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Abstract

The 2014 West African Ebola virus disease outbreak was the largest to date, and conflicting,

chlorine-based surface disinfection protocols to interrupt disease transmission were recom-

mended. We identified only one study documenting surface disinfection efficacy against the

Ebola virus, showing a >6.6 log reduction after 5-minute exposure to 0.5% sodium hypochlo-

rite (NaOCl) based on small-scale tests (Cook et al. (2015)). In preparation for future exten-

sive, large-scale disinfection efficacy experiments, we replicated the Cook et al. experiment

using four potential BSL-1 surrogates selected based on similarities to the Ebola virus: bac-

teriophages MS2, M13, Phi6, and PR772. Each bacteriophage was exposed to 0.1% and

0.5% NaOCl for 1, 5, and 10 minutes on stainless steel. MS2 and M13 were only reduced by

3.4 log and 3.5 log after a 10-minute exposure to 0.5% NaOCl, and would be overly conser-

vative surrogates. Conversely, PR772 was too easily inactivated for surrogate use, as it was

reduced by >4.8 log after only 1-minute exposure to 0.5% NaOCl. Phi6 was slightly more

resistant than the Ebola virus, with 4.1 log reduction after a 5-minute exposure and not

detected after a 10-minute exposure to 0.5% NaOCl. We therefore recommend Phi6 as a

surrogate for evaluating the efficacy of chlorine-based surface disinfectants against the

Ebola virus.

Introduction

The Ebola virus is a filamentous, enveloped, single-stranded RNA virus belonging to the Filo-
viridae family [1]. It was isolated in 1977 following an outbreak in Zaire (now the Democratic

Republic of Congo) [2] and the 2014 West African Ebola Virus Disease (EVD) outbreak was

the largest to date, with over 28,000 cases and 11,000 deaths [3].

The primary transmission pathways for EVD are in direct contact with infected individuals

and their bodily fluids, particularly in caring for a patient in the late stage of the disease and in

unsafe burials; contact with bodily fluid-contaminated surfaces is a secondary transmission
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pathway [4–7]. The Ebola variant isolated during the 2014 outbreak (Makona-C05) was found

to persist longer on surfaces than the Yambuku-Mayinga variant from 1976, representing

increased risk of disease transmission via contaminated surfaces [8].

Agencies involved in EVD response have developed guidelines for disinfection of surfaces

[9–12] and hands [12,13]] to prevent disease transmission in Ebola Treatment Units (ETU)

and communities impacted by EVD. While these guidelines are consistent in recommending

disinfection of surfaces (“non-living things”) with 0.5% chlorine solutions and disinfection of

hands (“living things”) with 0.05% chlorine solutions, they differ in terms of exposure time

and recommended practices (e.g. whether or not to pre-clean or cover uncontrolled spills

from patients). During the 2014 outbreak, it became clear that these guidelines were not evi-

dence-based. One reason for the lack of evidence is that testing using the Ebola virus can only

be performed in BSL-4 facilities and is thus limited [14].

Surrogates are often selected to model highly infectious pathogens [15], and identification

of surrogates for the Ebola virus was listed as a priority research item in 2015 [14]. Bacterio-

phages are commonly used as surrogates for human viruses, as they are similar in terms of

size, shape, morphology, surface properties, mode of replication, and environmental persis-

tence, yet are non-infectious [16]. Additionally it is possible to complete large sample size

investigations with bacteriophages, as testing is rapid and inexpensive.

The ideal bacteriophage surrogate would behave similarly to the Ebola virus when exposed

to surface disinfection with chlorine. Enveloped viruses, like Ebola, had previously been

thought to be more susceptible to environmental conditions, and as such disinfectants, than

non-enveloped viruses [17]. Current guidelines still recommend using disinfectants whose

efficacy was demonstrated against non-enveloped viruses for surface disinfection of enveloped

viruses, based on this assumption [18]. However, more recent research has called this assump-

tion into question [19], and the fundamental mechanisms by which chlorine inactivates viruses

remain incompletely understood [20,21]. Given this incomplete understanding of how chlo-

rine inactivates viruses, it is not possible to select an appropriate surrogate for the Ebola virus

in the absence of experimental data.

While persistence of the Ebola virus on surfaces has been extensively studied [8,22,23], few

published data are available regarding the resistance of the virus to disinfecting agents on sur-

faces [24–27]. The study most relevant to field disinfection practices on surfaces was con-

ducted by Cook et al. [24], who evaluated the survival of the Ebola virus when exposed to

chlorine on stainless steel surfaces. After a 10-minute exposure to 0.1% sodium hypochlorite

(NaOCl), a 2.8 log reduction was observed and the Ebola virus was not detected after a 5-min-

ute exposure to 0.5% NaOCl. These results provide a basis for comparison of potential surro-

gates with the actual Ebola virus.

In this study, we replicated the Cook et al. experiment [24] with four potential bacterio-

phage surrogates to determine which one would be the most appropriate surrogate for evaluat-

ing the efficacy of surface disinfection with chlorine in inactivating the Ebola virus. Our goal

was to select a bacteriophage that was slightly more resistant to surface disinfection with chlo-

rine than the Ebola virus as a surrogate for our future studies.

Methods

To complete this work, we reviewed potential surrogates and selected them; propagated the

selected surrogates in the Environmental Sustainability Laboratory at Tufts University (Med-

ford, MA, USA); replicated the experiment described by Cook et al. [24] for each of the

selected surrogates; and, completed data analysis. The overall process is summarized in Fig 1.

BSL-1 surrogate for the Ebola virus to evaluate surface disinfection efficacy
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Selection of potential surrogates

We used the Sinclair et al. [15] framework to select potential surrogates for the Ebola virus. In

particular, after determining the scope of our experiments—i.e. chlorine disinfection of sur-

faces–, we considered both practical and biological attributes to identify potential surrogates.

Practical considerations initially led us to focus on bacteriophages, as described in introduc-

tion. We then used three main criteria inspired from Sinclair et al. [15] to identify potential

surrogates for the Ebola virus: safety, functional morphology and expected resistance to chlo-

rine. As we planned to conduct further research on surface disinfection and handwashing effi-

cacy with human subjects using the selected surrogate, we only considered bacteriophages

with BSL-1 hosts. We selected four bacteriophages, of which three share characteristics with

the Ebola virus, namely MS2, M13, and Phi6 (Table 1). The fourth bacteriophage is the lipid-

containing PR772. Because the role of the envelope in determining the resistance of viruses to

disinfection might be important, we would ideally have included a second enveloped bacterio-

phage to test that hypothesis. However, Phi6 belongs to the Cystoviridae, which is the only

known family of enveloped bacteriophages [28] and members of the same family would be too

similar to assess the possible role of the envelope based on survival data. We therefore used

Fig 1. Approach for the selection of a bacteriophage surrogate for the Ebola virus to evaluate surface

disinfection efficacy.

https://doi.org/10.1371/journal.pone.0177943.g001

Table 1. Characteristics of the Ebola virus and of the selected test organisms.

Filamentous Genome type Genome size Envelope Capsid

Ebola virus Yes (-)ssRNA 18 kb Yes Helical

MS2 No (+)ssRNA 3.5 kb No Icosahedral

M13 Yes ssDNA 6.4 kb No Helical

Phi6 No dsRNA 13 kb Yes Icosahedral

PR772 No dsDNA 15 kb No Icosahedral

https://doi.org/10.1371/journal.pone.0177943.t001

BSL-1 surrogate for the Ebola virus to evaluate surface disinfection efficacy
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PR772 instead, which has an internal, rather than an external, lipid structure. Each of the

selected bacteriophages is further described below.

MS2 is a single-stranded RNA (ssRNA) bacteriophage, with the same genome type as the

Ebola virus. MS2 is commonly used in environmental studies as a model for enteric viruses

and is known to be resistant to several disinfection processes [20,29]. As such, MS2 was

expected to be a conservative surrogate for the Ebola virus.

M13 is filamentous with a helical capsid, morphologically similar to the Ebola virus. M13

has an average length of 900 nm with a diameter of 6–10 nm [30], and the Ebola virus is about

805 nm long with a diameter of 80 nm [31]. We found no information on the susceptibility of

M13 to surface disinfection with chlorine.

Phi6 is enveloped, like the Ebola virus. It has been used to study the fate and partitioning of

enveloped viruses, and of the Ebola virus in particular, in sewage [32–34]. Phi6 was also pro-

posed as a slightly conservative surrogate for the H5N1 avian influenza virus when testing liq-

uid chlorine disinfection [35]. Phi6 was expected to be more susceptible to chlorine than MS2

and M13.

PR772 is a lipid-containing bacteriophage that is genetically 97.2% similar to PRD-1 but

does not require a BSL-2 host. PRD1-like phages are frequently used in environmental studies

and thought to be appropriate surrogates for adenoviruses [16]. PR772 has an internal lipid

structure, but no external envelope, so we expected it to be more resistant to chlorine than

Phi6 based on morphology. Previous studies on liquid chlorine disinfection [35,36] suggest

however that PR772 would be less resistant to chlorine than Phi6.

Phages propagation

The test organisms were: MS2 (ATCC1 15597-B1) and M13 (ATCC1 15669-B1), both using

Escherichia coli (ATCC1 15597) as a host; PR772 (HER #221) propagated in Escherichia coli
(HER #1221); and, Phi6 (HER #102) propagated in Pseudomonas syringae (HER #1102). All

bacteriophages were propagated by the double agar overlay method [37]. The media were

ATCC1 #271 for MS2/E. coli, ATCC1 #274 for M13/E. coli, Nutrient Broth Yeast Extract for

Phi6/P. syringae, and Tryptic Soy for PR772/E. coli. All E. coli cultures and MS2, M13 and

PR772 were incubated at 35˚C, while Phi6 and its host were incubated at 26˚C. For all bacteri-

ophages, 100 μL of host culture and 100 μL of phage suspension were added to 6 mL of melted

soft agar (0.3%) that were then poured onto prepared agar plates (1.5%) and incubated over-

night. On the following day, 5 mL of dilution buffer were applied on top of the soft agar and

left at room temperature for 4 hours to allow diffusion of the phages, as described in Rossi

[38]. The phage-containing buffer was then recovered, filtered at 0.22μm and stored at 4˚C

until use. Bacteriophage stocks were not purified because the recovered suspension was free of

cellular debris [38] and because soil load was added in a further step to increase chlorine

demand. The chlorine demand of the phage suspension alone represented less than 0.01% of

the minimum amount of chlorine available for disinfection in our experiment.

Replication of Cook et al.’s experiment

To replicate the Cook et al. [24] experiment, we first prepared chlorine solutions, soil load, and

surface carriers; and then completed the experimental procedure.

Solutions of 0.1% (1,000 mg/L) and 0.5% (5,000 mg/L) chlorine were prepared by diluting

5.25% laboratory-grade pH-stabilized bleach (Valtech, Zellenople, PA, USA) in hard water

(0.04% CaCO3). The chlorine concentration was confirmed to be within 10% of the target

0.1% or 0.5% concentration by iodometric titration (Hach method #8209, Hach Company,

Loveland, CO, USA). A soil load containing 7.80 mg/mL bovine serum albumin (Sigma-

BSL-1 surrogate for the Ebola virus to evaluate surface disinfection efficacy
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Aldrich, St. Louis, MO, USA), 2.52 mg/mL bovine mucin (Alfa Aesar, Ward Hill, MA, USA),

and 10.92 mg/mL tryptone (FisherScientific, Fairlawn, NJ, USA) was prepared according to

the ASTM International Quantitative Carrier Testing standard [39]. Surface carriers were

1-cm in diameter discs of type 430 brushed stainless steel (McMaster Carr, Atlanta, GA, USA)

that were sterilized by autoclaving and placed in inverted 18-mm test tube caps.

Ten microliters of the phage/soil load mixture were applied onto each disc with a positive-

displacement pipette and left to dry in a biosafety cabinet at room temperature and approxi-

mately 10% relative humidity. After one hour, 50 μL of a 0.1% or 0.5% NaOCl solution were

applied for 1, 5, or 10 minutes. At the end of the exposure time, 950 μL of 0.25% sodium thio-

sulfate solution were added to neutralize the chlorine. For the positive controls, which corre-

spond to time point zero, 1,000 μL of 0.25% sodium thiosulfate solution were added to the

carriers. The samples were vortexed, recovered by pipetting, and titrated by spotting 50 μL

drops on top of the soft agar layer containing 100 μL of the bacterial host culture and incubat-

ing overnight at the appropriate temperature. All tests were performed in triplicate. Tests with

0.1% and 0.5% NaOCl were performed at the same time for each bacteriophage, with one series

of triplicate positive controls (without chlorine) for both concentrations.

Data analysis

Cook et al. [24] kindly shared their numeric data to allow for a direct comparison of the poten-

tial surrogates with the Ebola virus. Our data was entered and analyzed in Microsoft Excel1

2016 (Redmond, WA), including calculation of average log reductions, first-order inactivation

constants, and standard errors. As the theoretical detection limit was 20 PFU/mL, samples

with zero detected bacteriophage were assigned a value of 10 PFU/mL for all calculations. We

did not perform any statistical test to support that selection because we felt that this would be

an over-analysis of a small data set (triplicates of one representative experiment only for each

bacteriophage) [40].

Results

The surface carriers were inoculated with 10 μL of suspensions containing an average of

6.8�107 PFU/mL for MS2, 3.6�108 PFU/mL for M13, 1.2�108 PFU/Ml for Phi6, and 5.0�109

PFU/mL for PR772. The recovery rates, as estimated based on the positive controls after

1-hour drying, were on the order 0.8% for MS2, 2.1% for M13, 0.4% for Phi6, and 0.01% for

PR772. The starting concentrations (time zero for disinfection, determined based on positive

controls) were thus 5.7�105 PFU/mL for MS2, 7.7�106 PFU/mL for M13, 5.1�105 PFU/mL for

Phi6, and 6.4�105 PFU/mL for PR772.

At 0.1% NaOCl (Fig 2), the first-order inactivation constants (k) reflect the fact that after an

initial steep decline during the first minute of exposure to chlorine, all four bacteriophages

undergo relatively slow inactivation from 1 to 5 minutes, with k values between 0.03 and 0.23

min-1 (Table 2). Past 5 minutes of exposure, while k values are similar for M13 (1.17 min-1),

Phi6 (1.18 min-1) and PR772 (1.03 min-1), the inactivation constant for MS2 is only 0.04 min-1.

In comparison, the corresponding k value for the Ebola virus (calculated based on Cook et al.’s
results at 1 and 5 minutes) is 0.61 min-1.

When exposed to 0.5% NaOCl, PR772 was never detected after disinfection (Fig 2), which

corresponds to an inactivation constant of 10.98 min-1 (Table 2). From zero to 1 minute, the

inactivation constants for MS2 (6.34 min-1), M13 (7.10 min-1) and Phi6 (6.83 min-1) are all

slightly higher than for the Ebola virus (5.16 min-1); from 1 to 5 minutes, however, the average

k values for MS2 (-0.03 min-1) and M13 (0.17 min-1) indicate that they are much more

BSL-1 surrogate for the Ebola virus to evaluate surface disinfection efficacy
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resistant to chlorine than the Ebola virus (2.65 min-1), while the k value for Phi6 (1.11 min-1) is

the closest to, although smaller, than that of the Ebola virus.

Discussion

We evaluated four potential bacteriophages for their appropriateness as a BSL-1 surrogate for

assessing the efficacy of chlorine in inactivating the Ebola virus on stainless steel surfaces.

Based on our results at the 0.5% NaOCl concentration recommended for surface disinfection

in EVD outbreaks, Phi6 was selected as the most appropriate surrogate as it had slightly con-

servative results when compared to the Ebola virus. MS2 (as expected) and M13 were too con-

servative and PR772 was too rapidly inactivated for use as a surrogate. At 0.1% NaOCl, MS2 is

the only bacteriophage that is more resistant than the Ebola virus; however, given their similar

behavior, all tested bacteriophages could be used as surrogates.

Our recovery rates were low compared to the 24–76% reported by Tuladhar et al.[41] using

methods similar to ours. The difference is likely due to the higher relative humidity in their

Fig 2. Behavior of bacteriophages MS2, M13, Phi6, and PR772 and of the Ebola virus (results from Cook et al. [24]) when exposed to 0.1%

and 0.5% NaOCl for 1, 5, and 10 minutes. The units are [log10 PFU/mL] for the bacteriophages and [log10 TCID50 units/mL] for the Ebola virus. The

error bars represent the standard error of the mean of triplicate experiments (3 biological replicates of 3 technical repetitions for the Ebola results). The

asterisks indicate that concentrations were under the detection limit (for PR772 at 1, 5, and 10 minutes, and for the Ebola virus at 5 and 10 minutes).

https://doi.org/10.1371/journal.pone.0177943.g002

Table 2. Observed average first-order inactivation constants (k, min-1) and log inactivation (LI) at 0.1% and 0.5% NaOCl.

NaOCl Time [min] Ebola virus MS2 M13 Phi6 PR772

k LI k (SE) LI (SE) k (SE) LI (SE) k (SE) LI (SE) k (SE) LI (SE)

0.1% 0–1 0.41 0.7 0.73 (0.10) 0.32 (0.06) 3.24 (0.49) 1.41 (0.35) 3.41 (0.41) 1.48 (0.29) 3.85 (0.28) 1.67 (0.21)

1–5 0.55 1.6 0.23 (0.02) 0.71 (0.06) 0.05 (0.11) 1.50 (0.10) 0.03 (0.19) 1.54 (0.57) 0.16 (0.12) 1.94 (0.37)

5–10 0.61 2.8 0.04 (0.08) 0.79 (0.23) 1.17 (0.32) 3.13 (0.34) 1.18 (0.17) 4.11 (0.50) 1.03 (0.11) 4.18 (0.29)

0.5% 0–1 5.16 2.2 6.34 (1.19) 2.75 (1.04) 7.10 (0.28) 3.05 (0.15) 6.83 (1.14) 2.97 (0.97) 10.98 (0.14) >4.77 (0.00)

1–5 2.65 >6.6 -0.03a (0.38) 2.80 (0.98) 0.17 (0.05) 3.42 (0.08) 1.11 (0.19) 4.11 (0.49) N/A >4.77 (0.00)

5–10 N/A >6.6 0.27 (0.31) 3.39 (0.91) 0.08 (0.04) 3.53 (0.14) 1.41 (0.13) >4.61 (0.00) N/A >4.77 (0.00)

Data for the Ebola virus are based on Cook et al. [24]. SE stands for standard error of the mean. N/A corresponds to cases where the k constant could not

be calculated because of consecutive samples being under the detection limit.
a The negative value is due to the detection of a slightly higher concentration at 5 minutes compared to 1 minute in some samples. This was possible

because all samples were sacrificial, i.e. different discs were inoculated to evaluate disinfection efficacy at 1, 5 and 10 minutes.

https://doi.org/10.1371/journal.pone.0177943.t002
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case (40–45%). Herzog et al.[42], who used wipes to sample bacteriophages P22 from 100-cm2

fomites, documented recovery rates<3% after 20 minutes drying and found that recovery

rates decreased with decreasing relative humidity.

Few studies have been published that provide data allowing for a comparison with our

results. Morin et al. [29] reported >4 log reduction for MS2 when exposed to 0.1% NaOCl for

15 minutes on stainless steel carriers. In addition to the longer contact time, the fact that they

used larger surface carriers (20x10x1mm) and spread the 10-μL “spill” to cover 70% of the sur-

face before drying for 1 hour, enhancing the impact of drying, might explain their increased

inactivation compared with our results.

In a study of Phi6 inactivation by chlorine in the liquid phase, Adcock et al. [35] observed a

3 log reduction following exposure to 0.56 mg Cl2�min/L at 5˚C and pH 7.0. In contrast, Gall

et al. [36] recently reported >6 log reduction for PR772 when exposed to 0.5 mg Cl2�min/L in

the liquid phase, at 1˚C and pH 8.7, and were not able to determine kinetics at lower pH due

to rapid inactivation of PR772. Although these studies evaluated the resistance to disinfection

in the liquid phase, they confirm that PR772, with its internal lipid structure, is more sensitive

to free chlorine than the enveloped Phi6. Further research is needed to understand what might

be the underlying mechanisms.

While all bacteriophages behave similarly when exposed to 0.1% NaOCl, they exhibit strik-

ingly different inactivation rates when the chlorine concentration increases to 0.5%: MS2 and

M13 undergo a very slow inactivation past the first minute of exposure, while Phi6 and PR772

are inactivated more quickly than at 0.1% NaOCl (as expected). This might reflect the fact that

the chlorine demand of the soil load and virus mixture is proportionally more important at

0.1% compared to 0.5% NaOCl, and drying might have a stronger influence on the observed

survival at the lower concentration.

Our study has limitations. We intended to replicate the Cook et al. [24] experiment but lab-

oratory conditions may have been unintentionally different. In particular, the relative humid-

ity in our laboratory was lower than that reported by Cook et al. Conflicting information is

found in the literature regarding the effect of relative humidity on the survival of viruses on

surfaces [43,44], and it remains unclear whether and how enhanced drying would affect the

resistance of test organisms to chlorine. The time zero bacteriophage concentrations were

slightly lower than the Ebola concentrations, partly due to low recovery rates. While compari-

son of each bacteriophage to the Ebola virus was primarily based on the inactivation rate, hav-

ing different starting points makes the comparison of log inactivation difficult and we cannot

rule out that some of the observed differences could be due to variability in recovery. Please

note our data do not support the use of Phi6 as an Ebola virus surrogate in conditions different

than those described above.

Our conclusion that Phi6 is an appropriate and slightly conservative surrogate for the Ebola

virus when testing chlorine disinfection on stainless steel might be extrapolated to other sur-

faces if surface type does not impact the virus-disinfectant interaction; further research is

needed to determine whether this assumption is valid. Additionally, future research investigat-

ing the viral inactivation mechanisms underlying disinfection, and how surface chemistry and

drying might interact with disinfection processes, is recommended. A more fundamental

understanding of viral inactivation mechanisms will provide stronger support for the selection

of appropriate surrogates for highly infectious pathogens.

Lastly, we recommend continued development of partnerships between BSL-4 and non-

BSL-4 laboratories to: 1) assist in evidence-based surrogate selections; and, 2) conduct a broad

range of experiments with surrogates and then downselect critical conditions to test with

actual pathogens in BSL-4 conditions.

BSL-1 surrogate for the Ebola virus to evaluate surface disinfection efficacy
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