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ABSTRACT

Because the properties of horizontally-transferred
genes will reflect the mutational proclivities of
their donor genomes, they often show atypical com-
positional properties relative to native genes.
Parametric methods use these discrepancies to
identify bacterial genes recently acquired by hori-
zontal transfer. However, compositional patterns of
native genes vary stochastically, leaving no clear
boundary between typical and atypical genes. As a
result, while strongly atypical genes are readily
identified as alien, genes of ambiguous character
are poorly classified when a single threshold separ-
ates typical and atypical genes. This limitation
affects all parametric methods that examine genes
independently, and escaping it requires the use of
additional genomic information. We propose that
the performance of all parametric methods can be
improved by using a multiple-threshold approach.
First, strongly atypical alien genes and strongly
typical native genes would be identified using con-
servative thresholds. Genes with ambiguous com-
positional features would then be classified by
examining gene context, including the class (native
or alien) of flanking genes. By including additional
genomic information in a multiple-threshold frame-
work, we observed a remarkable improvement in the
performance of several popular, but algorithmically
distinct, methods for alien gene detection.

INTRODUCTION

In recent years, tremendous effort has been directed to-
ward understanding the evolutionary dynamics of bacter-
ial genomes. Among their many remarkable features,
chimerism arising from the acquisition of genes from un-
related organisms has evoked intense debate (1,2). This
phenomenon, termed horizontal or lateral gene transfer
(LGT), is now considered a potent force driving bacterial
genome evolution (3), and the accumulation of whole

genome sequences has allowed its scope to be evaluated
with increasing precision. Because change in gene inven-
tory is an historical process, determining genes’ evolution-
ary history depends on indirect evidence imbedded in their
sequences. A number of disparate approaches to identify
horizontally acquired genes have been proposed, falling
mainly into two classes (4,5): phylogenetic methods are
based on comparative study of many genomes to find
genes with unusually taxonomic distributions, while para-
metric methods explore a single genome to find genes that
are atypical with respect to the majority of genes.
Approaches combining these classes are most successful (6).
Parametric methods exploit the unusual compositional

features of acquired genes to identify them; while native
genes have evolved together, the properties of recently
acquired genes will reflect the mutational proclivities of
their donor genomes. Thus, alien genes can be identified
by measuring their atypicality against the recipient
genome background. As a proof of concept, Lawrence
and Ochman (7) examined the G+C content of protein-
coding genes at their first and third codon positions; if
they differed by two standard deviations from their
respective genomic means, the gene was deemed likely to
be alien. While phylogenetic analysis showed that the
majority of putative alien genes were indeed absent from
the sister Salmonella lineage (8), there were many false
negatives and false positives. Karlin suggested dinucleo-
tide composition (9) or overall codon usage patterns (10)
could provide more effective statistical determinants,
thereby improving performance of alien gene detection
algorithms. Here, atypicality was assessed through an
odds ratio or difference in codon frequencies, once again
comparing a gene’s composition to the genomic average.
Next-generation methods (Table 1) use increasingly more
complex measures, e.g. octamer frequencies (11), to refine
the distinction between typical and atypical genes.
Multiple-class methods—e.g. the k-mean clustering algo-
rithm of Hayes and Borodovsky (12) or the AIC or
Jensen–Shannon entropic divergence methods of Azad
and Lawrence (13,14)—are even more sophisticated, iden-
tifying more than one class of atypical gene in the con-
text of a native gene background by clustering genes in
n-dimensional parametric space.
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Despite these improvements in assessing sequence diver-
sity, the classification of native and foreign genes by para-
metric measures remains notoriously error-prone (15).
The reason these methods fail to achieve high accuracy
is related more to the genes’ compositional continuum
than to the core principles underlying their approaches.
The compositional features of acquired and native genes
often overlap significantly, so that a simple boundary
between atypical and typical genes does not exist
(Figure 1A). Despite the development of increasingly
sophisticated methods for quantifying atypical character
(Table 1), the critical issue of classifying genes with am-
biguous compositional features has not been addressed
satisfactorily. This limitation reflects the common strategy
of parametric methods in balancing type I (false positive)
and type II (false negative) classification error within a
single-threshold framework. An optimal threshold mini-
mizing both type I and II error is impossible to achieve
as the two error parameters share a reciprocal relation-
ship. More conservative thresholds decrease the number
of false positives at the expense of increased numbers of
false negatives, while relaxed criteria increase the number
true positives at the expense of increased false ones. No
single-threshold approach can eliminate this trade-off.
We assert that this problem cannot be solved by

examining only the compositional characteristics of indi-
vidual genes. Existing methods treat genes as independent
data objects, abandoning potentially useful biological in-
formation that may influence their composition such
as the strand of transcription (leading or lagging),
position relative to the replication origin or, more import-
antly, position within operons or gene clusters. Because
alien genes often arrive as genomic islands (GIs), intro-
ducing multiple potentially atypical genes in a single event

(16), a weakly atypical gene lying within a cluster of mod-
erately- or strongly-atypical genes is likely to be of foreign
origin, whereas a weakly atypical gene embedded within
an otherwise unremarkable operon is likely to be native.
We posit that gene context and operon structural infor-
mation can resolve the origin of many compositionally
ambiguous genes, as suggested by the results of our (14)
and others’ (17–19) research. Our results here show a re-
markable improvement in the performance of popular
parametric methods for alien gene detection when imple-
menting this approach, thus strongly advocating for the
use of additional biological information in the develop-
ment of novel parametric methods.

METHODS

Chimeric artificial genomes

Artificial genomes were modeled on the properties of
genuine genomes; sequences were downloaded from
NCBI and genes were extracted using the existing anno-
tation. To quantify native variability within genuine
genomes, native core genes were extracted from each
genome using a gene clustering algorithm based on
Akaike Information Criterion (13,20); this process
eliminated unusual genes that were acquired by LGT. A
k-means clustering algorithm was then used to segregate
the core genes into distinct classes representing the vari-
ability among the core genes. Artificial genomes were
generated by generalized hidden Markov models with par-
ameters learned from both these distinct gene classes and
from the non-coding sequences (13); the length distribu-
tion of intergenic spacers was modeled explicitly. Chimeric
artificial genomes were constructed by simulating transfer
of one or more contiguous genes from several donor

Table 1. Parametric approaches to alien gene detection (in order of introduction)

Method/software Discriminant criterion Measure Classes References

GC bias G+C content Deviations in G+C content 2 (7,30)
Karlin’s dinucleotide Dinucleotide composition Difference in dinucleotide relative

abundances
2 (9)

Karlin’s codon bias Codon usage bias Difference in codon frequencies 2 (10)
k-means clustering Codon usage bias Kullback–Leibler divergence 2 and 3 (12)
Naı̈ve Bayesian classifier Oligonucleotide bias Maximum a posteriori probability Unspecified (31)
3:1 Genomic signature Dinucleotide composition at 3:1

codon positions
T2 distance 2 (32)

Z curve Biases in GC content, codon
usage and amino acid usage

Abrupt variations in cumulative
GC profile, deviations in codon
and amino acid usage pattern

2 (33)

Horizontal transfer index Hexamer frequencies A posteriori probability 2 (21)
SIGI Codon usage bias Log likelihood ratio 2 (34)
Wn k-mer (k=6–8) frequencies Covariance 2 (22)
Wn-SVM k-mer (k=6–8) frequencies One-class support vector

machines
2 (37)

AIC clustering Many Maximum likelihood and Akaike
Information Criterion

Many (13)

Chaos game representation Tetranucleotide composition Euclidian distance 2 (35)
IVOM/Alien Hunter Interpolated octamer frequencies Kullback–Leibler divergence 2 (11)
JSD clustering Many Jensen–Shannon divergence Many (14)
Design-Island Tetranucleotide composition Difference in tetranucleotide

frequencies
2 (36)

MJSD Dinucleotide and trinucleotide
composition

Markovian Jensen–Shannon
divergence

2 (6)
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genomes into a recipient genome. We chose an artificial
Escherichia coli genome as the recipient genome, and
acquired genes (�15% of all genes) were provided by 10
donor genomes modeled on Archaeoglobus fulgidus (1%),
Bacillus subtilis (1%), Deinococcus radiodurans (2%),
Haemophilus influenzae Rd (2%), Methanocaldococcus
jannaschii (1%), Neisseria gonorrhoeae (1%), Ralstonia
solanacearum (2%), Sinorhizobium meliloti (2%),
Synechocystis PCC6803 (1%) and Thermotoga maritima
(2%).

Single-threshold methods

Discrimination by atypical G+C content was implemented
as suggested by Lawrence and Ochman (7); if the G+C
content of a gene’s first and third codon positions deviated
significantly from their respective genomic means, the gene
was deemed alien. Dinucleotide bias (Karlin’s dinucleo-
tide) was assessed through an odds ratio comparing the
frequencies of each gene’s dinucleotides to the genomic
averages (9). If the deviation exceeded an established
threshold, the gene was deemed sufficiently atypical to
be classified as alien. Codon usage bias (Karlin’s codon
bias) was similarly assessed as described (10,14); if the
codon usage bias of a gene was significantly different
from the bias averaged over a genome, the gene was clas-
sified as alien. The horizontal transfer index (HTI) uses
fifth-order Markov models to assess the biases in hexamer

frequencies in a Bayesian framework (21). A 96-bp
window was moved along a genome with in 12-bp steps
and its a posteriori probability to be part of protein-coding
region was computed for the six reading frames. The
foreign origin of a gene was inferred by averaging the
scores of successive in-frame windows that lie within
the gene and are in same coding frame as the gene. If
the a posteriori probability for a gene to be protein
coding according to the Markov model of protein-coding
sequences was less than a threshold, the gene was deemed
alien. Heptamer frequency bias was assessed by the Wn
method (22) using a covariance measure to assess the
atypicality of a gene against the genome average.

Gene clustering methods

Azad and Lawrence (14) used Jensen–Shannon divergence
(JSD) to measure the compositional difference between
two sequences. Gene clustering was accomplished in a
hierarchical agglomerative framework. Genes that are
most similar (smallest JSD) are grouped first, provided
this grouping is deemed statistically significant. The algo-
rithm proceeds recursively, adding genes that are most
similar to existing genes and gene clusters until the distinc-
tion between resulting gene classes becomes significantly
large (clusters are too different to be merged). Thus this
method generates multiple native classes (representing sto-
chastic variability) and alien classes (representing distinct

Figure 1. Solving the intrinsic problems with single-threshold approaches. (A) In single-threshold approaches, genes are sorted into native and
foreign classes according to degree of atypicality. A trade-off between type I and II error results when the threshold is determined because com-
positional features between native and foreign genes overlap. (B) In multiple-threshold approaches, compositionally ambiguous genes are classified as
native or foreign based on genomic context. (C) Reassignment of short-length genes based on genomic context. (D) Assignment of ambiguous genes
based on genomic context.
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gene donors) using any discriminant criterion as the basis
for clustering.

Catalogs of horizontally transferred genes

High-confidence GIs, regions of horizontally-transferred
genes that confer specific functions (16), were extracted
from both the Islander and tRNAcc databases (23,24).
In addition, 453 genes unique to Salmonella enterica
Typhi CT18 genome were identified as those not found
in the genomes of related enteric bacteria including
E. coli CFT073, E. coli W3110, E. fergusonii ATCC
35469, C. koseri ATCC BAA-895 and K. pneumoniae
342 (6). Genes <400 bp in length were not considered.

RESULTS AND DISCUSSION

A generalized, multiple-threshold approach

We took a two-pronged approach to solve the problem of
trade-offs between types I and II measurement error. To
begin, we abandoned the use of a single-threshold between
typical and atypical genes. Rather, genes were classified
using two conservative thresholds, each set to minimize
either type I or II error. The first threshold was used to
identify strongly typical native genes (those with scores
less than threshold one in Figure 1B), while the second
was used to identify strongly atypical alien genes. As a
result, compositionally ambiguous genes lying between
these two thresholds were not initially classified as either
native or alien, but were reassigned to either the foreign or
native class by invoking gene context and operon struc-
tural information (Figure 1C and D). This approach can
be applied to any metric which is used to assess the
atypicality of genes, and thus can be used to refine any
existing method for detecting potentially alien, compos-
itionally atypical genes. Genes were classified in seven
steps.

(1) The strongly typical native and strongly atypical
alien genes were first identified using conservative
thresholds. Atypicality was assessed by comparing
genes against a reference set of all genes, which
served as a surrogate for strictly native genes.

(2) The reference set of all genes was replaced with the
set of strongly typical native genes identified above.
This set was iteratively refined until convergence.

(3) Before assessing compositionally ambiguous genes,
the classes of native and alien genes were refined.
Short native genes (<300 bp in length) are often in-
correctly assigned to the alien class; here, their
apparent atypical character simply reflects stochastic
variation. This problem can be resolved by reassign-
ing short, atypical genes to the native class if one or
more of their flanking genes are in the native
class and no flanking gene is in the foreign class
(Figure 1C). If both flanking genes are in ambiguous
class, one may examine the next flanking genes se-
quentially. Similarly, if a short gene in the native
class is flanked on both sides by strongly atypical
genes, it is moved to the alien class; the logic here
is that strongly atypical gene insertions are unlikely

to occur on both sides of a single native gene.
Otherwise, if none of the neighboring genes (typically
4 and 5) is in the native class, the gene is moved to
the ambiguous class.

(4) Next, genes in the ambiguous class can be assigned
to either the native or alien classes using the classifi-
cation of their flanking genes (Figure 1D). Unlike
single-threshold approaches, we are essentially ignor-
ing the atypicality score and are relying instead on
the potentially more informative contextual data.
Ambiguous genes were classified in two steps: (i) if
both the flanking genes were in either native or
foreign class, the gene was moved to that class; and
(ii) if the flanking genes were in different classes, the
orientation and intergenic distance between this gene
and the flanking genes were examined to determine if
it formed an operon with one of its flanking genes; if
so, this gene was moved to that class. Here, we are
using the presence of an operon as a likely indicator
of ancestry, either alien or native. If all three genes
formed a likely operon, ambiguity was resolved only
if one of the flanking genes was also in the ambigu-
ous class; the gene in question was then moved to the
‘non-ambiguous’ class of the other flanking gene. If
genes flanking an ambiguous gene were both ambigu-
ous and all three genes formed an operon, the
adjacent flanking genes were investigated for being
part of this operon in either direction; if this search
encountered a gene that is a member of one of the
high-confidence gene classes, the entire operon was
moved to that class.

(5) The short genes in the alien class were examined
again. If both flanking genes belonged to the native
class, these genes were reassigned to the native class.
If only one flanking gene belonged to the native
class, the gene was reassigned to the native class
only if the other flanking gene was in ambiguous
class. If both flanking genes belonged to ambiguous
class we examined the genes on both sides (typically
up to 10 genes on either side) sequentially; if a native
gene was found without encountering a foreign gene,
the gene in question was moved to the native class.

(6) Further refinement was achieved by averaging the
scores of consecutive genes. Here, one relies not on
the weak atypical character of a single gene but on
the mean compositional character of consecutive
genes. Only if the region in question is of foreign
origin, one would expect many consecutive atypical
genes.

(7) Finally, the remaining ambiguous genes were
assigned to the class, either native or alien, whose
class average for the metric was closest to the gene
being analyzed. Thus, a solely metric-based approach
(assigning the gene to a class based on its score
alone) was used only for those genes where
genomic context was not informative.

Assessing the multiple-threshold approach

We evaluated our approach by modifying several para-
metric methods to use multiple-thresholds and assessing

e56 Nucleic Acids Research, 2011, Vol. 39, No. 9 PAGE 4 OF 11



their performance using chimeric artificial genomes
wherein the evolutionary ‘history’ of genes is known. We
created a series of genomes with a constant artificial re-
cipient core and alien genes originating from 10 compos-
itionally distinct artificial donor genomes. Alien genes
were inserted in clusters of several genes (modeled after
the number of contiguous genes on the same strand); crit-
ically, the lengths of intergenic spacers were modeled
explicitly to allow for operon prediction. Previous
studies found intergenic spacer length most informative
in predicting operons (25,26); the majority of genes
showed spacers �35 bp in all cases considered here
(Supplementary Figures 1–5) and this was used as the
threshold for localizing operons. We then assessed
atypicality of genes in these chimeric artificial genomes
by three widely used approaches, GC bias (nucleotide
composition), Karlin’s dinucleotide bias and Karlin’s
codon bias (solid points in Figure 2A). The trade-off
between false positives and false negatives was examined
by varying the threshold parameters. Significant improve-
ment in the performance of all three parametric methods
was observed when the multiple-threshold framework was
implemented (open points in Figure 2A). When assessing
nucleotide composition, type I error decreases almost
2-fold for a given type II error. Improvements were
greater for dinucleotide- and codon bias-based methods,
reaching 4- and 6-fold, respectively. These results demon-
strate that compositionally ambiguous genes can be placed
into alien and native gene classes more accurately when
gene context information is considered.

Detecting alien genes in genuine genomes

The use of artificial genomes suggests that multiple-
threshold approaches can result in significant improve-
ment in parametric methods for alien gene detection.
However, the above results rely on our model for horizon-
tal gene transfer, including the nature of the donors,
the number of contiguous genes transferred and the dis-
tribution of insertion sites in the recipient genome. To
validate these results in genuine genomes, parameters
of both the original single-threshold and augmented
multiple-threshold algorithms were optimized on artificial
genomes before attempting to identify horizontally-
transferred genes previously cataloged in four genomes
of E. coli and S. enterica. We cannot report precise type
I and II error rates because the evolutionary histories of
genes in genuine genomes are not known with certainty.
Rather, we assess the relative performance of the single-
and multiple-threshold methods in identifying annotated
GIs and phylogenetically unique S. enterica Typhi genes.
Better-performing methods will identify larger numbers of
cataloged alien genes using the fewest numbers of predic-
tions of potentially alien genes. This will allow assessment
of the performance of the augmented methods without
calculation of precise type I and II error rates.

In all cases, the use of multiple thresholds improved the
detection of GI-borne genes. For example, 327 GI genes
are reported in the E. coli O157 genome. When approxi-
mately 1725 alien genes were predicted by Karlin’s codon
bias method, a greater fraction of the GI-borne genes was

detected when multiple thresholds were used (Table 2,
lines 1 and 2). Only when stringency was relaxed to
predict an additional 520 alien genes (predicting 2245
alien genes) was this level of sensitivity achieved without
the use of multiple thresholds (Table 2, line 3), no doubt
resulting in far more false positives. Even more dramatic
improvements were seen when dinucleotide frequencies
were used to detect alien genes (Karlin’s dinucleotide);
here, the multiple-threshold method detected 83% of the
island-borne genes as alien while the single-threshold
method could detect only 59% for a comparable number
of putatively alien genes. Only when nearly twice as many
alien gene predictions were made—amounting to more
than half of the genome being classified as alien—did
the single-threshold approach identify as many GI-borne

Figure 2. Improvement of threshold methods by including multiple
thresholds and positional information. (A) Improvement in standard
single-threshold methods. Here ‘nucleotides’, ‘dinucleotides’ and
‘codons’ refer to GC bias, Karlin’s dinucleotide and Karlin’s codon
bias method, respectively. (B) Improvement in gene clustering
methods. The standard Jensen–Shannon divergence (JSD) approach
(14) is here annotated ‘JSD/codon bias’; the ‘proximity’ method
groups similar genes first in order of their physical distance within a
genome, whereas the ‘augmented’ method uses gene context and operon
structure information within a multiple-threshold framework.
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genes as the multiple-threshold one. Similar results were
seen in the three other genomes examined, and when the
more sensitive tRNAcc database is used to supply target
GIs for identification (Table 2). Therefore, we conclude
that the improvement in alien gene detection quantified
using artificial genomes remains when the algorithms are
applied to genuine genomes.
One could argue that the improvement afforded by the

use of positional information is restricted to a more robust
identification of large GIs. Therefore, we also created a
dataset of 453 genes phylogenetically unique to S. enterica
Typhi regardless of their residency within a GI. All
methods showed improvement when positional informa-
tion was included (Table 3). The improvement was most
pronounced for Karlin’s first-generation methods; for
example, more than twice as many alien genes were
detected by aberrant dinucleotide frequencies when
multiple thresholds and positional information were con-
sidered (see Supplementary Tables S8 and S9 for the
threshold configurations for all methods).

Assessing the stepwise approach to alien gene detection

As outlined above, gene-context information was assessed
in seven steps. We assessed the differential contributions
from each step in improving Karlin’s dinucleotide method
(Tables 4 and 5). Gene-context information (steps 4a and
6) was found most effective, contributing over 16% of
total �26% improvement in alien gene detection in
E. coli O157 (Table 4). The remaining 10% improvement
came from the application of other steps including operon

structural information (3%, step 4b), short gene correc-
tions (3%, steps 3 and 5) and metric-based ambiguous
gene assignment (2%, step 7). Similar trend was
observed in E. coli O157 EDL933 and E. coli CFT073.

Table 2. Improved performance of position-augmented parametric methods in detecting genomic islands in genuine genomes

Method for
detectiona

Escherichia coli O157 Sakaib Escherichia coli O157 EDL933c Escherichia coli CFT073d Salmonella enterica Typhi CT18e

Predicted Detected Percent Predicted Detected Percent Predicted Detected Percent Predicted Detected Percent

Karlin’s codon bias 1724 214 65 1715 460 65 1655 451 53 1194 444 49
Karlin’s codon bias

augmented
1726 246 75 1712 532 75 1645 556 65 1194 574 64

Karlin’s codon bias 2245 246 75 2308 532 75 2202 556 65 1681 574 64
Karlin’s dinucleotide 1654 184 56 1581 387 55 1671 416 48 1112 373 41
Karlin’s dinucleotide

augmented
1653 270 83 1580 539 76 1670 623 73 1112 552 61

Karlin’s dinucleotide 3106 272 83 2893 544 77 2694 626 73 1858 553 61
HTI/hexamer 1912 238 73 1921 523 74 2163 650 76 1537 605 67
HTI/hexamer

augmented
1912 279 85 1920 572 81 2165 716 83 1536 678 75

HTI/hexamer 2725 279 85 2299 572 81 2570 715 83 1901 677 75
Wn/heptamer 1851 203 62 1736 444 63 1857 544 63 1593 621 69
Wn/heptamer

augmented
1851 225 69 1735 486 68 1854 608 71 1594 701 78

Wn/heptamer 2176 225 69 2117 486 68 2233 608 71 2127 701 78
JSD/codon bias 1966 190 58 1938 531 74 1599 449 52 1189 457 51
JSD/codon bias

augmented
1958 316 96 1928 667 93 1592 745 86 1162 650 72

JSD/codon bias 4050 311 95 3438 659 92 3677 741 86 1902 653 72

aAugmented methods use multiple thresholds.
bPredicted: total number of putative alien genes predicted. Detected: number of the 327 genes from the Islander database that were among the total
number of predicted. Percent: fraction of the database-archived alien genes detected.
cSeven hundred and ten genes from the tRNAcc database.
dEight hundred and fifty-nine genes from the tRNAcc database.
eNine hundred and three genes as reported by Vernikos and Parkhill (27).

Table 3. Improved performance of position-augmented parametric

methods in detecting phylogenetically unique genes in S. enterica

Typhi CT18 genome

Method for detectiona Predictedb Detectedb Percentb

Karlin’s codon bias 1194 210 46
Karlin’s codon bias augmented 1194 303 67
Karlin’s codon bias 1956 303 67
Karlin’s dinucleotide 1112 120 26
Karlin’s dinucleotide augmented 1112 264 58
Karlin’s dinucleotide 2059 264 58
HTI/hexamer 1537 321 71
HTI/hexamer augmented 1536 359 79
HTI/hexamer 1829 359 79
Wn/heptamer 1593 367 81
Wn/heptamer augmented 1594 389 86
Wn/heptamer 1930 389 86
JSD/codon bias 1189 274 60
JSD/codon bias augmented 1162 320 71
JSD/codon bias 1501 322 71

aAugmented methods use multiple thresholds.
bPredicted: total number of alien gene predicted. Detected: number of
the 453 unique CT18 genes (those not found in the genomes of related
enteric bacteria including E. coli CFT073, E. coli W3110, E. fergusonii
ATCC 35469, C. koseri ATCC BAA-895 and K. pneumoniae 342) that
were among the total number of predicted. Percent: fraction of the
database-archived alien genes detected.
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In S. enterica Typhi CT18 where annotated alien genes
originate from islands which by definition (27) can have
as few as two genes (Table 4) or are independent of the
island structure (Table 5), the contribution from operon
structural information is somewhat more pronounced.
Particularly with the later (Table 5) where 32% improve-
ment was observed in detection of phylogenetically unique
genes, the contribution from gene-context information
was �11% while that from operon structural information
was �4.5%. Notably over 10% improvement came from
assignment of ambiguous genes based on their distance
from native and alien cluster centers (step 7). The im-
provement from this step was also observed for island
originated genes, although less pronounced (4.3% for
E. coli O157, 0.4% for E. coli O157 EDL933, 3.4% for
E. coli CFT073 and 3.4% for S. enterica Typhi CT18).
The clusters generated following the preceding steps that
incorporate gene context and operon structural infor-
mation are indeed more helpful in assignment of ‘left
over’ ambiguous genes than the clusters that could be
generated using compositional biases alone (i.e. following
steps 1 and 2, see Supplementary Table S1). In particular for
E. coli CFT073 and S. enterica Typhi CT18), more alien
genes were identified with fewer predictions
(Supplementary Table S1). Importantly, variations in con-
servative thresholds do not impact the augmented method’s
performance (Supplementary Table S2).
The use of gene-context information also improves

moving-window approaches to alien gene detection.
Karlin (9) showed that dinucleotide frequencies within
successive 50-kb windows represent the genomic signature
of an organism and thus can be used for distinguishing
alien regions from the native ones. When Karlin’s method
is used in its moving window formulation, the augmented
version continues to outperform the standard approach.
In addition to predicting a greater fraction of known alien

genes for a given number of total predictions
(Supplementary Table S3), the augmented method was
far less sensitive to changes in its threshold parameters.
For the augmented method, as the total number of alien
gene predictions increased, the fraction of known alien
genes predicted also increased (Supplementary Tables S4
and S5); this was not true for the non-augmented method,
wherein increase in total numbers of alien gene predictions
led to unpredictable increase in the detection of known
alien genes, apparently an undesirable behavior. While
larger windows can help detect longer GIs, they are
prone to missing shorter islands. On the other hand,
while smaller windows yield better resolution, they meet
the same difficulty in reconstructing an island structure as
the individual genes (which can be interpreted as ‘smaller’
windows of variable size). Using strategies similar to one
proposed here can help resolve this predicament, recon-
structing not just the longer acquisitions but also render-
ing the detection resolution to as few as one or two alien
genes.

Improvements in more advanced algorithms

One may argue that metrics relying on dinucleotide
frequencies and codon usage bias alone simply lack so-
phistication in measuring the compositional differences
between genes, and that more advanced techniques
would eliminate compositionally ambiguous genes by
identifying native and alien genes more robustly. To
explore this possibility, we implemented approaches
using more advanced algorithms; the HTI method (21)
assesses hexamer frequencies and the Wn method (22)
can examine oligomers of length six to eight (we imple-
mented heptamers). Despite the algorithmic sophistication
of these methods, the same problems remained: compos-
itionally ambiguous genes were not sorted robustly into
native and alien gene classes and the use of positional in-
formation again resulted in a significant decrease in error
rates (Tables 2 and 3). Therefore, we posit that a high
degree of computational sophistication alone does not
eliminate compositionally ambiguous genes, and addition-
al information must be used to identify the potentially
alien genes among them.

Application to clustering methods

While native genes are similar to each other, alien genes
are most often described as being ‘not native’, rather than
possessing properties of their own. But, owing to their
arrival on GIs from a non-random selection of donor
genomes, alien genes may be identified by their similarity
to each other as much as by their dissimilarity to native
genes. Clustering methods use this similarity among sets of
alien genes to identify them and have been implemented
using several different approaches (13,14). While these
methods also offer improvement over single-threshold
methods, the use of multiple clusters alone does not elim-
inate the problem of compositionally ambiguous genes;
such genes would still not be assigned to any single
cluster robustly.

We previously implemented a two-tier approach to use
genomic information to improve the performance of

Table 5. Relative performance of the Karlin’s dinucleotide method

versus its augmented version in detecting phylogenetically unique

genes in S. enterica Typhi CT18 genome following the seven steps

used in augmenting the method’s classification ability

Step Method Ambiguous Native Alien TP SN

1 Augmented 2315 1740 338 13 2.8
Standard – – – – –

2 Augmented 2208 1785 400 30 6.6
Standard – 3993 400 19 4.1

3 Augmented 2318 1789 286 30 6.6
Standard – 4106 287 7 1.5

4a Augmented 1797 2242 354 52 11.4
Standard – 4038 355 14 3.0

4b Augmented 1958 2041 394 68 15.0
Standard – 3999 394 18 3.9

4a and b Augmented 1437 2494 462 90 19.8
Standard – 3930 463 31 6.8

5 Augmented 1437 2497 459 90 19.8
Standard – 3934 459 30 6.6

6 Augmented 1225 2497 671 158 34.8
Standard – 3722 671 62 13.6

7 Augmented 0 3281 1112 264 58.2
Standard – 3281 1112 120 26.4
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clustering methods (14). We examined gene-context infor-
mation to reassign genes between clusters based on the
cluster assignment of their flanking genes. To begin,
similar genes were grouped by the JS clustering method
using conservative significance thresholds, leading to a
large number of robust clusters. Positional information
was used to merge clusters with genes that were physically
associated within a genome. Gene-context information
was again invoked to refine the final set of gene clusters,
moving genes between clusters if flanking genes were
robust members of a different cluster. When tested on
chimeric artificial genomes, this two step procedure
minimized the classification errors well in comparison to
the standard JS method which assigns genes into different
clusters by invoking JS distance alone (14).

However, the efficiency of this approach greatly depends
on the selection of thresholds. In our earlier study, the
optimal performance was achieved within the threshold
range 0.2–0.3. For example, the optimal threshold for E.
coli K12 was found to be 0.2 while that for E. coli O157
was around 0.168 (Supplementary Table S10). Further,
slight variations from the optimal-threshold range may
cause the unwanted demerger of mostly smaller native
clusters from the largest (native) cluster, or unwanted
merger of almost all smaller clusters to the largest
cluster apparently induced by the recursive inclusion of
incorrect (‘mixed’ or ‘alien’) clusters into the largest one
(Supplementary Table S10). One can address this issue
through heuristics, for example, by examining the
relative change in cluster size in the process of merger;
alternatively, to eliminate this subjectivity, a separate clus-
tering approach could be pursued as described below.
Here, we propose to invoke gene-context information to
group similar genes from the initial steps of the clustering
procedure, in contrast to using this information in a
post-processing step. We first grouped only contiguous
genes that were similar to each other, and then recursively
grouped the proximal gene clusters with similar com-
positional bias in the hypothesis testing framework
(Figure 2B, ‘JSD/codon bias proximity’). Significant im-
provement in performance was observed when compared
to our original approach whereby the most similar
genes located at any genomic position were grouped first
(Figure 2B, ‘JSD/codon bias’). Further improvements
were gained when we reintroduced this approach in a
multiple-threshold framework (Figure 2B, ‘JSD/codon
bias augmented’). When compared to the use of positional
information in refining cluster composition, this approach
was far less sensitive to variation in threshold parameters
(Supplementary Tables S10 and S11). Further this
approach also raised the accuracy bar significantly
(compare 96% E. coli O157 island gene detection when
35% of total 5360 genes were predicted alien with 75%
detection from the previous approach that predicted 31%
as alien, Supplementary Tables S10 and S11).

Testing clustering methods on genuine genomes

We again utilized the set of genuine GIs to evaluate the
efficacy of both position-aware JSD clustering approaches
relative to the original, position-blind approach. As seen

for single-threshold approaches, the use of positional in-
formation required far fewer alien gene predictions to
achieve comparable sensitivity in detecting both
GI-borne and phylogenetically unique S. enterica Typhi
genes (Tables 2 and 3). For equivalent number of predic-
tions, the sensitivity increased by 19% for E. coli O157
EDL933 and up to 38% for E. coli O157 Sakai, the
greatest improvement observed (Table 2). A remarkably
large improvement in the accuracy of this method clearly
demonstrates the effectiveness of gene-context informa-
tion in grouping compositionally similar genes. Efficient
grouping of genes is critical to the success of this class of
methods which have been shown to outperform
single-threshold methods for alien gene detection consist-
ently (14).
We also assessed the performance of augmented versions

of parametric methods on the HGT-DB database (28),
which is more comprehensive in its inclusion of suspected
alien genes. However, this database was compiled using
parametric methods including G+C bias and codon usage
bias, and so is not ideal for assessing the methodologies
being presented here. We observed elevation of accur-
acy for each method, though it was more remarkable
for Karlin’s dinucleotide and codon bias methods
(Supplementary Tables S6 and S7). These results clearly
demonstrate the utility and the promise of our proposed
approach in all techniques of alien gene detection.
We also assessed the efficacy of combining augmented

methods. As has been seen for standard methods (29), sets
of alien genes predicted by more than one method include
fewer false positives (Table 6). Proper strategy for
combining predictions can help in achieving high sensitiv-
ity at the cost of negligible additional false positives. This
is apparent from the performance by the unison of JS
method predictions with the predictions shared among
at least three of the other four methods; this approach
clearly outperforms the rather naı̈ve approach of
combining predictions from all five methods, identifying
more island genes at lesser total predictions (Table 6).
Notably the use of positional information and the use of
multiple methods for detecting alien genes are complemen-
tary in their ability to reduce errors in alien gene detection.

CONCLUSIONS

Identifying horizontally-acquired genes has remained a
challenging task despite significant progress made in
recent years, partly because of the large spectrum of vari-
ability reflected in the compositional properties of both
native and acquired genes. Parametric methods strive to
balance type I and II error of misclassification by selecting
an appropriate threshold, yet this approach is inherently
ineffective in classifying a large fraction of compositional-
ly ambiguous genes; we assert that this problem cannot be
addressed by invoking parametric methods alone. Here we
show that by incorporating gene context and operon
structure information within the model framework of
parametric techniques, the performance of parametric
methods can be improved substantially. This necessitated
usage of multiple thresholds as opposed to one threshold
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to classify genes based on their composition, genomic
context and intergenic spacer length. The improvements
we observe demonstrate the importance of using addition-
al biological information within more flexible,
multiple-threshold model frameworks for deciphering the
evolutionary history of bacterial genes. While the emer-
gence of more accurate, sophisticated methods for alien
gene detection is highly desired, we propose that future
efforts should be focused on integrating diverse evidence
encoded in genomes.
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