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A B S T R A C T   

Synthetic lethal (SL) pairs are pairs of genes whose simultaneous loss-of-function results in cell death, while a 
damaging mutation of either gene alone does not affect the cell’s survival. This makes SL pairs attractive targets 
for precision cancer therapies, as targeting the unimpaired gene of the SL pair can selectively kill cancer cells that 
already harbor the impaired gene. Limited by the difficulty of finding true SL pairs, especially on specific cell 
types, current computational approaches provide only limited insights because of overlooking the crucial aspects 
of cellular context dependency and mechanistic understanding of SL pairs. As a result, the identification of SL 
targets still relies on expensive, time-consuming experimental approaches. In this work, we applied cell-line 
specific multi-omics data to a specially designed deep learning model to predict cell-line specific SL pairs. 
Through incorporating multiple types of cell-specific omics data with a self-attention module, we represent gene 
relationships as graphs. Our approach achieves the prediction of SL pairs in a cell-specific manner and dem-
onstrates the potential to facilitate the discovery of cell-specific SL targets for cancer therapeutics, providing a 
tool to unearth mechanisms underlying the origin of SL in cancer biology. The code and data of our approach can 
be found at https://github.com/promethiume/SLwise   

1. Introduction 

Over the past decade, precision medicine has gained widespread 
acceptance as a concept for developing targeted therapies based on in-
dividual biological background. Identification of molecular biomarkers 
is now a common practice in clinical studies, especially in the field of 
cancer therapy. Synthetic lethality (SL), where simultaneous inactiva-
tion of a gene pair causes cell death, is considered to be of significant 
importance in cancer treatment. Cancer cells [1] often have a large 
number of damaging mutations and gene replication errors that are not 
present in normal cells. If the corresponding SL gene pair of a cancer cell 
is found as a target, it is possible to precisely kill tumors with the specific 
mutation without damaging healthy cells. The SL mechanism [2] has the 
potential to be utilized in precision, anti-cancer drug development. It 

can be exploited for therapeutic purposes, as targeting SL interactions 
can selectively kill cancer cells bearing multiple genetic alterations [3]. 
PARP inhibitors, such as olaparib, niraparib, rucaparib, and talazoparib, 
have been approved for various cancers based on the SL interaction 
between PARP and BRCA, providing significant benefits to patients in 
clinics [4–8]. The success of these inhibitors provides sufficient 
encouragement for the therapeutic application of the SL interactions. 
Besides, inhibitors of ATR, WEE1, CHK1, and mTOR, the SL partners of 
tumor suppressor gene TP53, have shown efficacy in clinical develop-
ment [9–11]. Inhibitors of PRMT5 and MAT2A, the SL partners of MTAP 
[12] are also in clinical trials (https://clinicaltrials.gov/). The avail-
ability of high-throughput genomics data and therapeutic agents makes 
cancer an ideal field for the study of precision medicine, which matches 
a patient’s genetic background with the selection of target-oriented 
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drugs. However, identifying SL pairs with large scaled in vitro experi-
mental screening is time-consuming and labor-intensive. Thus, an ac-
curate in silico predictor for SL pairs is deemed necessary [13]. 

Considering the limitations of experiments and the complexity of the 
SL mechanism, researchers have undertaken efforts to develop compu-
tational models for SL prediction in a more efficient manner. Machine 
learning (ML) and deep learning (DL) methods can effectively integrate 
multi-dimensional biological data such as paralog data [14], mutation 
patterns [14,15], expression profiles [16] and protein-protein interac-
tion networks (PPINs) [17] etc., and then perform feature learning 
through parameter fitting. These methods distill decisive correlations 
from the comprehensive information data for reliable SL prediction. 
Currently, there are two major approaches that use deep learning to 
predict synthetic lethality and both of them have delivered some 
promising results in predicting synthetic lethality. The first one focuses 
on identifying synthetic lethal relationships between gene pairs via 
analyzing the differences between positive and negative gene pairs. The 
GRSMF model [18] uses known SL interactions to learn the association 
representation and functional similarity from Gene Ontology (GO) to 
predict potential SL interactions in a pan-cancer cell manner. This is 
done by applying the information provided by known SL interactions 
and gene functional annotations. The SL2MF model [19] uses the SL 
interactions with additional GO similarity matrix and PPI similarity 
matrix as supporting information. It leverages the similarity in the 
network representation when two genes share similar functions. The 
NSF4SL model [20] includes a strategy for enhancing gene representa-
tion by incorporating both global and local information. The model uses 
two branches of a contrastive learning network to capture the complex 
characteristics of SL interactions. All the predicted SL pairs were ranked 
and compared with known SL pairs to evaluate the model’s prediction 
power. 

The second approach models the cell system as a graph network, 
using omics data and other relevant information to establish a network 
of gene relationships. Potential synthetic lethal pairs can be identified 
based on their network characteristics. In recent years, graph neural 
networks (GNNs) have been proven superior in link prediction. The 
KG4SL model [21] is the first one to integrate a knowledge graph and 
GNN for the prediction of SL pairs. The model introduces additional 
information besides genes, such as molecules, diseases and biological 
processes, to improve the prediction performance of the model. The 
GCATSL model [17] introduces the Graph Attention Network (GAT) 
[22] model to predict SL pairs. The GAT model captures the local and 
global features of each gene node, and uses additional feature data, such 
as PPI and GO terms, to weight and sum specific feature representations. 
This results in the reconstruction of a predicted probability matrix. The 
MGE4SL model [23] uses extra data from sources such as Corum, 
Reactome, KEGG, and STRING. They employ a Graph Convolutional 
Networks (GCN) [24] encoder to obtain feature representations of the 
gene nodes and their neighboring nodes. It combines the features of SL 
pairs and additional knowledge graph features to obtain a mixed matrix 
representation of all gene information. The SLMGAE model [25] treated 
SL pairs as the main graph and the other data sources (e.g., PPI, GO, etc.) 
as the support view. The implementation of the self-attention mecha-
nism by assigning a randomly initialized and normalized weight matrix 
to each view, which makes each view adaptively learn the relationship 
between features. However, due to the uncertainty of the weight matrix, 
the association between features becomes scattered when more features 
are introduced, making it challenging to incorporate additional biolog-
ical characteristics for genes or cells. 

The context of species, tissue types, cell types and cellular conditions 
determines the SL interaction. This complex phenomenon known as the 
context-specific or context-dependent of SL pairs. Theoretically, by co- 
inactivating a cancer specific SL pair, a normal tissue can maintain its 
fitness and resist malignancy, as the cancer cells are selectively killed by 
the specific lethal effect. This might be dependent on certain intrinsic 
conditions such as the heterogeneity of different cell types, hypoxia, 

external disturbances which can result in specific genetic interaction 
networks [11,26]. Thus, the synthetic lethal effects will vary depending 
on the tumor cells or cell lines. Besides, targeting tumor-specific or 
cell-line specific SL pairs could help overcome the resistance to synthetic 
lethal drugs that target heterogeneous tumors as a whole, and has the 
potential for treating tumors with various complex conditions in future. 
Only few computational methods exist that are able to predict 
cell-specific SL pairs. EXP2SL [15] is a semi-supervised cell-specific SL 
pairs predictor utilizing L1000 gene expression profiles. Each gene is 
represented by a 978-dimensional z-score of the shRNA perturbation 
profile. The extracted features using MLP layers for given gene pairs are 
concatenated to predict the SL confidence score. In the inference phase, 
genes with perturbation profile data are the only ones that can be used to 
make predictions. MVGCN-iSL [27] applies multi-view GCN model to 
predict cell-specific SL pairs. Several cell-independent networks data, 
cell-dependent gene expression data and SL pairs information are uti-
lized. The cell-specific relationship between genes is only provided by 
cell-specific SL labels, which has shown to be the most informative. 

Despite having high prediction scores when using data from SL pairs 
database, the performance of state-of-the-art (SOTA) models may not 
generalize well on cell-line specific SL pairs. It remains challenging to 
identify new, robust cell-line specific SL pairs. Several studies rely on 
perturbation data, which is experimentally costly given the enormous 
number of gene sets and cell lines involved. It is also difficult to 
generalize the results of perturbation experiments to all genes for all cell 
lines. Additionally, variations in tumor cell mutation profiles exist 
among different clinical patients, it is deemed impractical to train a 
model for every single cell line in clinical practice. In this study, we have 
developed a computational tool to predict cell-specific SL pairs using 
cell-line specific omics data as input. Our approach employs a graph- 
based representation technique to represent the inter-relationship be-
tween genes comprehensively. Additionally, we incorporate a self- 
attention mechanism, which allows our model to identify the most 
relevant parts of the input data. We demonstrate that our predictor has 
the potential to be applied to diverse cancer cell-lines. Furthermore, we 
have evaluated our model on a cell-line transferable study, and 
demonstrate the model can generalize to new cell-lines and accurately 
predict SL pairs in unknown cell-lines. 

2. Materials and method 

2.1. Data pre-processing 

To predict cell-line specific SL pairs, we took individual cell-line 
multi-omics data as inputs. We also incorporated prior known SL 
mechanisms in our model to take advantage of their complementary 
strengths. Specifically, we leveraged paralog genes, which often perform 
similar functions but exhibit redundancy that can be exploited for tar-
geted therapy when lost in tumors. We also utilized mutually exclusive 
mutation patterns, which suggest potential SL interactions between 
incompatible driver mutations. Moreover, integrating high-throughput 
CRISPR knockout screens with knowledge of low background gene 
expression levels provides another useful insight for identifying SL pairs. 
To capture the dynamic relationships between genes in specific cellular 
contexts, we incorporated data from the L1000 Connectivity Map, which 
tracks expression changes in response to perturbations to build 
comprehensive cellular interaction networks. By combining L1000 data, 
gene effect scores (ES) data, the exclusive mutation (EM) patterns and 
paralogs, our integrative models aim to reliably identify synthetic lethal 
gene relationships by accounting for cellular context as well as genomic 
and functional characteristics. 

The 36600 paralog pairs were obtained directly from the supple-
mentary table S8 of Kegel et.al. [16]. For the L1000 data, we utilized 
level 5 data directly downloaded from the LINCS L1000 project [28]. 
The original dataset was transformed into a 12328 × 238351 matrix, 
with each row representing a gene and each columns represented the 
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normalized expression fold change values for that gene after a pertur-
bation compared to control, across various cell lines. Using this matrix 
along with the level 5 annotation data, we integrated CRISPR gene 
knockout data [29] and focus on the absolute fold change values 
exceeding 1.5. In our post-processed data, each columns represents the 
cell-lines, the target genes, the perturb genes, and the fold change 
values. 

Our ES data combined the gene effect score and gene expression 
data. The gene expression profiles for the cell-lines were retrieved from 

the public 22Q2 dataset available through the DepMap portal [30]. The 
gene effect score originated from CRISPR knockout screens conducted 
by Broad’s Project Achilles and Sanger’s SCORE projects [31–33], which 
reflect the normalized impact of knocking out a specific gene on a 
certain cell-line. Negative scores indicate inhibition and/or death of cell 
growth following gene knockout, scores lower than − 0.5 indicating 
depletion on most cell-lines. For each cell-line, we computed z-scores for 
both gene expression data and gene ES using all genes. We then iden-
tified genes with low expression or low ES for each cell-line, defined as 
genes with expression values < 1 and expression z-scores < − 1.28 
(corresponding to the lowest 10% of the standard normal distribution), 
or with ES lower than − 0.5 and gene effect z-scores lower than − 1.28. 

To identify significant mutually exclusive mutation patterns for all 
tested gene pairs in each cell-line, we utilized somatic mutations data 
from the corresponding TCGA cohorts accessed through the cBioPortal 
database (https://www.cbioportal.org/). We employed a weighted 
sampling-based approach, called WeSME [34], to identify significant 
mutually exclusive gene pairs. After creating a binary gene-sample 
mutation matrix for the same tumor cohort by recording whether a 
sample had one or more non-synonymous mutations in a certain gene, 
we calculated the mutation frequencies of samples, and estimating a null 
distribution of the mutation profiles of a gene by conducting a simula-
tion 1000 times based on the mutation frequencies of samples. We 
deemed gene pairs with p-values less than 0.05 to be mutually exclusive. 
As the final output, we generated a binary matrix to indicate whether 
each gene pair exhibited significant mutual exclusivity statistically. A 
value of 1 in this matrix signifies the gene pair is mutually exclusive, 
while 0 indicates the pair does not. 

GEMINI, a variational Bayesian method [35], was applied to 
generate the ground truth for our model. It was utilized to identify lethal 
interactions from high-throughput CRISPR-based combinatorial 
perturbation experiment results [36–39]. The sensitive interaction score 
was generated from GEMINI for each gene pair and the false discovery 
rate (FDR), sensitivity scores, and p-values were applied with 0.05 as 
cutoff for the final ground truth of positive SL pairs. Those pairs with 
negative SL scores and among the bottom 50% were used to define the 
negative ground truth. To address the imbalance between the positive 
and negative SL pairs for each cell-lines, we randomly selected a subset 
of the majority class with an equal number of examples as the minority 
class to ensure both positive and negative pairs were equally sampled 
during training and model evaluation. We employed FDR, p-values, and 
sensitive scores to identify positive labels from GEMINI calculation and 
integrated all the results as positive samples. Finally, we obtained 173, 

Fig. 1. The framework of our method. The SLwise model incorporates a multiple graph learning approach to integrate diverse cell-specific omics data. Individual 
graph neural networks are first applied to each omics data (e.g. ES, paralogs). Two layers of GraphSAGE networks are utilized to generate node embeddings by 
aggregating neighbor features. An attention mechanism then combines the omics embeddings into an integrated representation. These node embeddings are fed into 
a deep neural network to make SL predictions. 

Table 1 
List of technical terms, symbols and notations used in the paper.  

Term or Symbol Description / Definition 

Gem Graph representation of mutually exclusive genes 
Ges Graph representation of gene low expression or low effect 

scores 
Gpar Graph representation of gene paralog 
Gfc Graph representation of L1000 perturbation fold change 

expression 
GSL Graph representation of gene pair’s SL label for input 
V = {v1 ,v2,…,v|V|} the set of feature vectors of genes (nodes) 
E =

{
eij
⃒
⃒(i, j) ∈ V× V} the set of feature vectors of gene pairs (edges) 

h0
v or hT

v 
the genetic representation 

αl The SL label of a gene pair 
âl the predicted SL score of a gene pair 
A = {α1,α2 ,α3,α4,…,αl ,

…}

the batch of label of gene pairs 

Â = {â1, â2, â3, â4,…,

âl ,…}

the batch of predicted score of gene pairs 

k the iteration number of graph convolutional network 
L1000 L1000 is a part of the Library of Integrated Network-Based 

Cellular Signatures (LINCS) Program. The LINCS L1000 
project has collected gene expression profiles for thousands 
of perturbagens at a variety of time points, doses, and cell 
lines. 

Paralog Paralogs are genes that are related to each other within the 
same genome, and they arise from a gene duplication 
event. 

Gene effect score A gene effect score is a measure of the effect size of 
knocking out a gene, normalized against the distributions 
of non-essential and pan-essential genes. 

Exclusive mutation 
pattern 

Also known as mutual exclusivity. It is when genetic 
changes in a group of genes don’t usually happen in the 
same sample. This can indicate alternative tumor functions 
or adverse effects of co-occurrence. 

Transformers A deep learning architecture that is made up of layers 
based on attention mechanisms  
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130, and 1345 positive samples and 1446, 28, and 2820 negative sam-
ples in HT29, A375, and A549 respectively. We balanced the negative 
and positive samples and partitioned the dataset into a training set 
(80%) and a validation set (20%), and then used four groups for training 
and one group for testing. The metric for evaluating multi-omics data 
and model architectures is the average performance of all the folds. In 
addition, we used SL pairs identified in recent years (from 2018 to 2021) 
in the same cell-line as an external test set to validate the model’s ability 
to make specific cell-line predictions. 

2.2. Graph-based neural network 

2.2.1. Overview 
The prediction task of SL interactions can be represented as a matrix 

completion task, which aims to predict unobserved interactions. The 
interactions between and within the different omics levels, such as ge-
nomics, transcriptomics, proteomics, and metabolomics, form vast and 
complex networks, which are challenging to understand. The graph 
neural network, on the other hand, is well-suited to handle such type of 
non-Euclidean data. This makes it an ideal tool for analyzing and un-
derstanding the complex network of interactions within the omics levels. 
Here, we presented a graph-based model for SL prediction. The frame-
work of our approach is illustrated in Fig. 1. It uses graphs generated 
from multiple biological data of gene and cell information, with the SL 
graph serving as the reference in training process. To generate relevant 
features, we employ various graph encoders to extract features that take 
different perspectives on the data, and utilize a self-attention mechanism 
to integrate all the reconstructed graphs. This is then followed by using a 
multi-layer perceptron (MLP) for SL pair prediction. In following sec-
tions, each module in our approach is detailed. All symbols and nota-
tions used in this paper have been summarized in Table 1, along with 
several technical terms and concepts used throughout the document, 
which provides a quick reference for understanding. 

2.2.2. Graph neural network for cell specific feature extraction 
To better understand the relationship between genes in distinguished 

cells, we applied multi-omics data that are converted to a graph repre-
sentation Gem, Ges, Gpar, and Gfc respectively. We first convert the omics 
data into a graph representation, in which G = {v1, v2,…, v|V|} is the set 
of the feature vectors of genes, E =

{
eij
⃒
⃒(i, j) ∈ V × V} is the set of feature 

vectors of a pair of genes, and eij ∈ {0,1}m where m is the number of cell- 
line genes and 1 indicates the whether the value of genei and genej in 
those data matrices is 1. 

We built a two-layer GraphSAGE [40] module with a fixed number of 
sampled neighbors to aggregate information for each omics data, since 
two-hops neighborhood covers most connection information and is 
usually sufficient for large graph structure learning. The different di-
mensions of two graph convolution modules are 128 and 16, respec-
tively, each operation is defined as: 

Hk+1
i = σ

(
∑

j∈N(i)

1
|N(i) |

w(k)H(k)
j + b(k)

)

Where N(i) is the neighbor gene list, w(k) is the trainable parameter 
matrix of the k-th layer, H(k)

j is the representation matrix of gene j, b(k) is 
the bias term at layer k, and σ is the activation function. The rectified 
linear unit (ReLU) is applied, which is defined as follows: 

ReLU(x) = max(0, x)# 

To avoid overfitting, we added a dropout function after each con-
volutional block with a probability of 0.5. 

The complexity and homogeneity of those omics data make it crucial 

to assign specific edge weights in order to accurately identify important 
genes. In this case, we assigned a weight of 1 to the EM data, the ES data 
and paralog data, due to their binary nature. For the L1000 data, which 
represent gene expression in treatment, we used the actual numbers 
from the data matrix as edge weights. To prevent over-smoothing in the 
graph neural network, we only considered edge weights with values 
greater than three or less than negative three, effectively eliminating less 
important nodes. 

To generate a more informative embedding, we applied an aggre-
gation operation, zs, to ensemble cell specific representation of gene 
representations in multi-omics derived from different graph structures. 
the final embedding can be represented as 

zs = Agg
(
zEM , zES, zpar , zfc)# 

Here, we simply concatenate these latent features together for use in 
the next attention module. 

2.2.3. Feature fusion module 
We present a multi-head transformer cross-attention method that 

directs attention to three features such as EM data from both ES data and 
paralogs in two stages. The three omics data (EM, ES, paralog) are 
derived from encoders and then fed into the multi-head attention 
module [41], also known as the transformer block. The latent feature, 
combined with SL pairs feature representation, is passed through an 
MLP layer for SL interactions reconstruction. We use the attention 
mechanism to learn the weight distribution of different features, which 
helps to identify the important features for prediction. The multi-head 
attention is calculated by the following formulas 

XHEAD = Concat(head1, head2,…, headm)w0#  

Headi = softmax
(

Qi ∗ KT
i̅̅̅̅̅

dk
√

)

Vi#  

Qi = X × WQ
i ,Ki = X × KQ

i ,Vi = X × VQ
i , #  

where Qi, Ki and Vi are the Q, K and V matrices derived from the linear 
transformation of those biological features are passed through the 
attention layer and the feed-forward network layer. For the L1000 data, 
we simply concatenated the GraphSAGE features of it with the output of 
the attention module. 

The final representation for link prediction (positive SL pairs) is 
created by combining the relevant information with the graph repre-
sentations of SL pairs, GSL. Additionally, layer normalization is also 
applied to accelerate the convergence of the neural network and prevent 
the ’covariate-shift’ and ’high-parameters’ issues. 

2.2.4. MLP for edge prediction 
We implemented a fully connected neural network to predict the 

potential SL pairs. It takes in features from the fusion layer as input and 
has multiple hidden layers utilizing ReLU as activation function. The 
output layer contains a single node with a sigmoid activation function, 
which outputs a probability indicating the likelihood that a given edge 
corresponds to an SL pair in a specific cell-line. The Binary Cross Entropy 
loss function is applied. 

2.2.5. Model training 
The model was trained to minimize mean square error loss using the 

Adam optimizer with a learning rate of 0.001 and weight decay of 
0.0005. The model was trained for up to 2000 epochs with early stop-
ping after 30 epochs of no improvement in validation loss to prevent 
overfitting. The training process of our approach is illustrated in Algo-
rithm 1. 
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Algorithm 1. The training process of our model. 

2.2.6. Ablation experiment 
In our experiments, we evaluated the impact of specific combinations 

of input features and architectural components on our current model by 
conducting feature ablation and module ablation. In these experiments, 
we removed individual input features from multi-omics data in feature 
ablation and replaced different feature extraction modules or feature 
aggregation modules in module ablation. 

Besides GraphSAGE, other graph based encoders such as GCN, GAT, 
and Topology adaptive graph convolutional networks (TAG) [42] are 
also designed for processing graph-structured data through the use of 
aggregation function, combination function, and readout function. 
GraphSAGE learns node features by aggregating information from a 
fixed number of sampled neighbors. GCN use convolutional operations 
to aggregate information from neighboring nodes, GATs use attention 
mechanisms to weight the importance of the neighboring nodes while 
aggregating the node’s feature information. while TAG is a variant of 
GCN that adapts its convolutional filter based on the graph’s topology. 
These three architectures are utilized in the ablation study of feature 
extraction module. 

The final model incorporated an attention mechanism into the omics 
feature aggregation modules. Due to the time and computational 
complexity of the transformer module, we conducted an additional 
ablation experiment in which we substituted the transformer module 
with a much simpler operation that concatenated the output of 
GraphSAGE modules. This experiment demonstrated the impact of the 
transformer module on the model performance. 

2.2.7. Performance evaluation 
To evaluate the performance of our approach, we use four metrics: 

recall, precision, the area under the precision-recall curve (AUPR) and 
the area under the receiver operating characteristic curve (AUROC). We 
compare our predictor with EXP2SL, which is a cell-line specific pre-
dictor that serves as a baseline. All the metrics were calculated using 

Python (Scikit Learn package). The sparsity of the SL labels may lead to 

overfitting of the model. To address this issue, we conducted three types 
of evaluations with different ways of splitting the dataset. In evaluation 
study 1 (CV1), the dataset was partitioned by gene pairs, such that both 
genes in a test set might also appear in the training set. In evaluation 
study 2 (CV2), we divided the dataset by genes, ensuring that only one 
gene in a test pair was also present in the training set. In evaluation study 
3 (CV3), we separated the dataset by genes, excluding both genes in a 
test set from the training set. 

2.3. Analyses of Cellular Context-specific SL Mechanisms 

The top-ranked SL pairs from SLWise model are compared with 
SOTA model: EXP2SL, NSF4SL, and MGE4SL. The predicted SL pairs 
from our approach were then used to decipher the mechanisms under-
lying the cellular specificity. Each gene of these SL pairs was used as the 
candidate perturbation gene. L1000 data include many other gene 
expression data in the given cell line used for candidate gene pertur-
bation. The significantly perturbed gene sets were identified by setting 
the log2FC > 1 and adjusted p-value < 0.05 in expression compared to 
the control from L1000 data. For the candidate gene pair including gene 
A and gene B, we filtered out the gene_set A that was significantly 
downregulated by gene A, the gene_set B that was significantly down-
regulated by gene B, and gene_set C, the overlapping portion of the 
gene_set A and gene_set B, which can be down-regulated by either gene 
A or B. The genes in gene set C that both classified as tumor driver genes 
and had a CERES score less than − 0.5, were retained as the essential 
genes. Then, to localize potential cellular damage, we performed GSEA 
using clusterProfiler (version 4.4.4) [69] on the subset of genes in the 
gene set C with CERES scores less than − 0.5. The enrichment items that 
achieved statistical significance (p < 0.01) were taken into 
consideration. 
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3. Results And Discussion 

3.1. Overall performance 

We evaluated our approach using five-fold cross-validation with 
specific settings on the aforementioned datasets for the three cell-lines 
and then compared the performance of our model to the SOTA 
EXP2SL model as baseline. We started by splicing the ground truth data 
into training and testing sets, and assessing the model’s performance 
within a single cell-line using AUC, AUPR, recall and precision, which 
presented in Fig. 2. Detailed information can be found in the supple-
mentary table S1. Compared to the baseline model EXP2SL, our model 
demonstrated a relatively stable performance with only a slight decline 
from CV1 to CV3 test, whereas the performance of the EXP2SL model 
dropped significantly. 

Fig. 2 summarizes the performance of our approach and EXP2SL on 
three different cell-lines: A375, A549, and HT29. Both methods 

achieved similar results under CV1, where they both performed best on 
A375 cell-line. However, our approach showed a clear advantage over 
EXP2SL under CV2 and CV3, where the gene sets for training and testing 
are more independent. Under CV2 datasets, our model improved by 
12.3% and 1% on AUC, 51.5% and 33.9% on AUPR compared to EXP2SL 
in A549 and HT29 respectively. In particular, under CV3, EXP2SL suffers 
a significant decline in performance, while our approach maintained a 
high level performance across all three cell-lines. Our model improved 
by 51%, and 30.7% on Recall, and by 26.3%, and 9.7% on AUPR in the 
A549, and HT29 respectively. 

These results demonstrate that our model is able to effectively cap-
ture the cell features from multi omics data and can stratify SL pairs in 
the dataset for different cell lines. It is noted that our approach also 
struggled a little bit in identifying SL pairs within the cell-line A549. 
However, the overall performance of this study suggests that this 
approach is promising for identifying SL pairs through cell-specific ge-
netic interaction data. 

Fig. 2. The performance of evaluation in three different cell lines under different split test set.  
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3.2. Ablation result 

The ablation study helps to verify the rationality of our current 
features and model architecture, and provide valuable insights into how 
to improve the model in the future. In this paper, we investigate the 
impact of the encoder module, the attention module and input omics 
data on the accuracy of predicting SL interactions. The results are shown 
in Supplementary Table S2-S4. 

We conducted an ablation study to evaluate the performance of 

different encoder modules in our model for predicting SL interactions. 
We compared three types of graph convolutional network encoders 
(GAT, GCN, and TAG) and validated our model in three cell lines, 
averaging the results and compared with our original selection, 
GraphSAGE. As shown in Table S2, the performance of the GraphSAGE 
encoder module was slightly inferior to GCN in terms of AUC and AUPR, 
but demonstrated a competitive advantage in other metrics, showing 
that mean aggregation from neighborhood features of each node from 
multi-omics graph is very effective for SL prediction. Moreover, the 

Fig. 3. The performance of transferable evaluation in three different cell lines.  
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fixed-number neighborhood sampling strategies enable GraphSAGE to 
aggregate a subset of each gene node, making it more scalable. 

In addition, we also conducted an ablation study to evaluate the 
effect of attention mechanism on the feature aggregation module. The 
experimental results (Table S3) demonstrate that incorporating atten-
tion module can significantly improve the model performance compared 
with simply concatenating the extracted features. 

Furthermore, we performed ablation study to examine the impact of 
different multi-omics data on effectiveness of our model. Details of the 
performance on each cell-line are shown in Table S4. We tested different 
combinations of input data by removing one of those different omics 
data types, and compared the result with those of the complete dataset. 
The ablation results demonstrate that using the complete dataset, the 
performance shows improvements on all metrices, indicating that each 
multi-omics data is beneficial to predict known positive SL samples in 
our approach. These experiments show that utilizing all multi-omics 
information to predict SL interactions can improve the performance of 
predictions. In the future, we may incorporate additional omics data or 
use data enhancement techniques to improve our predictions even 
further. 

3.3. Cell-line transferable study 

Finally, we evaluated the model’s ability to predict SL pairs in un-
known cell-lines, where the training and testing data came from 
different cell-lines, mimicking the real-world scenario. It helps to 
establish the model’s ability to be used in practical applications. The 
preliminary results are encouraging when taking into account the 
number of SL label for each cell-lines. 

Our model was able to make accurate predictions when using data 
from different cell-lines for training and testing (Fig. 3). Detailed in-
formation can be found in the supplementary table S5. Our model had 
the best performance when using A549 as training data. The large 
amount of single-label (SL) data available for A549, 1345 positives and 
2820 negatives, may have contributed to its performance. This dataset is 
almost five times bigger than the amount available for the other two cell 
lines (A375 and HT29). Besides, our approach also managed to maintain 
a satisfactory level of performance when using the other cell-lines as 
training data. In these tests, EXP2SL performed poorly. These results 
demonstrate that our model is transferable among cell lines, and has the 
potential to predict SL pairs for unknown cell-lines. 

3.4. Evaluation of SLWise and other SL Prediction Models on Cell 
Context-specific SL pairs 

While machine learning models can predict many synthetic lethal 
(SL) gene pairs, evaluating real-world utility remains challenging due to 
the extensive experimental validation required. To ensure practical 
applicability, we benchmark our model’s accuracy at prioritizing vali-
dated SL pairs within the top predictions. Focusing evaluation on highly- 
ranked candidates provide critical insight into predictive power on the 
most relevant pairs. 

It is clear that our model (SLWise) outperformed the EXP2SL, 
NSF4SL, and MGE4SL models in accuracy using true positive labels 
(Table 2). Among the top 100 predictions, SLWise successfully identified 
22 true SL pairs in A375 and two true SL pairs in HT29 (Table 2, 
Table S6), while EXP2SL failed to identify any true SL pair. Notably, 20 
out of 22 true SL pairs in A375 and one out of two in HT29 exhibited cell 
context-specificity, meaning that the SL gene pairs had lethal effects in 
one cell type but not in another due to their different cellular context. 
Expanding the evaluation to the top 200 predictions, EXP2SL exhibited 
even poorer performance, failing to identify additional SL pairs. In 
contrast, SLWise identified 30 true SL pairs (27 of which are cell context- 
specific) in A375, six true SL pairs (five of which are cell context- 
specific) in HT29, and there is no true SL pair in A549. Neither 
NSF4SL nor MGE4SL identified any SL pairs within the top 200 results. 

Moreover, when extending the analysis to the top 1000 predicted SL 
pairs, SLWise consistently demonstrated better performance. It suc-
cessfully identified 30 true SL pairs (27 of which were cell context- 
specific) in the A375 cell line, seven true SL pairs (six of which are 
cell context-specific) in the HT29 cell line, and five true SL pairs (all of 
which are cell context-specific) in the A549 cell line (Table S7). In 
contrast, EXP2SL only identified seven true SL pairs (five of which are 
cell context-specific) in the A549 cell line and failed to identify any SL 
pairs in other cells. MGE4SL identified only four true SL pairs, and 
NSF4SL failed to identify any true pair. Furthermore, we conducted a 
performance comparison by employing the same approach as the 
EXP2SL method, focusing on using the same cell line for training and 
testing. In this evaluation, SLWise still demonstrated better performance 
over EXP2SL (Table S8). These findings demonstrate the evident supe-
riority of our SLWise model’s accuracy in predicting cell context-specific 
SL interactions compared to the baseline methods. 

For a more intuitive visualization, we have listed several SL gene 
pairs labeled as positive among the top 100 prediction results (Table 3). 
It is worth noting that many of these predicted SL pairs have been 
validated using low-throughput experiments. For example, the paralog 
pairs BCL2L1-MCL1 [39,43] and PARP1-PARP2 [44] have been verified 
for their SL interactions, and the combination of BCL2L1 or BCL2L2 

Table 2 
Top100 and 200 predicted SL pairs performance evaluation.    

Taining 
SL data 

Testing 
SL data 

SL 
pairs 

Cell 
context- 
specific SL 
pair 

General 
SL pair 

Top100 SLWise A549 A375  22  20  2 
A549 HT29  2  1  1 
A375 A549  0  0  0 

EXP2SL A549 A375  0  0  0 
A549 HT29  0  0  0 
A375 A549  5  4  1 

Top200 SLWise A549 A375  30  27  3 
A549 HT29  6  5  1 
A375 A549  0  0  0 

EXP2SL A549 A375  0  0  0 
A549 HT29  0  0  0 
A375 A549  5  4  1 

NSF4SL SynLethDB 2.0  0  0  0 
MGE4SL SynLethDB  0  0  0  

Table 3 
SL pairs with the positive label in the top 100 predicted results.  

Cell line Gene A Gene B Cell context-specific 

A375 BCL2L2 UBC Yes 
BCL2L2 WEE1 Yes 
MAPK3 UBC Yes 
PARP1 UBC Yes 
BCL2L1 BCL2L2 Yes 
BCL2L1 WEE1 Yes 
BCL2L2 MAPK3 Yes 
BCL2L2 PARP1 Yes 
MAPK3 WEE1  
PARP1 WEE1 Yes 
MAPK3 PARP2 Yes 
PARP1 PARP2 Yes 
BCL2L2 MCL1 Yes 
MCL1 WEE1  
AKT3 UBC Yes 
AKT3 BCL2L2 Yes 
AKT3 WEE1 Yes 
AKT3 PARP2 Yes 
BCL2L1 MAPK3 Yes 
BCL2L1 PARP1 Yes 
MAPK3 PARP1 Yes 
BCL2L1 MCL1 Yes 

HT29 MAPK3 WEE1  
MAPK1 MAPK3 Yes  
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knockdown and PARP inhibitor has demonstrated a significant reduc-
tion in the viability of certain tumor cells [45]. The combined inhibition 
of WEE1 and PARP1 has been shown to induce SL interactions, partic-
ularly in combination with radiation [46,47]. The co-inhibition of AKT3 
and WEE1 has been proven to decrease the development of melanoma 
[45]. 

We utilized the logic of synthetic lethal associated gene detection 
and cell damage evaluation, to identify abnormalities in essential gene 
combinations involved in cell survival and death from the knockout of 
predicted SL genes, and aimed to establish associations between candi-
date SL gene pairs and cellular damage, providing insights into the un-
derlying mechanisms of SL interactions in a cellular context-specific 
manner. 

In the A375 cell line, we predicted an SL interaction between BCL2L2 
and WEE1(Fig. 4A). We discovered that the knockdown of BCL2L2 and 
WEE1 in the A375 cell line resulted in abnormalities in two significant 
driver genes, CNOT9 and RHOA (Fig. 4B). It is noteworthy that RHOA 
plays a crucial role in the growth, progression, and metastasis of various 
cancer types and has been considered a therapeutic target [48]. More-
over, the cell damage is enriched in mitotic anaphase and M phase, as 
observed in the Reactome analysis (Fig. 4C), and in E2F_targets and G2M 
checkpoint, observed in the Hallmark analysis (Fig. 4D). These findings 
are consistent with previous reports indicating that the inhibition of 
WEE1 in tumor cells increases the dependency on BCL2L2 [49], 
providing a plausible explanation for the observed cellular damage. In 
contrast, in the HT29 cell line, the knockout of BCL2L2 and WEE1 did 
not result in abnormalities in any essential driver gene, and there was no 
significant enrichment observed in the Hallmark and Reactome path-
ways. Additionally, although a significant downregulation of the 

essential driver gene was detected in the A549 cell line, no significant 
enrichment was observed in the Hallmark and Reactome pathways. 

Similarly, in the HT29 cell line, we observed an SL interaction be-
tween UBC and UBE2L6 (Fig. 5A). UBC and UBE2L6 encode Ubiquitin 
and E2 ubiquitin-conjugating enzymes, respectively, both of which are 
critical post-translational modifiers involved in maintaining genome 
stability. Upon analyzing the effects of UBC and UBE2L6 knockout in the 
HT29 cell line, we found that the only essential gene STIL abnormality 
(Fig. 5B). Notably, inhibition of STIL has been shown to suppress tumor 
progression, indicating its importance in cancer development [50]. 
Further analysis using Reactome and Hallmark enrichment revealed that 
the downregulation of UBC and UBE2L6 led to mitotic damage (Figs. 5C 
and 5D). This suggests that the disruption of UBC and UBE2L6 may 
induce cellular damage in the HT29 cell line through the inhibition of 
STIL, leading to impaired mitotic processes. In contrast, in the A375 cell 
line, no Hallmark or Reactome enrichments in this disfunction were 
observed. 

4. Discussion 

In our approach, we select some proven SL mechanisms relevant to 
cell context and incorporated them into our models. Specifically, 
paralogs, which arise from duplicated sequences of a shared ancestor 
and often perform similar functions, exhibit functional redundancy. 
Their loss is more common in tumors [51], making them potential 
precision targets for cancer treatment and an essential dataset for SL 
discovery [52,53]. Mutually exclusive mutation patterns suggest 
incompatible driver mutations in tumorigenesis, indicating a potential 
source of SL interactions [54]. In addition, the combination of 

Fig. 4. Representative predicted gene pair (BCL2L2-WEE1) and its SL mechanism analysis in A375 cell line. (A). The prediction score and rank of all candidate SL 
gene pairs. The blue dots are SL pairs with positive labels. Predictions falling on the left side of the dotted orange line represent the top 5% ranking. (B). Among the 
downregulated genes of BCL2L2 and WEE1, RHOA and CNOT9 are the common significant driver gene with a CERES score below − 0.5 in A375. (C). The Reactome 
pathway analysis demonstrates the presence of cellular damage. (D). The Hallmark analysis demonstrates the presence of cellular damage. 
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high-throughput CRISPR-Cas9 screens with the background gene’s low 
expression (which might be caused by mutation, copy number variation, 
or epigenetic modification) is also a major logic for SL pair discovery 
[55–57]. Furthermore, to understand specific SL interactions in the 
cellular context, it’s important to consider the dynamic relationship of 
genes. The L1000 data is a valuable resource for tracking the cellular 
responses and helps characterize specific gene relationships based on 
expression changes caused by gene perturbations, providing a compre-
hensive understanding of the cellular context for SL interactions. 

By analyzing specific examples like BCL2L2-WEE1 in A375 and UBC- 
UBE2L6 in HT29, we highlight the potential effects and damage caused 
by these SL pairs in specific cell lines. Notably, although EXP2SL also 
incorporates the L1000 data, it relies solely on a limited set of genes 
from L1000 data as its input features, resulting in incomplete learning of 
gene-gene relationships. This limitation could hinder the capture of the 
fundamental gene interaction logic behind cell line characteristics and 
SL pairs, making it suboptimal performance for transferability among 
cell lines. 

Obviously, SLWise model provide valuable insights into predicting 
and analyzing SL interactions. However, they have some limitations that 
could be addressed through further data expansion and model im-
provements. Our approach lacks transcription and translation regulation 
information, resulting in a relatively coarse representation of the un-
derlying mechanisms and cellular specificity. To enhance the precision 
and explanatory power of the model, future versions could incorporate 
gene regulation networks and protein-protein interaction networks to 
provide a more detailed and comprehensive analysis. Furthermore, 
incorporating factors like the extracellular microenvironment and cell- 
cell interactions will be crucial when applying the model from tumor 

cells to the tumor tissue and microenvironment. These factors can in-
fluence SL interactions and should be considered to obtain a more 
realistic representation of SL interactions in tumors. Additionally, the 
current version of the model does not integrate mechanisms such as 
genetic epistasis and non-coding regulatory elements, which could 
enhance the accuracy of predictions once relevant data becomes avail-
able. Cells are highly complex, unique and specialized. The mechanisms 
underlying SL interactions are diverse and cell context-specific. It is 
important to acknowledge that the limited mechanistic logic employed 
in this study cannot capture all possible SL interactions. The focus here is 
on capturing the damage caused by differential gene expression levels 
and the responsible genes will result in SL interactions. 

5. Conclusion 

We presented a deep learning SL prediction method, SLWise, which 
combines graph-based representations, attention mechanisms, and 
multiple omics data to enhance its predictive power. The ablation study 
demonstrates that the GraphSAGE module effectively captures the rep-
resentation of omics data. The transformer cross-attention mechanism is 
designed to assemble multi-source features, making it better at 
capturing the cell specific correlation of data and features. By inte-
grating different biological data sources, our model can capture the 
complex relationships and interactions within the data, and thus 
outperform SOTA models in predicting cell-specific SL pairs for different 
cell-lines. The development of our approach is expected to be beneficial 
to the advancement of cancer precision medicine by supporting the 
discovery of cell-type specific drug targets and biomarkers in the future. 

Fig. 5. Representative predicted gene pair (UBC-UBE2L6) and its SL mechanism analysis in HT29 cell line. (A). The prediction score and rank of all candidate SL gene 
pairs. The blue dots are SL pairs with positive labels. Predictions falling on the left side of the dotted orange line represent the top 5% ranking. (B). Among the 
downregulated genes of UBC and UBE2L6, STIL is the only common significant driver gene with a CERES score below − 0.5 in A375. (C). The Reactome pathway 
analysis demonstrates the presence of cellular damage. (D). The Hallmark analysis demonstrates the presence of cellular damage. 
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