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Obstructive sleep apnea (OSA) is a common sleep disorder characterized by recurring breathing pauses during sleep caused by a
blockage of the upper airway (UA). OSA is generally diagnosed through a costly procedure requiring an overnight stay of the patient
at the hospital. This has led to proposing less costly procedures based on the analysis of patients’ facial images and voice recordings
to help in OSA detection and severity assessment. In this paper we investigate the use of both image and speech processing to
estimate the apnea-hypopnea index, AHI (which describes the severity of the condition), over a population of 285 male Spanish
subjects suspected to suffer fromOSA and referred to a Sleep Disorders Unit. Photographs and voice recordings were collected in a
supervised but not highly controlledway trying to test a scenario close to anOSA assessment application running on amobile device
(i.e., smartphones or tablets). Spectral information in speech utterances is modeled by a state-of-the-art low-dimensional acoustic
representation, called i-vector. A set of local craniofacial features related to OSA are extracted from images after detecting facial
landmarks using Active Appearance Models (AAMs). Support vector regression (SVR) is applied on facial features and i-vectors to
estimate the AHI.

1. Introduction

Sleep disorders are receiving increased attention as a cause of
daytime sleepiness, impaired work, and traffic accidents and
are associated with hypertension, heart failure, arrhythmia,
and diabetes. Among sleep disorders, obstructive sleep apnea
(OSA) is the most frequent one [1]. OSA is characterized by
recurring episodes of breathing pauses during sleep, greater
than 10 seconds at a time, caused by a blockage of the upper
airway (UA) at the level of the pharynx due to anatomic and
functional abnormalities of the upper airway.

The gold standard for sleep apnea diagnosis is the
polysomnography (PSG) test [2]. This test requires an
overnight stay of the patient at the sleep unit within a
hospital to monitor breathing patterns, heart rhythm, and
limbmovements. As a result of this test, theApnea-Hypopnea
Index (AHI) is computed as the average number of apnea

and hypopnea episodes (partial and total breath cessation
episodes, resp.) per hour of sleep. This index is used to
describe the severity of patients’ condition: low AHI (AHI
< 10) indicates a healthy subject or mild OSA patient (10 ≤
AHI ≤ 30), while AHI above 30 is associated with severe
OSA. However, polysomnography monitoring is costly and
invasive and removes the patients from their normal sleeping
environment; therefore, faster, noninvasive, and less costly
alternatives have been proposed for early OSA detection
and severity assessment. In this work we explore alternative
procedures for estimating the AHI using voice and facial
data. These procedures are studied for an OSA-symptomatic
population (i.e., individuals that have been referred to a sleep
unit for PSG); therefore, our ultimate goal will be to help in
setting priorities to proceed to the PSGdiagnosis based on the
expected OSA severity (i.e., stratification). This will ensure
a better treatment of patients according to their needs and
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will be particularly relevant in some countries as Spain where
waiting lists for PSG may exceed one year [3].

Although central obesity and an excess of regional
adipose tissue are considered major risk factors for OSA,
craniofacial abnormalities and an altered UA structure are
also recognized as important interacting factors in OSA
pathogenesis. The rationale of using image and speech anal-
ysis in OSA assessment can be found on works such as Lee
et al. [4, 5] and Davidson et al. [6], where the evolutionary
changes in physiological characteristics such as craniofacial
morphology or acquisition of speech are connected to the
appearance of OSA from an anatomical basis.

In [7] authors applied sophisticated volumetric analysis
on magnetic resonance imaging (MRI) of the upper airway
soft tissue structures in control and sleep apnea subjects.
By means of statistical tests they reported physiological
differences between the groups for tongue volume (𝑃 <
0.001), lateral pharyngeal walls (𝑃 < 0.001), and total soft
tissue (𝑃 < 0.001). Lowe et al. [8] assessed the interaction
between craniofacial structures by computed tomography of
lateral cephalometry, tongue, soft palate, and upper airway
size in control subjects and sleep apnea patients, finding
differences with respect to tongue, soft palate, and upper
airway volumes. In [9], authors studied oropharyngeal soft
tissues profile by means of cephalometric analysis in order to
detect differences between control and sleep apnea individ-
uals. Significant differences were related to the length of the
soft palate (𝑃 < 0.001), area of the soft palate (𝑃 < 0.001),
and distance of close contact between the tongue and soft
palate (𝑃 < 0.001). These previous works rely on advanced
imaging techniques, allowing a detailed examination of bony
and soft tissue structures. However, these procedures are
generally cost-expensive, time-consuming, and invasive for
patients due to radiation exposure. As a simple alternative,
based on the correlation between craniofacial anthropometry
and photogrammetry, it can be reasonable to explore the use
of image processing as noninvasive, faster, and more read-
ily accessible techniques. Face characterization technologies
have already tested on the diagnosis of genetic syndromes
[10]. In the reference work Lee et al. [4] compare the cran-
iofacial morphological phenotype of sleep apnea and control
populations applying photogrammetry on frontal and profile
digital photographs of the head of subjects under study. After
manually landmarking images, they computed a total of 71
craniofacial measurements representing the dimension and
relationship of craniofacial regions including face, mandible,
maxilla, eyes, nose, head, and neck.They reported correlation
to OSA severity (AHI) specially for some measures as neck
depth (𝑟 = 0.51, 𝑃 < 0.001) or neck perimeter (𝑟 =
0.50, 𝑃 < 0.001). Later on, Lee et al. [5] selected the
most discriminative features among these 71 measurements
extended with another 62 craniofacial measurements also
by photogrammetry. Using logistic regression they reported
76.1% correct classification between OSA and non-OSA.

The particular facial phenotype in OSA individuals has
also been found to correlate with specific upper airway
structures using magnetic resonance imaging (MRI), for
example, a correlation between tongue volume and mid-
face width [11]. These physical alterations as craniofacial

abnormalities—dental occlusion, longer distance between
the hyoid bone and the mandibular plane, relaxed pharyn-
geal soft tissues, large tongue base, and so forth—generally
cause a longer and more collapsible upper airway (UA).
Consequently, abnormal or particular speech features inOSA
speakers may be expected from the altered structure or
function of their UA.

Early approaches to speech-based OSA detection can be
found in [12, 13]. In [12] authors used perceptive speech
descriptors (related to articulation, phonation, and reso-
nance) to correctly identify 96.3% of normal (healthy)
subjects, though only 63.0% of sleep apnea speakers were
detected. The use of acoustic analysis of speech for OSA
detection was first presented in [14, 15]. Fiz et al. [14]
examined the harmonic structure of vowels spectra, finding
a narrower frequency range for OSA speakers, which may
point at differences in laryngeal behavior between OSA and
non-OSA speakers. Later on Robb et al. [15] presented an
acoustic analysis of vocal tract formant frequencies and
bandwidths, thus focusing on the supralaryngeal level, where
OSA-related alterations should have larger impact according
to the pathogenesis of the disorder.

These early contributions have driven recent proposals
for using automatic speech processing techniques in OSA
detection such as [16–21]. Different approaches, generally
using similar techniques as in speaker recognition [22],
have been studied for Hebrew [16, 21] and Spanish [17]
languages. Results have been reported for different types of
speech (i.e., sustained and/or continuous speech) [16, 18, 20],
different speech features [16, 19, 20], and modeling different
linguistic units [18]. Also speech recorded from two distinct
positions, upright or seated and supine or stretched, has been
considered [20, 23].

In this paper we explore the use of both voice and facial
features for OSA assessment. Considering the capability of
mobile devices (tablets, smartphones, smartwatches, etc.) for
an easy collection of physiological data, such as voice and
face images, these techniques could be useful for very simple
and noninvasive preliminary assessment of OSA. Frontal and
profile images and voice recordings were collected for a large
population of 285 male Spanish speakers suspected to suffer
from OSA and derived to a Sleep Disorders Unit. Pictures
and recordings were collected in a supervised but not highly
controlled scenario to resemble a mobile device scenario.

Deciding which features can be useful to estimate the
AHI represents a different challenge for facial and vocal
characteristics. Automatic facial characterization to estimate
the AHI can rely on a set of facial features where previous
research (Lee et al. [4, 5]) has already linked to the craniofacial
phenotype of sleep apnea. However, existing research has
not been able to clearly identify a set of specific acoustic
features for OSA speakers. To tackle this difficulty, in our
research we analyze a corpus of four speech sentences that
was specifically designed to include a set of characteristic
sounds in OSA voices. These four sentences were designed
following the reference research in [12, 13], where Fox et al.
identify a set of possible speech descriptors in OSA related
to articulation, phonation, and resonance. So, for example,
the third sentence in our corpus includesmostly nasal sounds



Computational and Mathematical Methods in Medicine 3

to detected resonance anomalies (more details on the design
criteria for this corpus can be found in [19]). Once focused
on an OSA-specific acoustic space, state-of-the-art speaker’s
voice characterization technologies, previously tested and
demonstrated to be effective in the estimation of other
speaker’s characteristics such as height [24] and age [25], were
used to estimate the Apnea-Hypopnea Index (AHI). We can
support this approach by considering that similar methods
have been demonstrated to outperform other approaches
(such as the use of formant analysis or GMMs models) for
detecting other physiological variables as age, height, or BMI.

Besides facial and voice features we also evaluated AHI
prediction using the available clinical variables: age, height,
weight, BMI (Body Mass Index), and neck circumference.
This allows us to compare AHI estimation when using
only facial features, speech features, or clinical variables
and also when combining all the available information. To
our knowledge this is the first time that AHI prediction is
explored by analyzing both speech signal and facial image
processing techniques and considering their combination
with other clinical indicators of sleep apnea.

2. Methods

2.1. Subjects and Experimental Design. The population under
study is composed of 285 male subjects referred to a
pneumonologist and presenting symptoms of OSA such as
excessive daytime sleepiness, snoring, choking during sleep,
or somnolent driving. Clinical variables (age, height, weight,
BMI, and cervical perimeter) were collected for each indi-
vidual. This database has been recorded in Hospital Quirón
Málaga (Spain) since 2010. All the work was performed
strictly following the ethical consideration of the center and
the participants were notified about the research and their
agreement obtained. Statistics of the clinical variables used
in this study are summarized in Table 1.

The diagnosis for each patient was confirmed by special-
ized medical staff through polysomnography (PSG), obtain-
ing the AHI on the basis of the number of apnea and
hypopnea episodes. Two types of data were collected from the
patients, as explained in the following:

(i) Acoustic data: patients’ speech was recorded prior
to PSG. All speakers read the same 4 sentences
and sustained a complete set of Spanish vowels [i,
e, a, o, u]. As there is no clear set of specific
acoustic features characterizing OSA speakers, these
four speech sentences were designed following the
reference research in [12, 13], where Fox et al. identify
a set of possible speech descriptors in OSA speakers
related to articulation, phonation, and resonance. So,
for example, the third sentence in our corpus includes
mostly nasal sounds to detected resonance anomalies
(more details on the design criteria for this corpus
can be found in [19]). Recordings were made in a
room with low noise and patients at an upright or
seated position. Recording equipment was a standard
laptop with USB SP500 Plantronics headset. Speech
was recorded at a sampling frequency of 50 kHz and

Table 1: Descriptive statistics on the 285 male subjects.

Clinical variables Mean SD∗ Range
AHI 21.7 17.4 0.0–84.4
Weight (kg) 92.5 16.9 61.0–162.0
Height (cm) 175.7 7.1 157.0–197.0
BMI (kg/m2) 30.0 5.0 20.0–52.3
Age (years) 48.4 12.0 21.0–85.0
Cervical Perimeter (cm) 42.3 3.1 34.0–52.0
AHI: Apnea-Hypopnea Index; BMI: Body Mass Index.
∗SD: standard deviation.

encoded in 16 bits. Afterwards it was downsampled to
16 kHz before processing.

(ii) Photographic data: frontal and profile digital pho-
tographs of the head were obtained before the speech
recordings, also at the same normal hospital room
without any particular illumination condition. Dif-
ferently from [4, 5], no special actions were taken
beyond a simple control for patients’ front and profile
photographs and some instructions to guarantee that
the neck area is visible in the profile image. No cali-
bration action for allowing the conversion from pixel
measurements to metric dimensions (e.g., measuring
the distance from the camera) was taken, and manual
identification (by palpation) of facial landmarks was
also avoided. A standard Logitech QuickCam Pro
5000 webcam was used to collect images with a size
of 640 × 480 pixels and a color depth of 24 bits.

Data has been collected since 2010 and several operators
(up to six) have been involved, always blinded to the results of
the polysomnography.This can guarantee that our results are
not dependent on a particular acquisition process. However,
we have not had the opportunity of testing the same subject
several times.

2.2. Problem Formulation . We are given a training dataset
of acoustic/facial features and Apnea-Hypopnea Index (AHI)
information 𝑆tr = {x𝑛, 𝑦𝑛}

𝑁

𝑛=1
, where x

𝑛
∈ R𝑝 denotes the

feature vector representation (acoustic/facial) of the training
dataset and 𝑦

𝑛
∈ R denotes the corresponding value of AHI.

The goal is to design an estimator function 𝑓 for AHI,
such that, for an acoustic/facial feature vector from an unseen
testing subject xtst, the difference between the estimated value
of aApnea-Hypopnea Index𝑦 = 𝑓(xtst) and its truth or actual
value 𝑦 is minimized.

2.3. Acoustic Features. Speaker recognition technologies usu-
ally represent the acoustic information in a speech utter-
ance as a sequence of feature vectors corresponding to the
short-term spectral envelope of the embedded sounds. In
this study Mel-Frequency Cepstrum Coefficients (MFCC)
extended with their first order derivative will be used, as
they are commonly adopted inmost of the automatic speaker
recognition systems [26, 27].

Moreover, as different utterances naturally exhibit
sequences of MFCC feature vectors with different lengths,
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Figure 1: Acoustic representation of utterances and SVR training.

they are generally transformed into fixed-length vectors x
representing all the relevant acoustic information in the
utterance (all the variability and therefore the vector space
of this representation are called total variability [28]). This
will also be very convenient in our case since it allows a
fixed-length acoustic vector x to be used as input to the
estimator function𝑓, which makes estimationmuch simpler.

The most common approach for this transformation,
called i-vectors, was followed in our study, and it is depicted
in Figure 1. I-vectors were developed on the success of
modeling the probability density function of sequences of
feature vectors as a weighted sum of Gaussian component
densities, GaussianMixtureModels (GMM). As illustrated in
Figure 1, a GMM representing an utterance from a particular
speaker can be obtained through adaptation of a universal
background model (GMM-UBM) trained on a large speaker

population [29]. Once aGMM is adapted from aGMM-UBM
using the utterances of a given speaker, a supervector will
be just the stacked pile of all means of the adapted GMM
[26]. As the typical number of Gaussian components in a
GMM for speaker recognition is between 512 and 2048, and
dimension of MFCC acoustic vector takes values from 20
to 60, speech utterances will then be represented by high-
dimensional vectors x of sizes 10 K to 120K.

Beyond high-dimensional supervectors, a new paradigm
called i-vector has been successfully and widely used by
the speaker recognition community [28]. It relies on the
definition of a low-dimensional total variability subspace T
and can be described in the GMM mean supervector space
by

m = 𝜇 + Tw, (1)
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where m is the GMM supervector for an utterance, 𝜇 is
the utterance-, speaker-, health-, and clinical condition-
independent supervector obtained from a universal back-
ground model GMM-UBM. T is a rectangular matrix of low
rank, which defines total variability space (representing all
sources of variability in speech recordings). The matrix T is
estimated using the EM algorithm in a large training dataset.
An efficient procedure for training T and MAP adaptation of
i-vectors can be found in [22]. w is a random vector having a
standard normal distribution𝑁(0, 𝐼), which are composed of
total factors. These total factors represent the speaker’s voice
characteristics.The total factors are defined by their posterior
distribution conditioned to Baum-Welch statistic for a given
utterance. The mean of this distribution corresponds to i-
vectors.

Compared to supervectors, the total variability modeling
using i-vectors has the advantage of projecting the high
dimensionality ofGMMsupervectors into a low-dimensional
subspace, where most of the speaker-specific variability is
captured.

Both supervectors and i-vectors have been successfully
applied to speaker recognition [28], language recognition
[30], speaker age estimation [25], speaker height estimation
[24], and accent recognition [31]. Consequently, we believe
that the success of using i-vectors in challenging tasks,
where speech contains significant sources of interfering
intraspeaker variability (speaker weight, height, etc.), is a
reasonable guarantee for exploring its use in estimating the
Apnea-Hypopnea Index (AHI). Furthermore, as the same
microphone was used for all recording and all the speakers
read the same corpus of four sentences, both channel and
phonetic variabilities are minimized so it is reasonable to
think that i-vectors will capture characteristics from sounds
that can be more affected by OSA.The interested reader may
find additional discussion on this topic in [32] together with a
comparison when using supervectors and i-vectors to predict
AHI and other clinical variables.

2.4. Speech Databases for Development. To guarantee that
all the relevant speaker information is contained in the
low-dimensional vector space, the development of i-vectors
requires training the total variability subspace T using
recordings from a large speaker population database rep-
resentative of a wide range of different speakers, channels,
or noisy conditions. However, in our clinical environment,
the acoustic space only includes continuous/read Spanish
speech recorded with a single microphone and in a relatively
noise-free environment. Therefore, our variability subspace
should mainly represent the rich articulation variability of
a variety of Spanish sounds pronounced by a wide range of
speakers. So far, for development, we used different databases
containing microphonic speech sampled at 16 KHz, covering
a wide range of phonetic variability from continuous/read
Spanish speech (see, e.g., ALBAYZIN [33], as it was one the
databases we used). The development dataset used to train
the total variability subspace andUBM includes 25451 speech
recordings from 940 speakers. Among them 126 speakers,
certainly diagnosed with OSA and not used for tests, were
also included so that the Tmatrix also reflects the variability

due to the presence or absence ofOSA-specific characteristics
of speech.

2.5. Facial Features. One of the most important stages in
automatic face recognition is feature extraction. In our case,
the objective is to have a specific compact and structured
representation of craniofacial characteristics able to describe
both inter- and intraclass variability for OSA and non-OSA
individuals. There are three main types of facial features
in state-of-the-art automatic face recognition [34]: holistic
features, local features, and features derived by statistical
models. In this study we have taken as reference the work
from Lee et al. in [4, 5], so local features are used. However,
as described below, our major differences compared to the
research in [4, 5] are the use of supervised automatic image
processing and the definition of more robust craniofacial
measurements adapted to our less controlled photography
capture process.

A first critical step for extracting local facial features is
to identify a set of relevant landmarks on images of subjects
under study. The database of facial images contains frontal
and profile digital photographs of 285 male subjects, that is,
570 digital photographs needed to be processed to obtain
landmarks.Manual annotation of all images, as done in [4, 5],
can be tedious and, even if done by skilled personal, it is
prone to errors due to subjectivity. Consequently, we decided
to use a widely used automatic landmarking method, first
introduced by Cootes et al. in 2001 [35], based on Active
AppearanceModel (AAM) [36]. Based on a priori knowledge
of landmark positions, AAM combines a statistical model,
which represents the variation of shape and texture of the
face (object), with a gradient-descent fitting algorithm. As
Figure 2 shows, in AAMs for frontal and profile photographs
we use a grid of 52 landmarks taken from a general face
identification system and a set of 24 landmarks including
specific marks for the neck area, respectively.

During the training stage, frontal and profile AAMs
were built from a set of manually annotated photographs
using the aam tools software [37]. During the fitting stage,
starting from a reasonable landmark initialization, the AAM
algorithm iteratively corrects the appearance parameters by
minimizing the squared error to represent the texture of the
target face. Although theAAMperformswell for representing
shape and appearance variations of an object, the model is
location-sensitive to face’s position. In this study this effect
is increased because photographs were not taken following a
highly controlled procedure (illumination conditions, control
of distance from the camera, and control of frontal and
profile position). Hence a human-supervised stage was found
necessary in order to supervise and, if necessary, correct some
large deviations in the automatically generated landmarks.

Once landmarks were generated we proceed to extract
a set of local features based on previous studies [4, 5] but,
as stated before, adapted to our less controlled photographic
process. More specifically, a main difference with Lee et al.
research is that in [4] photography was performed using
a professional camera and following a highly controlled
procedure: frontal position was achieved controlling that
subject’s facial landmark nasion was aligned along the subject
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Figure 2: Landmarks on frontal and profile view.

alignment plane while ensuring both ears were seen equally
from the front, and a laser pointer head-clip pointing to
calibrated markings on the side wall was used to ensure
the profile views were perpendicular to the frontal views.
This highly controlled scenario contrasts to our objective of
exploring the possibility of using speech signals and images
captured in a more informal way using standard portable
devices. Besides that, there are two another remarkable
differences compared to [4]. Firstly, we did not include any
calibration procedure that could have allowed us to convert
pixel measurements to metric dimensions. This could have
been done as in [4] by including a procedure to measure
the distance from the camera or by sticking a calibration
marker in the patient’s face (as a circular nylon washer).
We decided not to follow any of these calibration processes
trying to explore results in a more usable scenario, but we are
aware that this makes calibrated measurements unavailable,
which according to [5] should have provided better results.
A second decision that we also made looking for a better
user experience was to avoid any manual identification (by
palpation) of facial landmarks.

Consequently, based on the results in [4, 5] and con-
sidering our limited photography capture process, only
uncalibrated measures (i.e., relative measurements or angles)
were used, and three alternative craniofacial measurements
related to those identified by Lee et al. were designed. These
measurements are described in the following.

2.5.1. Cervicomental Contour Area. One of the anatomical
risk factors for OSA is the fat deposition on the anterior neck
[38]. In [4, 5] this risk factor is captured by cervicomental
angle (neck-cervical point-mentum), where an increase of
neck fat deposition causes an increase of this angle. However,
considering our limited photography capture process, it is
extremely difficult to detect points such as: cervical point,
thyroid, cricoid, neck plane, or sternal notch involved in the
cervicomental region. Consequently, we defined an alterna-
tive measurement, more robust to both our image capture

and automatic landmarking processes. This measure was
defined using a contour in the cervicomental region traced by
six points, placed equidistantly, which were annotated with
high reliability following our semiautomatic AAM method
(see Figure 3). In this cervicomental measure, the area of a
rectangle defined by bottom left point 23 and upper right
point 11 is used to normalize the area defined by points 11 12
20 to 23 and the right and low sides of the 23–11 rectangle.
This results in an uncalibratedmeasurement with a value that
decreases as the fat deposition on the anterior neck increases.

2.5.2. Face Width. In Lee et al. [11], magnetic resonance
imaging (MRI) was used to study the relationship between
surface facial dimensions and upper airway structure in
subjects with OSA. Significant positive correlations were
detected between surface facial dimensions and upper airway
structures, in particularmidfacewidth and interocular width.
Based on Lee’s work we used these two facial dimensions
to define a face width uncalibrated measurement as the
midface width to interocular width ratio. The corresponding
landmarks and measures are depicted in Figure 4.

2.5.3. Tragion-Ramus-StomionAngle. In Lowe et al. [8], it was
reported that patients with OSA had retracted mandibles,
which is related to the inclination of the occlusal plane
and the ANB angle (measuring the relative position of the
maxilla to mandible). Based on Lowe’s work we proposed
an uncalibrated measure (i.e., an angle) intended to capture,
to some extent, the characteristic mandible position or
mandibular retraction in OSA individuals. To define this
angle we selected a set of landmarks that not only are related
to the posterior displacement of the mandible but also could
be accurately detected by our automatic landmarking process
on the photographs without need of prior marking. The
proposed measurement (Figure 5) is the angle between the
line ramus-stomion (points 16 and 6) and the ramus-tragion
(points 16 and 19).
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Figure 3: Cervicomental contour area.

Figure 4: Face width.

2.5.4. Facial Feature Vector. The facial feature vector then
consists in the combination of the 3 craniofacial measure-
ments described before. This feature vector is the input to a
SVR regression model used to predict the AHI.The craniofa-
cial features extraction process is illustrated in Figure 6.

2.6. Regression Using SVR. For estimating the Apnea-
Hypopnea Index (AHI) in our OSA database we followed
a similar approach as the one used in [24] and [25] for
height and age, respectively. As depicted in Figures 1 and
6, once facial/acoustic features are represented by their
corresponding feature vector, x, support vector regression
(SVR) is employed as the estimator function 𝑓𝑗 for the
Apnea-Hypopnea Index 𝑦𝑗.

Support vector regression (SVR) is a function approxima-
tion approach developed as a regression version of the widely

Figure 5: Tragion-ramus-stomion angle.

known Super Vector Machine (SVM) classifier. Firstly, the
input variable is mapped onto a high-dimensional feature
space by using a nonlinear mapping. The mapping onto a
high-dimensional space is performed by the kernel function.
The kernel yields the new high-dimensional feature by a
similarity measure between the points from the original
feature space. Once the mapping onto a high-dimensional
space is done then a linearmodel is constructed in this feature
space by finding the optimal hyperplane in which most of
the training samples lie within 𝜖-margin (𝜖-insensitive zone)
around this hyperplane [39]. The generalization of SVR’s
performance depends on a good setting of two hyperparam-
eters, 𝜖 and 𝐶, and the kernel parameters. The parameter 𝜖
controls the width of the 𝜖-insensitive zone, used to fit the
training data. The width of the 𝜖-insensitive zone determines
the level of accuracy of approximation function. It relies
entirely on the target values of the training set.The parameter
𝐶 determines the trade-off between the model complexity,
controlled by 𝜖, and the degree towhich deviations larger than
the 𝜖-insensitive zone are tolerated in the optimization of the
hyperplane. Finally, the kernel parameters depend on the type
similarity measure used.

In this paper, support vector regression (SVR) is applied
to estimate the Apnea-Hypopnea Index (AHI) and linear
kernel is used to approximate the estimator function 𝑓𝑗.

The training and testing was implemented using LIBSVM
[40] and the optimization of the hyperparameters of the SVR
and the parameter of the RBFwas performed by a grid search,
which is a simply exhaustive searching through the subset of
hyperparameters and parameters guided by a 5-fold cross-
validation as performance metric.

2.7. Performance Metrics. The performance of the proposed
prediction scheme was evaluated using both the Mean Abso-
lute Error (MAE) of the subject’s estimated AHI and the
Pearson linear correlation coefficient (CC) between the actual
and estimated values of AHI.
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Figure 6: Craniofacial AHI prediction model.

2.7.1. Leave-One-Out Cross-Validation and Grid Search. In
order to validate the regression model we employed leave-
one-out cross-validation. To do this, one subject is removed
from dataset for testing data and the other for training data.
Then, in order to find the optimum complexity of the model,
we apply a 5-fold cross-validation on training data to find the
optimal parameters values of the support vector regression
model. For this purpose we implement a “grid search” on
the hyperparameters of the SVR model using 5-fold cross-
validation. The grid search consists of an exhaustive search
through specified set of hyperparameters (𝜖 and𝐶) of the SVR
model. Therefore, various pairs of hyperparameters values
are tried and the one with the best cross-validation MAE is
picked. After finding the optimal parameter value, we train
the model using the optimal hyperparameter values and the
training dataset. Finally, the testing dataset is used to predict
the AHI assigned to each input by using SVR models trained
solely from the training dataset.Thewhole process is repeated
for all dataset and it is depicted in Figure 7.

3. Results

During the testing phase, as it is shown in Figure 8, each sub-
ject is first processed by extracting its acoustic features/facial
features and then the features extracted are stacked for
obtaining fixed-length vectors. These vectors are used over
the trained SVR models to predict the value of the subject’s
AHI.

Both to compare the system performance and to have a
reference when predicting the AHI, similarly to Lee et al.
work [5], we also trained SVR models using the available
clinical variables as input vectors (age, Body Mass Index,
and cervical perimeter), which are well known predictors for
AHI. Mean Absolute Error (MAE) and Pearson correlation
coefficient (CC) results when predicting AHI using these
clinical variables are presented in Table 2.

Prediction results using i-vectors and craniofacial vectors
for AHI prediction are listed in Tables 3 and 4. Table 3
includes Mean Absolute Error and correlation coefficient
results when using only the three uncalibrated craniofacial
measurements (cervicomental contour area, face width, and
tragion-ramus-stomion angle) and when combining these
uncalibrated craniofacial measurements with the clinical
variables (age, Body Mass Index, and cervical perimeter) in
a single feature vector.

Results in Table 4 are given for speech acoustic repre-
sentation using i-vectors with different dimensionality (from
400 to 30). Somewhat better results can be observed for low
dimensionality (50) probably because of the limited number
of speakers in the development databases. As in Table 4,
performance results are also given when combining i-vectors
and clinical variables. The analysis of these results shows a
very weak prediction capability of OSA when using speech
acoustic features.

4. Discussion

Our results indicate that facial features extracted from frontal
and profile images can be better predictors of OSA than
acoustic i-vectors features extracted from reading speech.
Although different previous studies [20, 21], including ours
[19], have reported good results using speech processing
techniques for OSA assessment, our recent results, as those
reported in this work using a large number of subjects
recorded in a clinical practice scenario, only reveal a weak
connection between OSA and speech. This fact has also
been discussed in our research in [41] where only very
weak correlations were detected between AHI and formant
frequencies and bandwidths extracted from sustained vowels.
Results reported in this paper, based on the more powerful
acoustic representation of speech using i-vectors, seem to
follow a similar trend. This has motivated us to address a
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critical review of previous research using speech processing
for OSA assessment, presented in [41], where we report
several limitations and methodological deficiencies that may
have led to previous overoptimistic results. Considering now
the features extracted from frontal and profile facial images,
we can compare our results to those reported in [4] which,
to the best of our knowledge, represent the first and only
research reference in this field. From a functional point of

view, our approach presents two major differences: (1) land-
mark identification is done using supervised automatic image
processing instead of through precise manual identification
as in [4], and (2) we use three uncalibrated photographic
measurements, inspired by those selected by Lee et al. [5]
but more suitable for a less controlled photography capture
process. Besides these differences, overall, our results are
close and follow a similar trend compared to those reported in
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Table 2: AHI estimation using clinical variables.

Feature MAE Correlation coefficient (CC)
Clinical variables 12.32 0.40
The correlation coefficients (CC) are significant beyond the 0.001 level of
confidence.

Table 3: AHI estimation using craniofacial measures.

Feature MAE Correlation coefficient (CC)
Uncalibrated
craniofacial features 12.56 0.37

Uncalibrated
craniofacial features +
clinical variables

11.97 0.45

The correlation coefficients (CC) are significant beyond the 0.001 level of
confidence.

[5]. As it can be seen in Tables 2 and 3, correlation coefficient
(CC) and Mean Absolute Error (MAE) between truth and
estimated AHI values are only slightly better when using
only clinical variables (CC = 0.40; MAE = 12.32) than when
only relying on uncalibrated facial measurements (CC =
0.37; MAE = 12.56). Furthermore, when clinical variables
and uncalibrated measurements are combined together, a
moderate increase in performance is observed (CC = 0.45;
MAE = 11.97), though in [5] results are only given when
combining calibrated measurements with clinical variables.

An important issue when contrasting our results is that
we have focused on predicting the AHI (using SVR) while
the objective in [5] is to classify or discriminate between
subjects with OSA (AHI ≥ 10) and without OSA (defined
by an AHI < 10) using logistic regression and classification
and regression trees (CART). Therefore, we performed some
additional tests using our estimated AHI value to classify
subjects with OSA (truth AHI ≥ 10) and without OSA (truth
AHI < 10). Classification results using this procedure are
shown in Table 5. We are aware that better results should
be obtained if a classification algorithm, as SVM, was used,
instead of regression with SVR followed by classification
using the estimated AHI, but we are only looking for some
figures that allow us to draw some further comparisons.

Results in Table 5 show that this approach classified 70.8%
of the subjects correctly when using only our uncalibrated
measurements, 70.5% when using only clinical variables, and
72.2% when combining both (performance results in terms
of sensitivity, specificity, and area under the ROC are also
shown in the table). Again these results are similar to those
reported by Lee et al. (also shown in Table 5): an accuracy of
71.1% for uncalibrated measures, 76.1% for clinical variables
(age, BMI, and witnessed apneas), and 79.4% for clinical
(witnessed apneas; modifiedMallampati class) and calibrated
measures. Despite this similar trend, our results show lower
OSA discrimination for all performance metrics (specially
when comparing accuracy results for craniofacial features +
clinical variables: 72.2% versus 79.4%). These differences
might not be statistically significant considering the confi-
dence intervals when developing the classification models;
for example, Lee et al. [5] indicate that the assessment of

the accuracy during their cross-validation process exhibited
a range of 61% to 76%, which includes the accuracy found in
our results. Nevertheless, it could be worth analyzing other
reasons for this loss of accuracy besides the obvious ones
that derive from our use of a prediction technique (SVR) for
classification and less controlled uncalibratedmeasurements.
There may be some differences in the populations under
study, though not in terms of OSA prevalence, as there
are similar values in both studies. However, the population
explored by Lee et al. [5] includes both males (76.1%) and
females (23.9%) while in our case only male individuals are
studied. Lee et al. [5] do not provide information on the
male/female balance in OSA and non-OSA groups, and the
significantly lower prevalence of OSA in women compared
tomen [42] together with the differences between female and
male craniofacial OSA risk factors [43] may introduce some
bias in the performance results. As an illustration of this,
in [32] we have shown how, due to the notable differences
between female and male voices [44], when using speech
acoustic features for OSA assessment over OSA and non-OS
populations with imbalanced female/male proportions [20],
clearly overoptimistic discrimination results are obtained.

It is also interesting to remark that in [5] only two
clinical variables, witnessed apneas (i.e., the bed partner
reporting witnessed apneas in a questionnaire) and modified
Mallampati class (a visual classification of the anatomy of the
oral cavity used to identify OSA patients) [45], were found
to improve the classification accuracy when combining facial
and clinical variables. As authors point out, this suggests
that calibrated measurements are more important predictors
than age and BMI (and highly correlated with them), while
witnessed apneas andMallampati score provide complemen-
tary information. Unfortunately, at present we do not have
information on witnessed apneas and Mallampati score for
all the individuals in our database. Nevertheless, according
to our results, both OSA detection and AHI estimation (see
Tables 2–5) show improvements when uncalibratedmeasures
are combined with age, BMI, and cervical perimeter. We
may thus hypothesize that the possible loss in OSA detection
performance due to our less precise uncalibrated facial mea-
surements can be compensated when adding information
from easily available clinical variables (age, BMI, and cervical
perimeter). Additionally, based also on Lee at al. results,
we should expect further improvements if we were able
to add information on witnessed apneas and Mallampati
score. We believe that, looking for a simple application on a
mobile device, information for witnessed apneas can be easily
obtained from the patient itself. For the Mallampati score,
though its use for OSA detection is controversial [46], we
are currently working on its automatic estimation through
image processing techniques on photography of patient’s
oropharynx.

Another relevant point to discuss, already stated in [5],
is that facial measurements related to size (e.g., face width)
seem to be better OSA predictors than facial shapes. This
will guide our future research towards two complementary
lines. On the one side, because we were looking for a usable
scenario, we did not include any calibration procedure that
could have allowed us to convert pixel measurements to
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Table 4: AHI estimation using i-vectors.

Feature
MAE Correlation coefficient (CC)

i-vector dimension i-vector dimension
400 300 200 100 50 30 400 300 200 100 50 30

i-vector 13.79 13.86 14.20 14.05 13.79 14.05 0.08 0.09 0.05 0.09 0.13 0.08
i-vector + clinical variables 12.80 12.43 12.48 12.63 12.55 12.68 0.33 0.38 0.38 0.36 0.38 0.37
The correlation coefficients (CC) are significant beyond the 0.05 level of confidence.

Table 5: Classification results of prediction of OSA using AHI estimated.

Feature Accuracy Sensitivity Specificity ROC AUC
Clinical variables 70.5% 72.6% 57.5% 0.72
Clinical variables, Lee et al. [5] 76.1% 86.0% 59.1% 0.78
Uncalibrated craniofacial features 70.8% 71.8% 62.1% 0.67
Uncalibrated craniofacial features Lee et al. [5] 71.1% 80.7% 54.5% 0.80
Uncalibrated craniofacial features + clinical variables 72.2% 73.3% 64.8% 0.73
Calibrated craniofacial features + clinical variables, Lee et al. [5] 79.4% 85.1% 69.7% 0.87

metric dimensions. Our future research will explore users’
acceptance to follow simple procedures, for example, sticking
a calibration marker in their faces (as a circular nylon
washer [4]), and we will evaluate the expected OSA detection
improvement from the use of calibrated measurements (i.e.,
sizes) in our application scenario. On the other side, we
believe that beyond simple measurements from facial land-
marks the extraction of richer information related to facial
shapes and textures using more powerful image processing
techniques [47–49] can provide new insights into the OSA
craniofacial phenotype and even characterize the sleepy facial
appearance [50].

We acknowledge several limitations in our work that
should be addressed in future research. Predictive results
presented in this paper are limited to a particular sleep clinical
population; consequently other clinical and general com-
munity populations should be studied to assess the clinical
utility of our models. We have only studied male Caucasian
subjects, and both sex and ethnicity can be relevant factors
mainly related to facial measurements and speech features.
Our database currently includes an important number of
females, so the extension of this study on female individuals
could be especially interesting as apnea disease is still not well
understood in women.

The weak correlation observed between speech and
OSA can be limited by the modelling approach we have
followed (MFCC and i-vectors), and different results could be
obtained using other acoustic representations or modelling
approaches. For example, different techniques to compensate
unwanted sources of variability in the i-vector subspace, as
those proposed in [25, 51], could be considered.

We also have to acknowledge the limitation of recording
speech at night when patients go to the sleep unit. Other
acoustic differences could be expected at different times of
the day, for example, soon after waking in the morning voice
could reflect laryngeal trauma from overnight snoring. In

fact, recent research has already pointed at other possible
effects on patient voices that can help in OSA detection
as analyzing speech recorded from a supine or stretched
position [20, 23]. Even promising results have been reported
from the acoustic analysis of nose and mouth breath sounds
recorded in supine and upright positions [52, 53]. Our
results are also limited to speech from Spanish speakers,
so comparisons with other languages will require a careful
analysis of language-dependent acoustic traits in OSA voices.

Finally, to evaluate the negative impact of different factors
generally present in real scenarios, future studies will need
to examine the effect of using different mobile devices with
different cameras and microphones, testing the effect of
different illumination conditions, as well as variable camera
orientations and distances.

5. Conclusions

Frontal and profile images and voice recordings collected
from a clinical population of 285 males were used to estimate
the AHI using image and speech processing techniques.
State-of-the-art speaker’s voice characterization based on i-
vectors only achieved a very weak performance for AHI esti-
mation. Better prediction results were attained when using
three uncalibrated photographic measurements calculated
after detecting facial landmarks. Our experimental results
show that OSA prediction can be improved when combining
both clinical and facial measurements. The analysis of these
results, contrasted to relevant previous research, points at
several ways of improvement that can make OSA detection
possible in practical scenarios using mobile devices and
automatic speech and image processing.
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Blanco-Murillo, E. López-Gonzalo, and L. Hernández-Gómez,
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