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Abstract

Breast cancer outcome can be predicted using models derived from gene expression data or clinical data. Only a few studies
have created a single prediction model using both gene expression and clinical data. These studies often remain
inconclusive regarding an obtained improvement in prediction performance. We rigorously compare three different
integration strategies (early, intermediate, and late integration) as well as classifiers employing no integration (only one data
type) using five classifiers of varying complexity. We perform our analysis on a set of 295 breast cancer samples, for which
gene expression data and an extensive set of clinical parameters are available as well as four breast cancer datasets
containing 521 samples that we used as independent validation.mOn the 295 samples, a nearest mean classifier employing
a logical OR operation (late integration) on clinical and expression classifiers significantly outperforms all other classifiers.
Moreover, regardless of the integration strategy, the nearest mean classifier achieves the best performance. All five
classifiers achieve their best performance when integrating clinical and expression data. Repeating the experiments using
the 521 samples from the four independent validation datasets also indicated a significant performance improvement when
integrating clinical and gene expression data. Whether integration also improves performances on other datasets (e.g. other
tumor types) has not been investigated, but seems worthwhile pursuing. Our work suggests that future models for
predicting breast cancer outcome should exploit both data types by employing a late OR or intermediate integration
strategy based on nearest mean classifiers.
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Introduction

Many predictors of breast cancer outcome have been published.

These predictors have been derived from gene expression data,

such as the 70-gene (Veer et al. [1]), and 76-gene (Wang et al. [2])

signatures, or clinical data, such as the Nottingham Prognostic

Index (NPI, [3]) and AdjuvantOnline! tools [4]. A few studies have

aimed at training a model using both of these data types. In doing

so, several approaches were followed, that we outline below.

First of all, the clinical data can be used as a means to stratify

patients in subgroups, and then train a gene expression predictor

in each of the subgroups. For instance, Wang et al. [2] and

Teschendorff et al. [5] have trained a gene expression classifier for

ER positive, and separately for ER negative patients [6].

Alternatively, multiple clinical parameters can be used as the

initial stratification. For example, Dai et al. [7] stratified into ER/

Age-high, and ER/Age-low. Stratifications for ER and HER2

have also been made using gene expression data rather than

clinical data, which could lead to better prognostic value [8]. Most

of these studies have employed a set of standard clinical variables,

such as ER status, tumor grade, tumor size, etc. Horlings et al. (In

preparation, [9]) have characterized additional clinical features

(e.g. matrix formation, central fibrosis, etc.) for an existing cohort

of 295 breast cancer samples [10]. By themselves, these additional

clinical variables have independent prognostic power. However, if

and how this power can be used to build a better classifier for

outcome prediction has not been investigated.

Gevaert et al. [11] have used a Bayesian framework to combine

expression and clinical data. They found that decision integration

(combination of the outputs of Bayesian classifiers trained on

either data type), and partial integration (structure learned per

data type, parameters learned after combining the data types) lead

to a better performance, whereas full integration (concatenation of

the two data types, followed by training the model on the complete

set) showed no improvement. These results were obtained by using

a cross validation approach on the 78 samples in the Veer et al. [1]

dataset. However, on the 19 sample validation set from the same

study the pure gene expression based classifier (i.e. no integration)

performs slightly better. A major concern in their analysis is that a

supervised preselection of genes is performed on the entire dataset,

resulting in a potential bias [12]. On the same dataset, Boulesteix et

al. [13] employed a random forests and partial least squares
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approached to combine expression and clinical data. In contrast,

Boulesteix et al. [13] reported that microarray data do not

noticeably improve the prediction accuracy yielded by clinical

parameters alone.

Daemen et al. [14] pursued an intermediate integration

approach based on combining kernels (kernel inner product

matrices derived from the separate data types) for application in a

Support Vector Machine (SVM). They applied their method to

the 295 breast cancer sample dataset from Vijver et al. [10]. For

performance assessment, they employed a train-test setup which

was not repeated, i.e. no cross-validation was performed which has

been shown to be necessary to obtain realistic performance

estimates (Michiels et al. [15]). This setup was shown to outperform

classical diagnostic systems (e.g. StGallen, National Institute of

Health (NIH) and Nottingham Prognostic Index (NPI)), but shows

comparable performance to single data type models.

Pittman et al. [16] combined clinical and expression data for

predicting breast cancer outcome by means of a tree classifier.

This tree classifier was trained using meta-genes and/or clinical

data as inputs. A proper cross validation was performed, but no

clear indication of a performance improvement is given.

All of the existing studies together are inconclusive as to whether

the combination of expression and clinical data leads to better

classifiers for predicting breast cancer outcome. Therefore, we

perform a rigorous evaluation using five classifiers of varying

complexity, three different integration strategies, and compare

them to models trained on each data type separately. We assess the

performance using a double loop cross validation protocol

allowing an unbiased comparison. We use a breast cancer dataset,

for which we have expression data [10], and an extensive

collection of clinical data (Horlings et al., In preparation, [9]).

Moreover, we use four independent breast cancer datasets for

validation of the obtained classifiers [17]. We show that all

classifiers perform better when used in conjunction with an

integration strategy. More specifically, the late OR integration

strategy is the overall best strategy. Interestingly, classifiers trained

on each data type separately have an almost equal performance.

Materials and Methods

Vijver Dataset
We have used the 295 breast cancer sample dataset from Vijver

et al. [10]. For all Ne~295 samples microarray data is available.

We selected the pe~15676 probes with an Entrez identifier. From

this dataset, we selected Nc~259 samples, which we could assign

to a poor/good outcome group based on their survival charac-

teristics (poor: event within five years of follow up, good: at least

five years of metastasis free survival), a dichotomization commonly

made, e.g. Veer et al. [1]. Thus, the remaining 36 samples were not

included in the dataset since these have been censored before five

years of follow up, making it impossible to assign them to the

correct outcome group. Throughout this paper, we will refer to the

expression data as ‘E’.

In addition to expression data, we have a variety of clinical data

available (Horlings et al., In preparation, [9]). The clinical features

include the originally published variables (e.g. Grade, Age, ER

status, etc), outputs from clinical models (e.g. NPI, StGallen, and

Adjuvant), complemented with a set of novel pathological

variables (e.g. Matrix Formation, Central Fibrosis, etc.). Table

S1 shows a complete list and details of the clinical variables used.

In total, we considered 45 clinical variables (which have no missing

values for these Nc~259 samples), of which 2 were nominal, 33

were binary or ordinal, and 10 were continuous. The two nominal

variables were converted into binary features, i.e. one feature per

group in the original nominal clinical variable. This way, we

obtained a total of pc~54 clinical features. Throughout this paper,

we’ll refer to the clinical data as ‘C’.

We applied mean-variance normalization per feature, per

dataset (i.e. for both E and C) to ensure approximately equal

spread for all features.

Other Datasets
Reyal et al. [17] have compiled a collection of six datasets,

leading to a total of 947 breast cancer samples. From this

compendium we have extracted the samples for which Age,

Tumor Size, Grade, ER status, Lymph Node status as well as the

poor/good survival label (using the same 5 year threshold as for

the Vijver datset) were available. This lead to a total of Nc~521
samples (107 poor, 414 good) from the Desmedt et al. [18], Miller

et al. [19], Loi et al. [20], and Chin et al. [21] datasets. The NPI was

calculated using these clinical parameters as previously defined

[22], and both the continuous as well as discretized NPI were

appended to the clinical data. Thus, a total of seven clinical

parameters, pc~7 (this is much less than the pc~54 in the Vijver

dataset), were available for all 521 samples. For the expression

data we used the probes that were also present in the Vijver

dataset, by matching Entrez ids (pe~11601). After this selection,

we applied mean-variance normalization per feature, per dataset

(i.e. for both E and C).

Classifiers
We employed five classifiers with varying degrees of complexity,

some of which have been used before to integrate clinical and

expression data. We shortly discuss each classifier (see Table 1):

1. A Nearest Mean Classifier (NMC), with the cosine
correlation as distance measure. This linear classifier has

previously been applied on expression data, and was shown to

outperform more complex classifiers [1,23].

2. A Simple Bayes Classifier (SBC) [24], which is based
on the assumption that the features are independent.
This simplifies the computation of the class conditional

densities significantly. In spite of this simplification, it has been

shown that this classifier performs remarkably well [24]. Class

continuous densities of continuous features were modeled using

Gaussian distributions.

Table 1. Overview of the combinations of classifiers and
integration strategies that were tested.

Type of integration

Classifier None Early Intermediate Late

NMC + + + +

SBC + + + +

3NN + + + +

SVM + + + +

Tree1 (No feature selection) + + – +

Tree2 (No pruning) + + – +

HybridTree (C) – – + –

HybridTree (E) – – + –

Tested combinations are indicated with a ‘+’, those not tested with a ‘–’. The
methods with no integration were applied to both the expression and clinical
data separately.
doi:10.1371/journal.pone.0040358.t001

Integration of Clinical and Gene Expression Data
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3. A 3-Nearest-Neighbor classifier (3NN) [25], employ-
ing the cosine correlation as distance measure, and
majority voting to assign a sample to a class. Since

there is a class imbalance, the majority vote is adjusted with the

class priors. This classifier is capable of constructing non-linear

decision boundaries. Moreover, it is frequently applied to

microarray data, see e.g. Dudoit et al. [26].

4. A Support Vector Machine (SVM) [27], using a cosine
correlation kernel [14], i.e. a kernel function which
computes the cosine correlation between two input
objects. This classifier is appropriate for small sample size

problems, and has previously been used to integrate expression

and clinical data [14]. The cosine correlation kernel for SVMs

is identical to a linear kernel, where the feature vector for each

sample has been divided by its L2-norm [28]. The C parameter

was fixed at 1 (default value, svmtrain in Matlab R2012a). To

account for class imbalance, C was rescaled by Nc=(2Npoor) for

the samples in the poor group and by Nc=(2Ngood ) for the

samples in the good group.

5. A Tree classifier (Tree) [29], which allows for highly
non-linear decision boundaries. Gini’s diversity index

was used as splitting criterion. In order to regularize the tree

classifier, we employed two variants. The first variant (Tree1),

optimizes the tree depth but selects a subset of features from all

features. The second variant (Tree2) is not pruned, but selects

features from the subset of up to 200 most predictive features as

provided by the feature selection procedure.

We excluded the Bayesian approach introduced by Gevaert

et al. [11], since it is computationally intractable to train this model

on all genes.

Cross Validation Setup
To evaluate the performance of the classifiers, and determine

the optimal number of features (tree depth for the Tree and the

HybridTree classifiers (see Section ‘Integration strategies’)), we

applied a double loop cross validation protocol (DLCV, Wessels

et al. [23]). The DLCV procedure employs two loops, an outer

loop for validation purposes to estimate the performance on a left,

out independent part of the data, and an inner loop in which the

classifier’s parameters are optimized. The DLCV procedure can

be described in a few steps:

1. For each repeat, the data is split (stratified) into five
parts (different splits for each repeat).

2. For each fold, four parts are used for the inner loop
(training set), the fifth part is used in the outer loop
for validation (validation set).

3. On the training set, a 10-fold cross validation is
performed to estimate the optimal number of
features (n is defined as the number of genes at
which the eFPFN is minimal) to be used in the
classifier, i.e. the number of features that resulted in the

best classification performance based on the 10-fold cross

validation.

4. Next, a classifier is trained on the complete training
set, using the estimated optimal number of features.

5. Finally, the performance of that classifier is assessed
on the validation set.

Typically, datasets are imbalanced in the sense that the samples

from the classes do not appear in equal fractions in the dataset.

Moreover, the imbalance will be different for different datasets.

Hence, directly comparing overall error rates (fraction of wrong

assignments), is not an appropriate comparative measure. There-

fore, classification errors were calculated by using the average

False Positive False Negative ratio, defined as:

eFPFN~

FN

TPzFN
z

FP

FPzTN
2

ð1Þ

where TP represents the number of true positives, TN the number

of true negatives, FP the number of false positives, and FN the

number of false negatives. This ratio is equivalent to 1-.5

(Sensitivity + Specificity).

The entire protocol was run 60 times (i.e. 60 repeats of the

double loop cross-validation protocol). To find the optimal

number of features, we constructed learning curves in the inner

loop for up to 200 features (or 54 when only using the clinical

data). In all experiments, we used the exact same repeats and folds.

As a result, we were able to compare the performance results in

the outer loop on a pair-wise basis, using a one-sided, paired t-test.

Kaplan-Meier curves were constructed by using the predictions

that were made in the outer loop. Consequently, in each repeat, every

sample has once been part of the test set in the outer loop. Thus, for

each sample we have a fully unbiased prediction of the binary label.

After completing the 60 repeats, we have 60 unbiased predictions of

each sample. Next, we take the mean of those 60 predictions, and

assign a sample to the poor group if the average is below :5 and to the

good group when the average is above :5. This approach is known as

the ‘pre-validation strategy’ [30]. The predictions are independent,

but nevertheless the training sets will overlap in terms of samples.

However, this only yields a small bias [30].

As an alternative performance criterion, we also considered the

AUC (Area Under the Curve) of the ROC (Receiver Operator

Characteristic) curve instead of eFPFN . We employed the perfcurve

function in Matlab, which tests all possible thresholds on the vector

of classifier output scores, and then uses trapezoidal approximation

to estimate the area under the curve (AUC). The ROC analysis can

straightforwardly be applied to the ‘early’, ‘intermediate’, and ‘no

integration’ setups. Using the vector of scores obtained from the

classifier, we varied the threshold in steps of 1 sample. However, the

late integration setups require two binary vectors, and thus require

choosing an operating point on each of the two separate classifiers.

This complicates the construction of an ROC curve. We solved this

problem as follows. Each classifier outputs a ranking of the samples

from most likely to least likely poor outcome. For N samples this

results in a total of N2 possible thresholds (ROC operating points)

for the joint classifier. Rather than considering all these possibilities,

we only considered operating points where both classifiers assign the

same number of samples to the poor (and good) outcome class,

resulting in N joint operating points. So, for the ith operating point,

we set the threshold on both the the E and C classifier such that i
samples are classified as poor outcome. This results in two binary

vectors, both with i values set to 1 (poor outcome) and the rest to 0

(good outcome). After that the two vectors of binary prediction

labels are combined using the AND/OR operator, and compared

against the true label to provide the sensitivity/specificity coordi-

nates for the ROC curve.

Feature Selection
In the inner loop of the cross validation procedure, we used a

feature filtering approach. To rank the features, we employed a t-

test for the continuous features and the chi-squared test for discrete

features. The combined set of features are then ranked based on

the p-values of the associated tests.

Integration of Clinical and Gene Expression Data
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Integration Strategies
Following Gevaert et al. [11], we considered early, intermediate and

late integration. In Figure 1 we depict each of the three strategies, and

describe them below. Table 1 shows which integration strategies are

considered in combination with which classifiers.

Classifiers are indicated by their abbreviation, followed by the

type of integration used. For example, ‘NMC; None E’ is the

nearest mean classifier (NMC) without integration (None), trained

on expression data (E).

Early Integration
For the early integration strategy we concatenated the E and C

datasets, and thereby created a single dataset, EC, with

pezpc~15730 features. Classifiers trained on EC are indicated

with the suffix ‘Early’, e.g. ‘NMC; Early for the NMC variant.

Intermediate Integration
For all classifiers (except the intermediate Tree classifier), we

first determine the optimal sets of features from each data type

separately (in the inner loop). In all subsequent steps, we used these

sets of features and all training samples. We define a as a mixing

parameter (ranging from 0 to 1) and d(a,b; c) as the cosine

correlation between vectors a and b using the optimal features in c.

What we do for each classifier is described below:

1.For the NMC classifier, we compute the centroids of
the poor and good class (denoted as cpoor and cgood ), for
both the E and C data types separately. Next, for a

sample x, we compute a combined distance (dNMC ) to the

centroids, which is a linear function of the distances in the

individual spaces, and is formulated as:

dNMC(x,cpoor; E,C)~ad(x,cpoor; E)

z(1{a)d(x,cpoor; C),
ð2Þ

dNMC(x,cgood ; E,C)~ad(x,cgood ; E)

z(1{a)d(x,cgood ; C):
ð3Þ

Subsequently, the sample x is assigned to the class for which the

distance dNMC is the smallest.

2.For the SBC classifier, we first computed the
posterior probabilities of the poor and good class,
for both data types, given a sample x. The result is

denoted as P(poorDx; E), P(good Dx; E), P(poorDx; C), and

P(good Dx; C), where P(cDx; D) denotes the probability that

sample x is in class c given the data in D). Next, the overall

posterior probability (PSBC ) is computed as a linear combina-

tion of the individual posteriors:

PSBC(poorDx; E,C)~aP(poorDx; E)z(1{a)P(poorDx; C), ð4Þ

PSBC(good Dx; E,C)~aP(good Dx; E)z(1{a)P(good Dx; C): ð5Þ

Subsequently, the sample x is assigned to the class with maximal

posterior probability.

3.For the 3NN classifier, we first calculated the
distance of a sample x to a training sample y in E
and C, leading to d(x,y; E), and d(x,y; C). Next, the

overall distance d3NN is computed as a linear combination of

the individual distances:

d3NN (x,y; E,C)~ad(x,y; E)z(1{a)d(x,y; C): ð6Þ

After calculating the distance, d3NN , from x to all training samples

y, x is assigned to the class most frequently occurring amongst the

Figure 1. Schematic indication of the expression dataset (E), clinical dataset (C), along with different integration strategies that
were tested. Examples are shown for the NMC classifier. On the left, we depict the ‘no integration’ setup, for which a separate classifier is trained on
each dataset (‘NMC; None E’ and ‘NMC; None C’). For early integration, the two datasets are concatenated into EC, on which a single classifier is
trained (‘NMC; Early’). Similarly, for intermediate integration, the datasets are combined at an intermediate step in learning the classifier (‘NMC;
Intermediate’). Finally, late integration is depicted on the right, where a classifier is trained on each dataset separately, and combined by means of a
logical function (‘NMC; Late OR’).
doi:10.1371/journal.pone.0040358.g001
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three closest samples (the majority vote is adjusted with the class

priors).

4.For the SVM classifier, we use the cosine correlation
to compute a kernel k(x,y; D), the kernel distance
between samples x and y given data type D. We then

construct a new kernel matrix kSVM by taking a linear

combination of the kernel matrices from the separate data

types:

kSVM (x,y; E,C)~ak(x,y; E)z(1{a)k(x,y; C): ð7Þ

For computational tractability, positive semi-definiteness of the

kernel has to be ensured (Mercer conditions). This is the case when

the weights employed in the linear combination (7) are non-

negative [14], a condition which is satisfied here (cosine

correlation as kernel).

5.For the Tree classifier, we followed an approach
similar to Pittman et al. [16]. First, we considered a

method where we start with a NMC trained on C (since this is a

computationally inexpensive classifier with known good

performance). This classifier splits the samples into two groups,

each associated with a node in the tree. In these and all

subsequent nodes, we branch further using a NMC trained on

E and the samples at the relevant node. The procedure was

stopped when a particular branch was pure (only poor or only

good samples), or contained fewer than ten samples. This

approach will be referred to as HybridTree (C). We also

included the complementary setup, which starts with a NMC

trained on E, and uses NMC classifiers trained on C in the

subsequent nodes (HybridTree (E)).

For the two HybridTree variants, we optimized the tree depth

in the cross validation procedure (inner loop), while we fixed the

number of features used in each classifier to the top 100 features

when trained on E, and the top ten features when trained on C.

Figure 2. Error rate of the different classifiers and integration strategies. A) Bar plot indicating the average DLCV eFPFN errors obtained
using the different classifiers, integration strategies, and types of input data. B) Kaplan-Meier curves of the NMC classifier without integration, and the
one using the Late OR integration strategy. We’ve indicated the p-value from the logrank test, and the fraction at five years.
doi:10.1371/journal.pone.0040358.g002

Integration of Clinical and Gene Expression Data
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These features were selected using all training samples (in the

inner cross validation loop) in a particular branch of the tree, using

the same feature selection methods as described above in the

Section ‘Feature selection’.

The mixing parameter a that several intermediate integration

strategies use, is also optimized in the inner loop, now using the

entire training set. More specifically, we vary a from 0 to 1 in steps

of 0.01, and then inspect the error on the training data. This

ensures that the a parameter is optimized in an unbiased fashion

since the test samples in the outer loop are not involved in

optimizing a.

Classifiers trained using the intermediate integration strategy

are indicated with the suffix ‘Intermediate’, e.g. ‘NMC; Interme-

diate’ for the NMC variant.

Late Integration
For late integration we train a classifier on E and C

separately. After that, we apply a logical function on the binary

classifier outputs (poor is positive, and good is negative). We

Figure 3. Overview of all pairwise comparisons of the classifiers. Comparisons were made by means of a one sided, paired t-test, testing the
hypothesis that the error associated with the approach listed in the row is lower than the error associated with the approach listed in the column. Red
cell shading indicates a p-value smaller than 0:05, and white cell shading indicates that the p-value was larger than 0:05. Letters in the cell refer to
particular comparisons that are discussed in the text.
doi:10.1371/journal.pone.0040358.g003

Integration of Clinical and Gene Expression Data
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considered a logical AND function, for example for the NMC

classifier::

‘NMC; Late AND’~‘NMC; None E’ AND ‘NMC;

None C’,
ð8Þ

and a logical OR function, for example for the NMC classifier::

‘NMC; Late OR’~‘NMC; None E’ OR ‘NMC; None C’: ð9Þ

The difference between the logical AND and OR functions is the

way the discordantly classified samples are treated. Using the AND

function these are assigned to the good class, and using the OR

function these are assigned to the poor class. These two options are

formally known as ‘believe the positive’ (OR) and ‘believe the

negative’ (AND) integration [31].

Results

The ‘NMC; Late OR’ Classifier Performs the Best
The lowest error is achieved using the NMC classifier with late OR

integration strategy (‘NMC; Late OR’, eFPFN = 0.273, Figure 2A.

Figure 3 (squares indicated with an ‘A’) shows that this error is

significantly lower than all other classifiers. This is a clear indication

that there is synergy between the two data types, and that the late OR

integration strategyprovidesaway toexploit the synergy. Inaddition,

Figure2Bshows that theKaplan-Meiercurveof the ‘NMC;LateOR’

classifier is more significant than those from the NMC classifiers

trained on a single data type. More specifically, the good group has

become purer at the five year point (94.4% metastasis event free,

versus 87.5% and 88.6%, respectively).

Figure 4 shows the Kaplan-Meier curves of four other signatures

that were applied to the same set of 259 samples from the Vijver

dataset (70-gene signature, Veer et al. [1]; 253-gene hypoxia

signature, Chi et al. [32]; 186-gene invasiveness signature, Liu et al.

[33]; 97-gene genomic grade index signature, Sotiriou et al. [34]).

The p-value of the ‘NMC; Late OR’ Kaplan-Meier curve is lower

than each of these other four signatures. That is, the ‘NMC; Late

OR’ strategy performs comparable to or better than all these

Figure 4. Kaplan-Meier curves of the same 259 sample subset from the Vijver dataset, employing four different signatures. P-values
reflect the logrank test.
doi:10.1371/journal.pone.0040358.g004

Figure 5. Boxplot showing the a values that are obtained using the different classifiers with an intermediate integration strategy
(300 a values from the 60 repeats of 5 folds).
doi:10.1371/journal.pone.0040358.g005

Integration of Clinical and Gene Expression Data
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signatures as measured by either the significance of the log-rank p-

value or the fraction of patients that remain metastasis free at 10

years. This is especially noteworthy in the case of the 70 genes as

this signature was trained on a subset of de Vijver dataset, and is

therefore expected to be positively biased.

Integration Improves Performance
The NMC, SBC, SVM, and Tree1 classifiers perform the best

when employing the late OR integration strategy, whereas the

3NN classifier performs the best when employing the early

integration (see Figure 3, squares indicated with a ‘B’). In addition,

the median mixing parameter a that was selected in the

intermediate approaches is around .5 or higher (see Figure 5),

suggesting that both data types are important. Thus, integration of

the two data types proves beneficial for all classifiers with the

‘Late-OR’ strategy resulting in the best performance for all

classifiers except the 3-NN classifier.

Less Complex Classifiers Outperform Complex Classifiers
Figure 3 shows that the NMC classifier outperforms all other

classifiers, with the exception of the ‘SBC; Late OR’ option.

Overall, we can approximately rank the classifiers based on the

achieved error rates in the following order: NMC v HybridTree

v SBC v 3NN v SVM (with the remark that the C parameter

of the SVM has not been optimized) v Tree. This ordering

correlates with the complexity of the classifiers, and confirms

previous results [23,35]. The most likely explanation for this

ordering is the small sample size problem, due to which the more

complex classifiers run into overtraining problems, and conse-

quently perform worse on independent data.

A Hybrid Tree Approach is not Useful on Breast Cancer
Datasets

The average tree depth that is selected when using the

HybridTree (C) classifier is 1.1. At this tree depth, the HybridTree

(C) is practically equivalent to the NMC using clinical data. On the

other hand, the HybridTree (E) has an optimal tree depth of 1.8.

This suggests that a second level of NMCs using clinical features

might be beneficial on top of the expression NMC. However, both

HybridTree classifiers are significantly outperformed by the NMC

classifiers without any integration (Figure 3, indicated with a ‘C’).

We suspect that this is due to the extremely small numbers of

samples available in the second layer and further down the tree.

The classifiers in these nodes are most likely highly overtrained

and consequently do not generalize very well.

The HybridTree (C) setup is very similar to training an

expression based classifier within clinical subgroups. Our analysis

indicates that, there is little to be gained by such a strategy. The

intermediate and late integration strategies using a NMC are

better options.

Expression and Clinical Features Perform Equally Well
A major selling point of existing gene expression based classifiers

is their superior performance compared to the existing clinical

models. However, we observe a small performance advantage for

the NMC trained on C compared with the NMC trained on E

(Figure 2. This difference isn’t significant, see Figure 3 indicated

with a ‘D’. We claim that this might be explained by the more

extensive set of clinical parameters that we used. To test this, we

split the clinical features into three groups (see Table 1): Original

(O, those available at the time the first signatures were published,

e.g. grade, age, ER status, etc.), Signatures (S, outputs of clinical

Figure 6. Error rate of the NMC classifier using different (subsets) of the E and C as input. A) Bar plot indicating the average DLCV eFPFN
errors obtained using the NMC classifier with different integration strategies, and types of input data. B) Overview of all pairwise comparisons of the
NMC classifiers, by means of a one sided, paired t-test, testing the hypothesis that the error associated with the approach listed in the row is lower
than the error associated with the approach listed in the column. Red cell shading indicates a p-value smaller than 0:05, and white cell shading
indicates that the p-value was larger than 0:05.
doi:10.1371/journal.pone.0040358.g006
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models, e.g. NPI, StGallen, etc.), and New (N, those not published

before, e.g. matrix formation, central fibrosis, etc.). We repeated

the classification experiments, using an NMC with these different

sets of clinical variables. We already tested an NMC using the

O+S+N features (‘NMC; None C’), and added NMCs using the

O+S features, O+N features and only the O features. The result is

shown in Figure 6A. Indeed, the NMC classifier using only the

original features (O), performs significantly worse than all other

options (Figure 6B). Adding the outputs from the clinical models or

new features improves the performance (variants using O+S or

O+N), and using all three (O+S+N) gives another large

improvement. Thus, by including the outputs from clinical models

and the new set of clinical features, the performance of the NMC

trained on all clinical features is equivalent to that of the NMC

trained on E. Therefore, there is no significant performance

argument to choose one over the other.

The Selected Features
The NMC with late OR strategy performs the best, and

therefore we trained a final classifier on all samples of the Vijver

dataset. The number of features was chosen by averaging the

number of features that was found to be optimal in the inner loops,

resulting in 87 and 9, for the expression and clinical features,

respectively (see Figure 7 for a pairwise correlation of all features).

First of all, we performed an enrichment analysis for the 87-

gene signature. We collected gene sets from GO, KEGG,

Reactome, WikiPathways, and the Molecular Signature Database

C2 (MSigDB), giving a total of 4525 gene sets with at least five

genes. We used the hypergeometric test to asses the significance of

the overlap, followed by a Bonferroni correction. A heatmap of the

enrichment is shown in Figure 8. The most highly enriched gene

set is the van’t Veer signature [1] from MSigDB. This is to be

expected, since there is sample overlap between the datasets from

Veer et al. [1] and Vijver et al. [10] (nevertheless it is a positive

control). Other than that, many proliferation associated gene sets

are enriched. This has previously been identified as a category

picked up by most signatures [17].

The nine clinical variables that were selected are shown in

Table 2. The set of clinical variables includes a proliferation

signature (Mitos, Grade02, Grade07). Moreover, it contains some

Figure 7. Heatmap showing the Pearson correlation of the 87 genes, and nine clinical features used by the ‘NMC; Late OR’ classifier.
On the left, the genes and clinical parameters are indicated, along with three subgroups of genes (labeled A, B, and C), that form the main clusters of
genes. The color in the heatmap scales with the correlation of a particular pair of features, and ranges from -1 (blue) to 1 (red).
doi:10.1371/journal.pone.0040358.g007
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of the hormone associated variables known to be associated with

survival (ER, ERbin, PR). In addition, the outputs from some of

the clinical models were selected (NPI Score, Clin NPI). Matrix

has not been previously associated with survival.

In order to see whether the clinical features pick up a signal

different from the expression features, we inspected their

correlation. Figure 7 shows three Subgroups ‘A’, ‘B’ and ‘C’ of

correlated genes. Subgroups A and B are correlated with the

grade/signature clinical variables (Mitos, grade02, grade07, NPI-

score, ClinNPI). In addition, the smaller set of genes in Subgroup

C, are correlated with the ER and PR clinical variables (ER,

ERbin, PR). This Subgroup is anti-correlated with Subgroups A

and B. We performed the same enrichment analysis on these three

subgroups of genes, see Figure 7. The genes in Subgroup A are

clearly highly enriched for proliferation associated gene sets, which

also confirms the positive correlation with proliferation associated

clinical parameters.

The SCUBE2 gene from the smaller Subgroup C is part of the

‘Estrogen genes’ in the signature from Paik et al. [36]. This explains

the positive correlation with the ER and PR clinical parameters.

However, the genes in Subgroup C are not enriched for any gene

sets (see Figure 7). ER regulates many genes, resulting in very large

ER associated gene sets. As a consequence, the set of genes in

Subgroup C is probably too small to be able to become

significantly enriched.

The matrix variable is not correlated with any of the 87 genes,

nor with the other eight clinical variables. Next, we tested whether

any of the genes is associated with the matrix clinical variable, by

means of a t-test. After Bonferroni correction, none of the genes

have a significant p-value (at pv0:05). Thus, the information of

the matrix variable is not captured by the expression data at all.

Integration Also Improves Performance on Four
Independent Breast Cancer Datasets

The amount of clinical data that is published for breast cancer

microarray datasets is often limited. Therefore, a direct validation

of the ‘NMC; Late OR’ classifier on independent data is

impossible (due to missing clinical features). However, from a

previously gathered collection of breast cancer datasets [17], we

extracted a total of 521 cases for which survival and seven clinical

variables were present (see Materials and Methods section). The

NMC classifier with all integration strategies was applied on this

dataset, employing the DLCV procedure with the same settings as

used for the Vijver dataset (see Materials and Methods section).

The other classifiers were omitted since the NMC classifier

performed best on the Vijver dataset.

Figure 9a shows the DLCV error rates, and Figure 9b shows

their pairwise comparison, revealing that the ‘NMC; Intermediate’

strategy performs the best, followed by the ‘NMC; Late OR’ and

‘NMC; Early’ strategies. Thus, the integration strategies also

improve the performance on these four independent datasets.

Moreover, the NMC classifiers trained using the expression or

clinical data alone perform equally well (eFPFN of 0.342 vs 0.345,

no significant difference). Figure 9c shows the Kaplan-Meier

curves of these classifiers trained using expression or clinical data

alone, showing very similar curves. In addition, employing the

‘NMC; Late OR’ strategy primarily provides a purer good group

(0.948 vs 0.903 and 0.894 respectively). The superior performance

of the integration strategies, and the equivalent performance of the

expression and clinical features confirm our findings on the Vijver

dataset.

Integration Results in Higher AUC Performance
In the DLCV procedure, we optimized the number of features

by minimizing the eFPFN error. As an alternative, we repeated the

experiments aiming to maximize the AUC, which reflects the

performance across the entire ROC curve rather than a single

operating point (see Materials and Methods). We repeated the

experiments using the NMC classifier, as that classifier achieved

the best performance in the eFPFN experiments. All DLCV

settings were kept the same (60 repeats, 5 folds, etc.). Figure 10

shows the average AUC results, a pairwise comparison of the

classifiers, and boxplots of the AUC results. On both the Vijver

dataset, and the independent validation datasets, a late integration

strategy achieves the highest AUC. Thus, we conclude that

integration also improves the AUC performance.

Discussion

For all classifiers tested, we found evidence to support the

hypothesis that integration of expression and clinical data leads to

better predictors. We hypothesize that this is the result of two

effects. First of all, both individual classifiers pick up a noisy

proliferation associated signal, and their redundancy leads to a

better prediction. Secondly, the clinical set of features has some

additional information, for example the ‘Matrix formation’

variable, which is not captured by the expression. This comple-

mentarity of features results in a synergetic effect on the

classification performance.

The late OR integration is the strategy that most often leads to

the best performance improvement on the Vijver dataset. Using

the late OR strategy, samples for which the individual classifiers

are discordant are assigned to the poor outcome group. As a result,

the identified good group becomes smaller but also purer. We

hypothesize that this is also why the performance increases, the

two data types are primarily synergetic in finding a pure group of

good cases. A similar effect was seen when combining the classifier

Figure 8. Enrichment of the 87-gene signature, and the three identified subgroups of genes A, B and C (groups defined in Figure 7
based on clustering). Cell shading in the heatmap shows the Bonferroni corrected p-value of the enrichment (hypergeometric test), white
corresponds to a p-value larger than 0:05 and the color ranges from just below 0:05 (yellow) to 10{8 or lower (dark red)) on a logarithmic scale, as
indicated in the colorbar.
doi:10.1371/journal.pone.0040358.g008

Table 2. List of the nine clinical variables selected in the
‘NMC; Late OR’ classifier.

Label Description

Mitos Subscore from grade

Grade07 Grade assessed in 2007

Matrix Matrix formation

Grade02 Grade assessed in 2002

NPI Score Continuous score from NPI

ER Percentage of ER positive cells

ER bin Discretized ER status (positive when above 10%)

Clin NPI Discretized score from NPI

PR Percentage of PR positive cells

doi:10.1371/journal.pone.0040358.t002
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outputs of existing gene expression signatures [17]. The interme-

diate and late OR integration strategy perform the best on the four

independent datasets. On these datasets, the late OR strategy also

results in a clear improvement in the ten year survival of the good

group. Identifying a very pure good outcome group may clinically

be the most interesting, since those patients could be spared

treatment.

Using the eFPFN as criterion shows that the Late OR strategy is

the best on the Vijver data, and the intermediate strategy on the

independent data (the Late OR is second best). When using the AUC

as criterion, the Late OR strategy performs the best on the Vijver

data, and the late AND strategy on the independent data (the Late

OR is second best). These differences in the best integration strategy

may be due to 1) potential differences in composition of the samples

between the cohorts, 2) the use of different microarray platforms, 3)

differences in clinical data that is available (much more extensive for

the Vijver dataset), and 4) differences in annotation (such as

differences in grading between pathologists). Some or all of these

effects will play a role in which classifier/integration strategy

performs the best. Remarkably, in all cases best performances are

achieved by integrating the two data types, showing strong evidence

of their synergy.

In the intermediate and late integration strategies, the optimal

sets of features are selected on each data type separately and not in

the context of the final integrated classifier, which might be sub-

optimal. We did not explore alternative feature selection

procedures, which take this complementarity into account, due

to the additional computational complexity.

The nearest mean classifier significantly outperforms all other

classifiers. Thus, our results support earlier indications that a

relatively simple classifier, is least hampered by the small sample

size problems. On top of that, we conclude that this is the case

regardless of the choice of integration strategy. We would like to

stress that these claims can only be made for the breast cancer data

sets examined in this study.

Gevaert et al. [11] also investigated the three types of integration

strategies, albeit with only one classifier (Bayesian network). Their

conclusion that intermediate and late integration perform better

are confirmed in this study. In addition, we show that this is the

case without preselecting genes, without discretizing the expression

data, and on a larger dataset.

Figure 9. Error rate and KM curves for the NMC classifier with all integration strategies applied to four independent dataset. A) Bar
plot indicating the average DLCV eFPFN errors obtained using the NMC classifier with different integration strategies, and types of input data. These
results were obtained using the 521 cases from the four independent datasets. B) Overview of all pairwise comparisons of the NMC classifiers, by
means of a one sided, paired t-test, testing the hypothesis that the error associated with the approach listed in the row is lower than the error
associated with the approach listed in the column. Red cell shading indicates a p-value smaller than 0:05, and white cell shading indicates that the p-
value was larger than 0:05. C) Kaplan-Meier curves of the NMC classifier without integration, and the intermediate and late OR integration strategy.
We’ve indicated the p-value from the logrank test, and the fraction at five years.
doi:10.1371/journal.pone.0040358.g009
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Daemen et al. [14] also employed the SVM with intermediate

integration, using the same type of kernel (cosine correlation

distance). They conclude from their AUC measurements that the

SVM trained on clinical data alone performs better than the SVM

using intermediate integration, which, in turn, performs better

than the SVM trained on the expression data only. Our results

show the exact same order in performances. In addition to that, we

also conclude that the SVM intermediate and clinical only

perform significantly better than the SVM on expression data

only. The best option identified in our study, an SVM with late

OR integration, was not tested by Daemen et al. [14]. However,

our analysis convincingly shows that the choice of using an SVM

with this type of kernel is rather poor for this type of dataset, since

it is outperformed by several other classifiers.

‘Hormone related’ and ‘Proliferation’ features are selected by

both the E and C classifiers indicating the importance of these

processes in predicting breast cancer outcome. Matrix formation

was selected on the Vijver dataset but was not available on

other validation datasets. Scoring additional histo-pathological

features on tumor specimens may yield further improvement in

breast cancer outcome prediction and is therefore worth

pursuing.
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