clean data of high quality were obtained from the raw data through in-house scripts by removing
those containing adapters or poly-N sequences. All clean reads were aligned to the reference genome
(https://www.ncbi.nlm.nih.gov/assembly/GCF_000002315.4/) using TopHat2 [28]. Cufflinks was used
to calculate and analyze the gene expression levels, and FPKM (fragments per kilobase of exon per
million fragments mapped) values of each gene were calculated based on the length of the gene and the
fragments count mapped to this gene. Differential expression genes (DEGs) analysis was performed
by using the DESeq R package (1.10.1). Only those genes with a FC (fold change) ≥ 2 and FDR (false
discovery rate) < 0.01 were defined as DEGs. Furthermore, gene ontology (GO) enrichment analysis of
DEGs was implemented by the GOseq R packages [29] and the enrichment analysis of DEGs in KEGG
pathways was performed using KOBAS software [30]. In addition, the target seven DEGs in response
to NIBV infection were chosen for validation using real-time quantitative PCR (RT-qPCR). The primer
pairs for the selected genes were designed using Primer 5 and are shown in Table S1.

2.6. Microbiomics Analysis

Total genome DNA from samples was extracted from the cecal contents using CTAB/SDS
method. DNA concentration and quality were determined and diluted to 1 ng/µL using sterile
water. The 16S rRNA genes of each sample V3–V4 region were amplified. The primer set corresponding
to primers 341F-806R with the unique barcode was applied for amplification (forward 341F:
CCTAYGGGRBGCASCAG and reverse 806R: GGACTACNNGGGTATCTAAT). All PCR reactions were
carried out with Phusion® High-Fidelity PCR Master Mix (New England Biolabs, USA). The PCR
products were detected on 2% agarose gel electrophoresis and bands of the desired size (approximately
400–450 bp) were chosen for further experiments. Sequencing libraries were generated using TrueSeq
DNA PCR-free sample preparation kit (Illumina, San Diego, CA, USA) and index codes were added.
Next, sequencing was performed on an Illumina HiSeq 2500 platform (Novogene Company, Beijing,
China).

Based on their unique barcode, the paired-end reads were granted to samples. Those files were
demultiplexed and quality filtered with quantitative insights into microbial ecology (QIIME) software
(version 1.7.0) [31]. The chimera sequences were removed by using UCHIME algorithm and then
the effective tags finally obtained [32]. Sequences were clustered to the same OTUs at 97% similarity
by Uparse software (Uparse v7.0.1001). Moreover, the Greengene database was used to annotate
taxonomic information and the multiple sequence alignment was conducted using the MUSCLE
software (Version 3.8.31). Further, OTUs abundance information was normalized and subsequent
analysis were all performed based on this output normalized data including alpha diversity, beta
diversity, and linear discriminant analysis (LDA) effect size (LEfSe) analysis [33].

Heatmap for metabolomics, transcriptomics, and microbiomics data was generated using the
pheatmap package. Corrplot package in R was used to visualize the correlations coefficient (Spearman
method). Availability of data and materials: RNA-seq raw data are accessible through NCBI’ database:
BioProject: PRJNA510170; 16S rRNA gene sequencing raw data are accessible through NCBI’ database:
BioProject: PRJNA510025.

2.7. Ethics Approval and Consent to Participate

The institutional animal care and use committee of Jiangxi Agricultural University approved these
animal experiments and all animal experiments adhered rigorously to the animal care guidelines of
Jiangxi Agricultural University (approval ID: JXAULL-2017003; approval date: 8 March 2017). All the
birds were sacrificed using carbon dioxide euthanasia, and all attempts were carried out to minimize
the suffering of the animals.

https://www.ncbi.nlm.nih.gov/assembly/GCF_000002315.4/
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metabolomics, and microbiomics. (b) Analysis by Kaplan–Meier curve of 10 dpi survival rate 
in NIBV-infected chickens and uric acid concentrations in the serum. (c) Gross lesions in the 
kidneys. Kidney tissue of an uninfected control chicken (left). Obvious enlargement and urate 
deposition in the kidney of a chick infected with NIBV at 10 dpi (right). (d) Histopathological 
changes in the kidney of chickens infected with NIBV (H&E staining). The black arrow shows 
the shedding of kidney tubular epithelial cells and the white arrow shows the interstitial 
expansion and prominent inflammatory cell infiltration. The black asterisk shows the brush 
border that was lost in some segments of proximal tubules. The black delimited area shows the 
loss of the kidney tubular structure. 

3.2. NIBV Infection Altered Metabolic Profiling in the Kidney of Chickens 
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GC–TOF/MS-based metabolomics method to examine metabolite alterations in the kidney. A 
total of 519 valid peaks were identified in the total ion current profiles. To compare the 
metabolite composition of the Con and Dis groups, PCA models were tested (Figure 2a). OPLS-
DA was conducted to determine whether NIBV infection influenced the metabolic pattern 
(Figure 2b) and a 7-fold cross validation was further applied to estimate the robustness and 
predictive ability to validate the model (Figure 2c). The results of PCA and OPLA-DA analysis 
showed that there was an obvious separation between the content of the Con and Dis groups, 

Figure 1. Changes in the kidney of chickens infected with nephropathogenic infectious bronchitis
virus (NIBV). (a) Experimental design, including the analysis of transcriptomics, metabolomics, and
microbiomics. (b) Analysis by Kaplan–Meier curve of 10 dpi survival rate in NIBV-infected chickens and
uric acid concentrations in the serum. (c) Gross lesions in the kidneys. Kidney tissue of an uninfected
control chicken (left). Obvious enlargement and urate deposition in the kidney of a chick infected with
NIBV at 10 dpi (right). (d) Histopathological changes in the kidney of chickens infected with NIBV
(H&E staining). The black arrow shows the shedding of kidney tubular epithelial cells and the white
arrow shows the interstitial expansion and prominent inflammatory cell infiltration. The black asterisk
shows the brush border that was lost in some segments of proximal tubules. The black delimited area
shows the loss of the kidney tubular structure.

3. Results

3.1. Clinical Signs and Pathology

The chicks inoculated with strain SX9 showed obvious clinical signs from 3 to 9 “day post-infection”
(dpi). The NIBV-infected chickens were listless, huddled together, and displayed ruffled feathers,
while no clinical symptoms similar to the above were observed in the Con group. The 10 dpi survival
rate of all NIBV-infected chickens under analysis was 80%, and the uric acid level in the serum of the
Dis group was much higher than that of the Con group (~1352 vs. ~85 µmol/mL, n = 10, p < 0.001,
Student’s t-test, Figure 1b). We observed that kidney lesions were present in all Dis group chickens
infected with SX9. At 10 dpi (mortality peak), the kidney parenchyma of the dead birds were pale,
swollen, and mottled (Figure 1c). Histological examination revealed remarkable injuries in the kidney,
including tubular epithelial cell detachment, loss of the kidney tubular structure, as well as interstitial
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expansion and prominent inflammatory cell infiltration (Figure 1d). These results indicate that the SX9
strain has strong renal tissue tropism and successfully replicates the chicken visceral gout model.

3.2. NIBV Infection Altered Metabolic Profiling in the Kidney of Chickens

To explore the metabolic pathway alterations associated with NIBV infection, we used a
GC–TOF/MS-based metabolomics method to examine metabolite alterations in the kidney. A total of
519 valid peaks were identified in the total ion current profiles. To compare the metabolite composition
of the Con and Dis groups, PCA models were tested (Figure 2a). OPLS-DA was conducted to determine
whether NIBV infection influenced the metabolic pattern (Figure 2b) and a 7-fold cross validation
was further applied to estimate the robustness and predictive ability to validate the model (Figure 2c).
The results of PCA and OPLA-DA analysis showed that there was an obvious separation between the
content of the Con and Dis groups, revealing significant changes in the concentrations of metabolites in
the kidney induced by NIBV infection. All samples fell within the 95% (Hotelling’s T-squared ellipse)
confidence interval.

The differential metabolites between Dis and Con groups were the key to explaining the occurrence
of gout in chickens under NIBV infection. A total of 160 metabolites displayed significantly different
levels based on VIP > 1 (variable importance for the projection, OPLS-DA model) and p-value < 0.05
(Student’s t-test). The lists of differential metabolites are shown in Table S2 and its volcano plot
are shown in Figure 2d. There were 90 annotated metabolites in all 160 differential metabolites,
and its categories are shown in Figure 2e. As Figure 2e shows, the differential metabolites were
mainly classified as amino acids, carbohydrates, fatty acids, and conjugates. Among those annotated
differential metabolite profiles which were displayed in heat maps (Figure S1), 65 metabolites were
significantly upregulated and 25 were significantly downregulated in the Dis group compared to the
Con group.

In addition, the pathway enrichment results are shown in Figure 2f. The analysis revealed that
the differential metabolites participated in six target pathways (p < 0.05), including valine, leucine and
isoleucine biosynthesis, arginine and proline metabolism, alanine, aspartate and glutamate metabolism,
D-glutamine and D-glutamate metabolism, aminoacyl-tRNA biosynthesis, and beta-alanine metabolism.
Among them, there are two pathways with an impact factor > 0, including valine, leucine and isoleucine
biosynthesis (impact value = 0.43), and arginine and proline metabolism (impact value = 0.17).
These pathways are related to amino acid metabolism and glycometabolism, which are involved
in protein synthesis and energy production, respectively. Moreover, metabolomics highlighted
N-formyl-L-methionine, a well-known agent for kidney injury for its effects on the increase of
the vascular tone/resistance and reduction of renal perfusion [34], as the most relevant metabolite
alteration in NIBV-infected chickens (VIP = 1.894). Undoubtedly, the uric acid level in the Dis group
was significantly upregulated compared with the Con group (VIP = 1.798, 4.62-fold).
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To study the gene expression alterations of chicken’s kidney under NIBV infection, cDNA 
libraries from two groups were subjected to Illumina sequencing. A total of 81.18 Gb clean data 
was obtained, and the Q30 base percentage of each sample was not less than 90.37%. From the 
mapping results, the mapping efficiency between the reads and the reference genome of each 

Figure 2. NIBV infection altered metabolic profiling in chicken kidneys. (a) Metabolic profile of
the Con and Dis groups visualized by principal component analysis (PCA). The points represent
the scores of biological replicates. (b) Metabolic profiles of the Con and Dis groups visualized by
orthogonal projections to latent structures–discriminate analysis. The abscissa t [1] P represents the
predicted principal component score of the first principal component, the ordinate t [1] O represents
the orthogonal principal component score, and the scatter shape and colour represent different
experimental groups. (c) Permutation test of orthogonal projections to latent structures-discriminate
analysis (OPLS-DA) model for groups Dis vs. Con. (d) Volcano plot of differential metabolites, each
point represents a metabolite and the point size represents the VIP value. (e) The category of the
differential metabolites. (f) Pathway analysis for groups Dis vs. Con; each bubble in the bubble diagram
represents a metabolic pathway.

3.3. NIBV Infection Altered Transcription Profiling in the Kidney of Chickens

To study the gene expression alterations of chicken’s kidney under NIBV infection, cDNA libraries
from two groups were subjected to Illumina sequencing. A total of 81.18 Gb clean data was obtained,
and the Q30 base percentage of each sample was not less than 90.37%. From the mapping results,
the mapping efficiency between the reads and the reference genome of each sample was between
75.59% and 79.29%. The detail of the sequencing and mapping results is provided in Table S3.

PCA analysis of RNA-seq replicates from the kidneys of Dis and Con group revealed a great deal
of variability (Figure 3a). A total of 2868 genes were differentially expressed in the chicken’s kidney
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with NIBV infection compared to Con group, in which 1521 genes were upregulated and 1347 genes
were downregulated. Then, we screened seven DEGs for RT-qPCR analysis to validate the accuracy of
the RNA-seq data, and the result (Figure 3b) showed that the general trends of the selected genes were
consistent which proved the reliability of our RNA sequencing profiling.

GO (http://www.geneontology.org) project was applied to explore the potential biological functions
of DEGs. In this study, the 20 most enriched GO terms classified by molecular function (MF), cellular
components (CC), and biological processes (BP) terms were listed in Figure 3c. Among them, heparin
binding, oxidoreductase activity, external side of plasma membrane, extracellular space, membrane,
integral component of membrane, oxidation-reduction process, and immune response were the
significantly enriched GO terms (padj < 0.05) in chickens with NIBV infection. To further study the
biochemical metabolic pathway and signal transduction pathways related to NIBV infection, KEGG
analysis and pathway enrichment analysis were conducted in the KEGG pathway database. There were
901 of the 2868 DEGs that were annotated to 177 pathways in KEGG analysis. The level-2 KEGG classes
are shown in Figure 3d, and the 11 significant enriched pathways (Corrected p-value < 0.05 as determined
by a Fisher’s exact test) are marked with red number. In environmental information processing
pathways which include cytokine–cytokine receptor interaction and cell adhesion molecules (CAMs)
were dramatically regulated. In cellular processes pathway, peroxisome was dramatically affected.
In metabolism pathways, metabolism of xenobiotics by cytochrome P450, drug metabolism-cytochrome
P450, pyruvate metabolism, arginine and proline metabolism, glycolysis/gluconeogenesis, and fatty
acid degradation were significantly regulated. In organismal systems pathways, intestinal immune
network for IgA production and Toll-like receptor signaling pathway were significantly regulated.
Furthermore, most of these pathways of the upregulated genes enriched were immune system-related
pathways, and “cytokine-cytokine receptor interaction” was the most represented pathway. Among
these pathways we found upregulated, “Toll-like receptor signalling pathway”, “NOD-like receptor
signalling pathway” and “RIG-I-like receptor signalling pathway” are pattern recognition signal
receptor pathways involved in innate immunity. Simultaneously, the transcriptome showed that the
“peroxisome” and amino acid metabolite pathways were suppressed in chickens infected with NIBV.
Based on the above results, we predicted a schematic diagram of important pathways for chickens in
the NIBV infection processes (Figure 3e).

http://www.geneontology.org
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Figure 3. Transcriptome analysis of chickens with NIBV infection. (a) PCA plot showing the distinction
between Dis and Con group based on gene expression. The blue and red triangles represent the mean
coordinates (center point) of the Dis and Con group, respectively. (b) RT-qPCR validation of differentially
expressed genes. (c) Gene ontology (GO) enrichment analysis of Differential expression genes (DEGs)
between Con group and Dis group shows the 20 most enriched GO terms * represents the significantly
changed GO terms with padj < 0.05 and the red bar is for highlighting. (d) Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway classification enrichment analysis of DEGs. The y-axis and x-axis
indicate the KEGG pathway and the percentage of annotated genes, respectively. The 11 significantly
enriched pathways are listed with red serial number. (e) The schematic diagram representing important
processes in chickens affected by NIBV infection, which activate innate immunity to antiviral infection.
(Signal 1) Toll-like receptor (TLR) signalling is activated by the nucleic acid. TLR7 which is located
in endosomal membrane induces production of type I interferon and proinflammatory cytokines via
MyD88-NF-κB/IRF signalling pathway. (Signal 2) RIG-I-like receptor signaling is activated by dsRNA
intermediates produced during NIBV replication. MDA5 recognizes a complementary set of cytosolic
viral dsRNA ligands which can also activate NF-κB signalling. (Signal 3) NOD-like receptor (NLRs)
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signalling is activated by monosodium urate (MSU) and reactive oxygen species (ROS). The activation
of TLRs and the ROS accumulation activates the NLRP3 inflammasome, resulting in proteolytic
cleavage of caspase-1 and the maturation of IL-18 and IL-1β, and MSU has been identified to activate
inflammasome complex.

3.4. NIBV Infection Resulted in Gut Microbiota Dysbiosis

Considering that the intestinal tract is an important organ for lowering serum uric acid
concentrations, 16S rRNA sequencing was performed and demonstrated marked alterations of
the gut microbial communities in the Dis group. The rarefaction analysis curves for each group were
near saturation, revealing that the sequencing data had a great quality and that certainly few new
species were present (Figure S2). NMDS (nonmetric multidimensional scaling, Figure 4a), ANOSIM
(analysis of similarity, Figure 4b), and PCA analysis (Figure 4c) confirmed the significant separation of
the groups, indicating clear differences in microbial composition in the Con and Dis groups.

The top 10 microbes at the phylum (Figure 4d), family (Figure 4e), and genus (Figure 4f) levels
are shown and indicate significant variations of the microbial community. Analyses of the microbiota
composition at the phylum level showed a dominance of Firmicutes, Proteobacteria, and Bacteroidetes in
both groups. We observed a decrease in the family Bacteroidaceae (p = 0.039, t-test), family Lactobacillaceae
(p = 0.031, t-test) and the genus Bacteroides (p = 0.039, t-test), genus Lactobacillus (p = 0.031, t-test),
genus Candidatus Arthromitus (p = 0.012, t-test), and genus Turicibacter (p = 0.009, t-test) in the Dis
group (Figure 4g,h). LEfSe was performed to identify significant microbiota composition differences
between the groups. Seven differentially represented core major groups were identified (Figure 4i,j).
Differentially abundant phylum detected showed that Proteobacteria (LDA = 4.7644853231) phylum
was most dominantly present in Dis group. At the genus level, the microbiota of the Con group was
enriched with Bacteroides (LDA = 4.80848153017) from the Bacteroidetes phylum and Lactobacillus (LDA
= 4.22406025945) from the Firmicutes phylum. At the species level, the microbiota of the Con group
was enriched with Bacteroides vulgatus (LDA = 4.79658975077) from the Bacteroidetes phylum.

3.5. Correlation Analysis of Metabolomics and Transcriptomics Data

The above data describe that NIBV infection alters kidney gene expression and metabolic pathways
(Figure 5a). We filtered out five overlapping pathways in the transcriptome and metabolome pathway
enrichment analysis, including valine, leucine and isoleucine biosynthesis, arginine and proline
metabolism, taurine and hypotaurine metabolism, alanine, aspartate and glutamate metabolism,
and glutathione metabolism. In addition, the DEGs in significantly enriched pathways associated with
innate immunity and differential metabolites with VIP > 1.8 were also chosen for correlation analysis
(Tables S4 and S5, respectively). Differences in those pathways—associated with DEGs and differential
metabolites were shown with heatmap in Figure 5b. Then, we analyzed the Spearman correlation
between genes and metabolites in those pathways, and the result is shown in Figure 5c. As shown
in Figure 5c, there was a positive correlation between Tlr7 (TLR, Toll-like receptor) and proline (R = 1,
p = 0), isoleucine (R = 0.9524, p = 0.0098), threonine (R = 0.9762, p = 0.0035), and valine (R = 0.9762,
p = 0.0035). Conversely, strong negative correlations were found between glutathione synthetase (GSS)
and glutamine (R = −1, p = 0). Interestingly, we observed that most genes related to innate immune
responses had strong positive correlations with differentially abundant metabolites, such as amino
acids and fatty acids.
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Figure 4. NIBV infection resulted in gut microbiota dysbiosis. (a) Nonmetric multidimensional scaling
(NMDS) showing the difference in bacterial communities according to Bray–Curtis distance. (b) Analysis
of similarity (ANOSIM) analysis of the beta diversity of the samples significantly separating the groups
when R > 0 and p < 0.05. (c) Principle coordination analysis (PCoA) plot of similarities between the
different groups. The top 10 relative abundances of bacteria at the phylum (d), family (e), and genus
(f) levels in cecal content samples from the Con and Dis groups. The difference in species analysis
between the Con and Dis groups at the family (g) and genus (h) levels according to a t-test. (i) The
linear discriminant analysis (LDA) value distribution histogram shows species with an LDA ≥ 4.
(j) Cladogram showing the most differentially abundant taxa identified by linear discriminant analysis
effect size (LEfSe).
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Figure 5. The significant correlation between DEGs, differential metabolites, and discriminative features
of gut microbiota. (a) Overlap enriched pathways between metabolomics and transcriptomics. (b) Heat
map of DEGs and metabolites used for correlation analysis. Heat map of DEDs and differential
metabolites involved in overlap pathway were shown in the grey box, respectively. (c) Spearman’s
rank correlation analysis. The color indicating the sign of the correlation, and the shape indicating the
strength (narrower ellipses = higher correlations). The red bar is for highlighting. (d) Heat map of the
discriminative features of gut microbiota and correlation plot of spearman correlation analysis between
differential metabolites and discriminative features of gut microbiota.
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3.6. Correlation Analysis of Metabolomics and Microbiomics Data

The gut microbiota is deliberated a massive “organ” able to perform complex functions and
thereby produce a myriad of differentially abundant metabolites. To investigate the functional
correlation between the gut microbiome changes and host metabolome alterations, a correlation plot
was visualized by calculating Spearman’s correlation coefficients (Figure 5d). The result indicated
that clear correlations could be identified between altered metabolic profiles and modulated gut
microbiomes (Table S6). Of particular note, some metabolites, including trans-4-hydroxy-L-proline,
guanine, and 3,6-anhydro-D-galactose, which decreased in the kidney of NIBV-infected chickens,
were negatively correlated with the presence of the phylum Proteobacteria. Furthermore, other
metabolites, including canavanine, 2,4-diaminobutyric acid, 5,6-dihydrouracil, malonamide, thymine,
phenylalanine, 1,3-diaminopropane, 4-acetamidobutyric acid, proline, threonine, isoleucine, valine,
and oxalacetic acid, which increased in the kidney of NIBV-infected chickens, were positively correlated
with the presence of the phylum Proteobacteria. These observations indicated that the significantly
modulated gut microbiota was correlated with host metabolic disorders.

4. Discussion

In our study, the three pathways included in the activation of the innate immune system,
the Toll-like receptor signalling, RIG-I-like receptor signalling, and NOD-like receptor signalling
pathways, that are the most important three parts of the pattern-recognition receptor (PRR) signalling
pathway are usually activated in response to infections to stimulate inflammatory responses [35–37].
In the Toll-like receptor signalling pathway (Figure 3f, Signal 1), a series of upregulated genes were
noticed, including TLR4, TLR7, MyD88, IRF5, TRAF3, and IRF7. It was already reported that TLR7
primarily recognizes single-stranded RNA (ssRNA) sequences of RNA viruses that enter endosomes
by endocytosis [38–40]. NIBV used in this experiment is a single-stranded positive sense RNA virus.
Thus, the expansion of TLR7 is pivotal for the recognition of NIBV and variable functions of the
Toll-like receptor signalling pathway. Moreover, a number of viral glycoproteins have been shown to
act as viral PAMPs (Pathogen-associated molecular pattern) that bind to and activate TLR4, leading to
IFN-β and/or proinflammatory cytokine expression (such as SARS coronavirus) [41]. Ru Liu-Bryan’s
study has established that host expression of TLR2, TLR4, and their intracellular adapter protein
MyD88 is a major mediator of MSU crystal-induced inflammation [42]. This explains the reason for
the increase in Tlr4 transcription levels in this experiment. In addition, the transcriptomic analysis
showed that NIBV infection also activated the RIG-I-like receptor signalling pathway (Figure 3f, signal
2), which included the transcriptional upregulation of genes such as MDA5, IPS-1, TRAF3, and IκB.
This induction may be due to MDA5 acting as a double-stranded RNA (dsRNA) sensor to trigger
an innate immune response against viral infection [43–45], while coronaviruses can produce dsRNA
intermediates during replication [46]. RLRs can not only be expressed in cells infected with various
viruses but also directly recognize and perceive virus products and virus particles present in the cytosol
outside of the endosomes [47]. Therefore, we suspect that the RIG-I-like receptor signalling pathway
has a greater role than Toll-like receptor signalling in recognizing NIBV infection. The activation of
the Toll-like receptor signalling and RIG-I-like receptor signalling pathways results in the production
of chemokines and other cytokines that induce a proinflammatory response and tissue destruction.
In our study, several features that are familiar to chickens infected with NIBV are consistent with
the immunopathological disease. These features include the pathological damage of kidney and the
presence of increased transcription of chemokines and other cytokines, such as IL-8 (interleukin 8),
IL-18 (interleukin 18), and TGF-β (transforming growth factor β).

Peroxisomes act to eliminate a microbial infection by modulating the canonical innate immunity
pathways through ROS signalling [48]. Several enzymes with antioxidant activity in the peroxisome
are involved in neutralizing ROS to protect the cells from ROS damage. Among these enzymes, catalase
(CAT), superoxide dismutase 1 (SOD1), peroxiredoxin 5 (PRDX5), glutathione S-transferase kappa
1 (GSTK1), dehydrogenase/reductase member 4 (DHRS4), and epoxide hydrolase 2 (EPHX2) are
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included [49,50]. Multiple viruses have been shown to use different mechanisms to reduce peroxisome
numbers or interfere with their functions. In our study, the “peroxisome” was the most important
pathway according to the downregulated gene enrichment analysis, which includes CAT, SOD1,
DHRS4, and EPHX2 that belong to the peroxisome antioxidant defence system, while the catalase
activity was decreased both in kidney and serum (Figure S3). Thus, decreased abundance and/or
impaired function of the peroxisome could potentially cause endogenous elevation of ROS. ROS may
either straightly trigger NLRP3 inflammasome assemblage or be indirectly sensed through cytoplasmic
proteins that modulate inflammasome activity (Figure 3f, signal 3). The NLRP3 inflammasome senses
pathogens or danger signals to promote the maturation of cytokines such as IL-18 [51]. The release
of active IL-18 engages IL-18 receptor-harbouring cells and promotes inflammatory responses [52].
In addition, uric acid has been reported as another well-established activator of NLRP3 that is usually
generated via xanthine oxidase (XOD), accompanying the generation of O2

•− [53,54]. Consistently,
in this study, we detected a significant increase in XOD activity in serum (Figure S3) and a significant
increase in serum uric acid levels (Figure 1b). These results indicate that NIBV infection can activate
the inflammatory response by inducing severe ROS accumulation.

The kidney is responsible for the elimination of 70% of the daily UA production [55]. ATP-binding
cassette transporter, sub-family G, member 2 (ABCG2) is a high-capacity urate exporter that is located
in the brush border membrane of kidney proximal tubule cells (S3 segment). ABCG2 dysfunction
results in extra-renal urate under-excretion and is a common mechanism of hyperuricemia [56–58].
In the present study, the ABCG2 mRNA was downregulated in the model group chicken kidneys,
partially explaining the significantly increased uric acid levels caused by NIBV infection. In addition to
being caused by insufficient urate excretion, hyperuricemia can also be caused by excessive production
of uric acid [59]. We found a high level of glutamine, which enter the purine metabolic pathway as a
raw material for uric acid synthesis. The high level of glutamine can be explained by two reasons. First,
the lack of mRNA abundance of the gene GSS in the kidney tissue of the model group inhibited the
conversion of glutamine to glutathione. A significant negative correlation between GSS and glutamine
has confirmed this finding. Second, the transcription level of the gene glutamic pyruvate transaminase
2 (GPT2) in the model group chickens’ kidneys increased significantly. GPT2 is a pyridoxal enzyme
that promotes the conversion of α-ketoglutarate to glutamate [60]. Of note, α-ketoglutarate is an
intermediate in the TCA cycle, and glutamate can be reversibly converted to glutamine by glutamine
synthetase. Together, these data point to key genes and metabolites related to elevated uric acid
synthesis, which provides us with new insights into host response to NIBV infection.

The present study highlights the correlation between differential expression of genes and differential
abundance of metabolites in significantly enriched pathways, and the results showed that those
differentially abundant metabolites that map in amino acid metabolism pathways have strongly
positive correlations with DEGs related to innate immune responses. It is well known that organisms
fuel or instruct the immune response to pathogen threats by modulating metabolic pathways [61].
Innate and acquired immune systems are regulated by a highly interactive network of chemical
communications, which include the synthesis of the antigen-presenting machinery, immunoglobulins,
and cytokines. This network is highly dependent on the sufficient availability of amino acids. Thus,
amino acids affect immune responses either directly or indirectly through their metabolites [62]. In our
study, the correlation analysis highlighted a significant positive correlation between Tlr7 and proline,
isoleucine, threonine, and valine. According to reports, isoleucine could maintain the development
of immune organs and cells and stimulate the secretion of immune molecule substances in humans
and animals [63,64], valine could improve dendritic cell function [65], and it has been proved in vitro
that threonine plays a key role in lymphocyte proliferation and immunoglobulin production [66].
We observed an increase in the level of amino acids enriched in proline, leucine, and isoleucine
biosynthesis pathway, including isoleucine, valine, and threonine. Therefore, changes in these amino
acid metabolism pathways may occur through the activation of innate immunity to enhance the body’s
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antiviral response. Although there are many studies on amino acids and immunity, the modulation of
amino acid metabolism in innate immune responses is still poorly known and deserves further study.

Previous research has confirmed that the dysfunction of the gut microbiome is tightly associated
with kidney and liver diseases, including liver cirrhosis [67], liver cancer [68], and chronic kidney
disease [69]. The gut microbiome incorporates a wide variety of commensal microbiota and has a
large effect on the health of individuals. A community-wide effect involving the gain and loss of
microbial populations and changes in general metabolic functions always occurs under pathological
conditions. Our results showed that the abundance of Bacteroides, Lactobacillus, and Bacteroides vulgatus
were significantly reduced in the cecal microbiota of NIBV-infected chickens based on LEfSe analysis.
Similar to many other Bacteroides species, especially Bacteroides vulgatus which was shown to promote
intestinal homeostasis, the Bacteroides vulgatus-mediated induction of semimature dendritic cells is
associated with inflammation silencing [70,71]. Thus, decreased abundance of Bacteroides vulgatus
promotes intestinal flora imbalance and activation of the immune system. Furthermore, it is well
accepted that Lactobacillus may lower serum uric acid levels by reducing intestinal absorption of purines
in humans [72]. Therefore, a decrease in the abundance of Lactobacillus in the caecum of the model
group infected with NIBV further promoted an increase in uric acid levels in serum. The results of our
correlation analysis further confirm this point, that is, the negative relationship between the abundance
of Bacteroides vulgatus, Lactobacillus and the uric acid concentration. However, the mechanism of
NIBV infection leading to a decrease in their abundance still needs further study. Taken together,
multitudinous studies to date endorse the concept that a bloom of Proteobacteria in the gut reflects
gut dysbiosis or an unstable gut microbial community [73]. In view of balanced gut microbiota with
high stabilization that has symbiotic relationships with the immune system of the host, which is
capable of suppressing the uncontrolled expansion of Proteobacteria, the increase in the abundance of
Proteobacteria in this experiment may be closely related to the immune and metabolic changes caused
by NIBV infection.

This report is the first time that multi-omics approach was employed to profile the metabolic
changes and immune responses in kidney, as well as the effects on the intestinal microbiome during
NIBV infection. Our results showed that NIBV significantly increased uric acid synthesis, inhibited
the function of peroxisomes, and significantly elevated the pattern recognition receptor signalling
pathways. In summary, our study comprehensively describes the host responses during NIBV infection
and provides new clues for further dissection of specific gene functions, metabolite affections, and the
role of gut microbiota during chicken gout.
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Table S2: Differentially abundant metabolites identified by GC–TOF/MS. Significant differences were declared at
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