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Nonalcoholic steatohepatitis (NASH) is a serious disease threatening public health, and its
pathogenesis remains largely unclear. Recent scientific research has shown that intestinal
microbiota and its metabolites have an important impact on the development of NASH. A
balanced intestinal microbiota contributes to the maintenance of liver homeostasis, but
when the intestinal microbiota is disequilibrated, it serves as a source of pathogens and
molecules that lead to NASH. In this review, we mainly emphasize the key mechanisms by
which the intestinal microbiota and its metabolites affect NASH. In addition, recent clinical
trials and animal studies on the treatment of NASH by regulating the intestinal microbiota
through prebiotics, probiotics, synbiotics and FMT have also been briefly elaborated. With
the increasing understanding of interactions between the intestinal microbiota and liver,
accurate and personalized detection and treatment methods for NASH are expected to
be established.
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INTRODUCTION

Non‐alcohol fatty liver disease (NAFLD) has become the most common chronic liver disease
worldwide (1), with a global prevalence of more than 25% (2). Nonalcoholic steatohepatitis
(NASH), the progressive stage of NAFLD, is characterized by hepatic steatosis, inflammation,
ballooning and fibrosis (3). NASH is the leading cause of liver-related mortality worldwide because
of its tendency to develop into cirrhosis and hepatocellular carcinoma (HCC), as well as its impact
on extrahepatic diseases, such as cardiovascular disease (CVD) and chronic kidney disease (CKD)
(4, 5). The pathogenesis of NASH, however, remains extensively elusive, which is one of the main
factors hampering the development of pharmaceutical strategies of NASH. In recent years,
accumulating studies have indicated that the intestinal microbiota mediates the progression of
NASH by affecting gut barrier permeability, hepatic lipid metabolism, inflammation and fibrosis (6).

Approximately 40 trillion microbes inhabit the human gut (7), which mainly includes bacteria,
archaea, viruses and fungi (8). Intestinal microbiota is usually associated with metabolic diseases
of the human host, such as diabetes, obesity, CVD, NAFLD and NASH (5). To date, multiple
clinical and preclinical studies have demonstrated that individuals with NASH usually have
compositional changes in their intestinal microbiota (9). Intestinal microbiota dysbiosis has
been shown to accelerate the development and progression of NASH (10). On account of this,
more and more scientific research attempts to inhibit or treat NASH by intervening with the
intestinal microbiota, such as probiotics, prebiotics and synbiotics supplementation and fecal
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microbiota transplantation (FMT) (10). The mechanisms by
which intestinal dysbiosis promotes NASH will be highlighted
in the review. Moreover, studies on the treatment of
NASH by intervening intestinal microbiota have also been
elaborated accordingly.
COMPOSITION OF INTESTINAL
MICROBIOTA IN NASH PATIENTS

A clinical study by Zhu et al. showed significant increases of
Bacteroidetes, Proteobacteria, Enterobacteriaceae and Escherichia
and decrease of Firmicutes and Bifidobacterium in the NASH
group compared with the healthy group (11). However, Mouzak
et al. found that NASH was significantly associated with a lower
proportion of Bacteroides (12). Del Chierico et al. demonstrated
that compared with healthy controls, Ruminococcus, Blautia and
Dorea increased in NASH patients, while Oscillospira reduced
(13). In addition, the progression from nonalcoholic fatty liver
(NAFL) to NASH is also accompanied by changes in intestinal
microbiota, but the relevant studies are insufficient, currently.
Del Chierico et al. found an increase in Firmicutes and a decrease
in Bacteroidetes, Proteobacteria and Actinobacteria in NASH
patients compared with NAFL (13). Similarly, Schwimmer
et al. found that NAFLD patients had higher abundance of
Oscillibacter, Lactonifactor, Akkermansia and Enterococcus,
while NASH patients were accompanied by higher abundance
of Lactobacillus and Oribacterium (14). Taken together, multiple
clinical studies have shown that compositional changes of
intestinal microbiota are common in patients with NAFLD/
NASH, but such changes remain largely inconsistent and
contradictory due to the heterogeneous of the relative
distribution of intestinal microbiota (Table 1). Therefore,
more studies are urgently needed to clarify the compositional
changes of intestinal microbiota in each stage of NASH, even
beginning from the healthy stage, and this has positive
implications for future treatments of NASH by targeting
individual intestinal microbiota.
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THE KEY MECHANISMS OF HOW THE
INTESTINAL MICROBIOTA AFFECTS
NASH PROGRESSION

The Impact of Intestinal
Microbiota-Derived Short Chain
Fatty Acids (SCFAs) on NASH
Intestinal bacteria (such as Ruminococcus, Anaerostipes,
Bacteroidetes, Akkermansia muciniphila and Lachnospiraceae)
can degrade polysaccharides, dietary fiber and resistant starch
into monosaccharides and SCFAs, and SCFAs of which mainly
include acetate, propionate, butyrate (19, 20). Most SCFAs are
utilized in the intestine (especially butyrate) to provide
approximately 70% of the energy for intestinal epithelial cells
(21). A small number of SCFAs enter the portal vein through
monocarboxylate transporter 1 (MCT1) and sodium‐coupled
monocarboxylate transporter 1 (SMCT1) receptors and
subsequently infiltrate the liver (6). As a metabolic substrate
and signaling molecule that regulates metabolism, SCFAs
regulate hepatic metabolism through the gut -liver axis
(Figure 1), which refers to the bilateral relationship between
the gut and the liver through the portal system and biliary
tract (22).

Animal studies have shown that SCFAs can activate AMP-
activated protein kinase (AMPK) to accelerate fatty acid
oxidation and inhibit hepatic lipogenesis, which leads to a
decrease of hepatic lipid accumulation (23). For instance,
Araújo et al. found that acetate produced by E. coli is absorbed
by intestinal epithelial cells and metabolized into acetyl-CoA and
AMP, as well as upregulates the AMPK/PGC-1a/PPARa
pathway, subsequently promoting lipid oxidation (24). Acetate
and propionate act as ligands to activate G protein-coupled
receptors 41 (GPR41) and GPR43, leading to an increase
of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1)
secretion, and thereby inhibiting energy intake (23). Butyrate
increases hepatic GLP-1 receptor (GLP-1R) expression by
inhibiting histone deacetylase-2 (HDAC-2) and activating
AMPK (25). In adipocytes, SCFAs promote leptin expression
TABLE 1 | Composition of intestinal microbiota in NASH patients.

Models Method Main conclusions Ref.

Increased Decreased

NASH 16S rRNA pyrosequencing Bacteroidetes, Proteobacteria,
Enterobacteriaceae,
Escherichia,

Firmicutes, Bifidobacterium (11)

NASH Quantitative real-time polymerase chain
reaction

C. coccoides Bacteroidetes (12)

NASH 16S rRNA pyrosequencing Ruminococcus, Blautia, Dorea Oscillospira (13)
NASH 16S rRNA gene sequencing Collinsella Ruminococcaceae (15)
NASH 16S rRNA gene sequencing Bacteroidetes, Proteobacteria, Enterobacteriaceae,

Escherichia
Firmicutes, Bifidobacterium (16)

NASH 16S rRNA gene sequencing Lactobacillus Bacteroides,
Bifidobacterium

(17)

children with
NAFLD

16S rRNA gene microarray Gamma proteobacteria, Prevotella – (18)
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FIGURE 1 | Key mechanisms involved in the regulation of intestinal microbiota during NASH progression. Intestinal dysbiosis results in disruption of intestinal SCFAs, bile
acids, and choline metabolic homeostasis, as well as increases LPS and endogenous alcohol production and NLPR3/6 activation, subsequently affecting the progression
of ANSH: (A) SCFAs inhibit hepatic steatosis, inflammation, and protect the integrity of the intestinal barrier. Dysbiosis decreases SCFA production, thereby promoting the
NASH process. (B) The metabolism of bile acids is regulated by FXR and TGR5. FXR signaling suppresses hepatic steatosis and insulin resistance, as well as negative
feedback inhibits bile acid synthesis; TGR5 can protect the liver from inflammation and insulin resistance. However, dysbiosis will reduce the activity of FXR and TGR5
signaling. (C) Intestinal microbiota metabolizes choline to TMAO, but the effect of TMAO on NASH is controversial. (D) LPS mainly affects the progress of NASH through
LPS-TLR4 and NF-kB signaling pathways, including hepatic inflammation, fibrosis and liver injury. (E) Activation of NLRP3 in the liver promotes liver damage, but NLRP3
in the intestine maintains intestinal homeostasis and improves intestinal dysbiosis. NLRP6 inhibits NASH progression by inhibiting TLR4/NF-kB signaling and TG
accumulation and promoting AMP and IL-18 secretion. (F) Intestinal microbiota increases the production of endogenous alcohol and promotes the progress of NASH.
SCFAs, short chain fatty acids; MCT1, monocarboxylate transporter 1; SMCT1, sodium‐coupled monocarboxylate transporter 1; AMPK, AMP activated protein kinase;
PPARa, Peroxisome proliferator-activated receptor a; GPR41/43, G protein-coupled receptor 41/43; IL-18, Interleukin 18; PYY, peptide YY; GLP1, Glucagon like peptide
1; TLR4, Toll-like Receptor 4; Treg, regulatory T; FXR, Farnesol X receptor; LRH-1, liver receptor homolog 1; CYP7A1, cholesterol 7a hydroxylated enzyme; FGF15/19,
fibroblast growth factors 15/19; FGFR4, fibroblast growth factor receptor 4; SREBP-1c, sterol regulatory element-binding protein 1c; TGR5, Takeda G protein-coupled
receptor 5; GLP-1R, GLP-1 receptor; NF-kB, nuclear factor-kappaB, TMA, trimethylamine; TMAO, trimethylamine-N-oxide; FMO, flavin monooxygenases; LPS,
lipopolysaccharide; LBP, LPS binding protein; TGF-b, transforming growth factor-b; BAMBI, bone morphogenetic protein and active membrane-bound inhibitor; AMPs,
antimicrobial peptides; NLRP3/6, nucleotide-binding domain, leucine-rich-repeat containing family, pyrin domain-containing 3/6; TAB2/3, TGF-b activated kinase 1 binding
protein 2/3; TG, triglyceride; TCA, tricarboxylic acid.
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by binding to GPR41 to promote glycometabolism and lipid and
energy metabolism and to inhibit fatty acid synthesis (6).

In addition, SCFAs are beneficial to reducing hepatic
inflammatory responses. SCFAs beneficially maintain the
integrity of the intestinal barrier, which prevents intestinal
toxins (e.g. LPS) from invading the liver (20). In colon
epithelial cells, SCFAs activate the NLRP3 inflammasome by
binding to GPR43, leading to caspase-1 activation and IL-18
release, thereby promoting epithelial repair (26). Butyrate can
reduce endotoxin levels and hepatic inflammation by decreasing
the expression of Toll-like Receptor 4 (TLR4) and CD14 and
ameliorating dysbiosis and intestinal barrier function (increased
claudin-1 and ZO-1 expression) (27, 28). Moreover, SCFAs
reduces the generation of regulatory T (Treg) cells and
inflammatory cytokines by inhibiting the activity of histone
acetyltransferases, thereby reducing hepatic inflammatory
responses (20). In methionine/choline-deficient diet (MCD)-
induced NASH mouse model, Deng et al. demonstrated that
SCFAs (sodium acetate) alleviated hepatic steatosis and
inflammation by activating AMPK and inhibiting macrophage
proinflammatory activation, respectively (23). In line with this
result, Olaniyi et al. found that acetate ameliorates hepatic lipid
dysregulation by inhibiting HDAC and enhancing insulin
sensitivity (29). Therefore, SCFAs can be regarded as a novel
and viable therapeutic compound for preventing and
alleviating NASH.

Intestinal Microbiota Regulates the
Progression of NASH by Affecting the
Metabolic Homeostasis of Bile Acids
As the prominent bacteria in the intestine, intestinal microbiota
such as Bifidobacterium, Bacteroides, Lactobacillus, Clostridium,
Escherichia, Ruminococcus and Fusobacterium play a pivotal role
in the metabolism of bile acids by metabolizing primary bile
acids into secondary bile acids (10, 30). The metabolism of bile
acid plays an important role in liver homeostasis and regulates
the NASH process by activating the bile acid receptors, including
farnesoid X receptor (FXR) and membrane Takeda G protein-
coupled receptor 5(TGR5) (Figure 1) (31). In the liver, FXR
activates small heterodimer partner (SHP), which forms a
polymeride with liver receptor homolog 1 (LRH-1), thereby
suppressing the activity of cholesterol 7a hydroxylated enzyme
(CYP7A1, a rate-limiting enzyme of bile acid synthesis) (32). In
the gut, FXR promotes the expression offibroblast growth factors
FGF15/19, and further activates fibroblast growth factor receptor
4 (FGFR4) and b-klotho in hepatocytes, thereby inhibiting bile
acid synthesis and reducing hepatic steatosis and insulin
resistance (33, 34). In addition, FXR can also inhibit hepatic
lipogenesis by activating PPARa and repressing the expression
of SREBP-1c in SHP-79- and FGF 15/19-dependent
manners (35).

In a western diet-induced NASH model, TGR5 activation
stimulates the production of GLP-1 in intestinal endocrine cells,
thereby increasing insulin secretion and decreasing glucagon
synthesis by binding to GLP-1R in b-cells (36). TGR5 also
suppresses inflammation by promoting the transformation of
Frontiers in Endocrinology | www.frontiersin.org 4
macrophages from the M1 to M2 phenotype and suppressing the
activity of TLR4-NF-kB pathway (37, 38). Furthermore, TGR5
increases energy expenses by increasing the activity of thyroid
hormone activating enzyme deiodinase 2, which increases
conversion of T4 to T3 (39).

As reported, the abundance of bacteria that converts primary
bile acids to secondary bile acids was decreased under NASH
condition (10). Intestinal dysbiosis contributes to the disorders
of bile acid metabolism, and results in an insufficient activation
of FXR and TGR5, ultimately leading to lipogenesis and
inflammation (10). Therefore, restoring the intestinal
microbiota involved in bile acid metabolism in NASH patients
is a promising treatment option. Previous studies have showed
that the administration of probiotics altered the bile acid
composition (40), and bile acid-based therapies, including
hepatic FXR agonists, FGF15/19 analog, are considered for
NASH therapy (31). A recent clinical trial (NCT02443116)
showed that aldafermin, a FGF19 analog, suppressed bile acid
synthesis, led to an enrichment of Veillonella and corresponding
changes in serum bile acids in patients with NASH
(41). Obeticholic acid (OCA), a FXR agonist, has shown
effectiveness in altering the intestinal microbiota, and
effectively improves hepatic histological characteristics in
patients with NASH (42, 43).

Intestinal Microbiota Regulates the NASH
Process by Affecting Choline Metabolism
As an essential nutrient, choline was involved in liver lipid and
cholesterol metabolism and signal transduction in bile acid
enterohepatic circulation. Intestinal microbiota, such as
Desulfovibrio desulfuricans, E. coli, Clostridium, Anaerococcus
hydrogenalis and Klebsiella pneumoniae, can convert choline to
trimethylamine (TMA) (44). TMA can be reabsorbed into the
liver through the portal system, where it is metabolized by flavin
monooxygenases (FMO) to generate trimethylamine-N-oxide
(TMAO) (45). TMAO is correlated with the etiology and
mortality of multiple diseases. Evidence indicates that higher
serum level of TMAO was harmful to CVD and CKD (46), but
controversial in NASH process (44, 47) (Figure 1).

Previous studies showed that TMAO aggravates liver steatosis
by suppressing the activation of liver FXR signaling (48),
upregulating glucose metabolism, and increasing insulin
resistance (49). Furthermore, the increased TMAO levels
induce the activation of the NF-kB pathway, promote oxidative
stress and activate the NLRP3 inflammasome, thereby increasing
the release of inflammatory cytokines such as IL-18 and IL-1b
(46). However, recent evidence has demonstrated that TMAO
modulated intestinal microbiota diversity, improved the
histological alterations of steatohepatitis, alleviated hepatic
endoplasmic reticulum (ER) stress, and inhibited the
absorption of intestinal cholesterol in a high fat-high
cholesterol (HFHC)-induced NASH mouse model (50).
Despite this inconsistent observation, it is generally believed
that decreasing choline levels and increasing toxic choline
metabolites are crucial mechanisms by which the intestinal
microbiota promotes NASH progression (51), which is the
February 2022 | Volume 13 | Article 812610
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reason why MCD was considered a common dietary pattern for
inducing NASH models.

LPS Released by Intestinal Microbiota
Aggravates the Progression of NASH
LPS, a component of gram-negative bacteria, has been identified
as a major factor in NASH (45, 52). The association between LPS
and intestinal dysbiosis has been well reported (45), the
increased Bilophila wadsworthia, Atopobium spp., Clostridium
cocleatum and decreased Bifidobacterium, Bacteroides, and
Eubacterium, all leading to an increase of serum LPS
concentrations (53).

LPS deteriorates NASH progression mainly by inducing the
hepatic inflammatory response and fibrosis via LPS/TLR4 and NF-
kB signaling pathways(Figure 1) in hepatocytes, hepatic stellate
cells (HSCs) and Kupfer cells (54). LPS binds to LPS-binding
protein (LBP) and then activates CD14-TLR4 to form a complex,
subsequently promoting the release of inflammatory cytokines
such as NF-kB (54). Carpino et al. found that LPS induces the
activation of macrophages and platelets through the TLR4
pathway, thereby eliciting liver damage (52). LPS also promotes
the expression of TGF-b, which induces the transcription of type I
and III collagen via Smad-dependent pathways, thereby promoting
hepatic fibrosis (55). In HSC cell line, TLR4 directly downregulates
the bone morphogenetic protein and active membrane-bound
inhibitor (BAMBI) to produce fibrogenic cytokines and activate
TGF-b-mediated HSCs (56). Moreover, LPS directly induces
oxidative stress, which is one of the most important pathological
events in the development of NASH (54), targeting intestinal
microbiota offers a therapy potential to reduce LPS
concentrations and ameliorate NASH (57, 58).

The Activation of Inflammasomes
Triggered by the Intestinal Microbiota
Affects the Development of NASH
Inflammasomes are multiprotein complexes assembled from
cytoplasmic pattern recognition receptor (PRR), which mainly
include NLRP1, NLRP3, NLRC4, and AIM2 (59). To date,
NLRP3 and NLRP6 are considered to be closely related to
microbe-induced NASH (Figure 1). Intestinal dysbiosis
promotes the entry of PAMPs, DAMPs and LPS into the
portal circulation through the impaired intestinal barrier,
which leads to the activation of NLRP3 and inflammation in
the liver via TLR4 signaling and Kupffer cells (60). Mridha et al.
found that MCC950, a NLRP3 selective inhibitor, reduces
hepatic inflammation and fibrosis in MCD-fed mice
by decreasing the expression of pro-IL-1b, and normalizing
caspase 1, IL-6, IL-1b, and MCP-1 levels in the liver (61).
HSCs engulfed NLRP3 particles increase IL-1b secretion and
a-smooth muscle actin (a-SMA) expression, thereby inducing
hepatic fibrosis (62). Moreover, Dong et al. found that NLRP3
activation in HSCs of mice exacerbated the progression of NASH
to hepatic fibrosis through the TLR4-NF-kB signaling pathway
(63). NLRP3 instigates insulin resistance (64), and participates
in the transition from NAFLD to NASH (65). However,
NLRP3 inflammasome deficiency exacerbates gut-liver axis
Frontiers in Endocrinology | www.frontiersin.org 5
derangement, dysbiosis, steatohepatitis and liver damage in
HFHC-fed Nlrp3-/- mice (66). These studies suggest that
NLRP3 may have different activities in different organs,
thereby promoting liver damage and protecting intestinal
permeability and preventing bacterial translocation (67).

NLRP6 is highly expressed in the small intestine and colon,
especially in colonic goblet cells, myofibroblasts, and enterocytes
(68). Intestinal microbiota induces NLRP6 signaling to produce
IL-18 in mice, which is necessary for antimicrobial peptide (AMP)
induction in the colonic mucosa (69). The deletion of NLRP6
alters the configuration of the intestinal microbiota, which leads to
hepatic steatosis and inflammation via TLR4 signaling (70). In
NASH mouse models, Huang et al. found that NLRP6 accelerates
the degradation of TGF-b activated kinase 1 binding protein 2/3
(TAB2/3) through a lysosomal dependent pathway, thereby
suppressing NF-kB mediated inflammatory responses (70). Also,
NLRP6 inhibits hepatic TG accumulation by regulating CD36-
mediated fatty acid uptake (70). Therefore, targeting the intestinal
microbiota to regulate the activity of NLRP3 and NLRP6 is a
promising therapeutic strategy to treat NASH.

Endogenous Alcohol Produced
by the Intestinal Microbiota
Promotes NASH Progression
Although NASH is defined as absence of alcohol intake,
endogenous alcohol, produced by intestinal microbiota such as
high-alcohol-producing Klebsiella pneumoniae (HiAlc-Kpn),
Bacteroides, Bifidobacterium, and Escherichia, is a non-
negligible pathogenic factor in NASH progression (11, 71). It
has been reported that patients with NASH have more bacteria
associated with elevated blood alcohol levels (72). Zhu et al.
found that compared with healthy controls, the serum alcohol
concentration was strikingly elevated, as well as the remarkably
increased abundance of Escherichia in NASH patients (11).
Similarly, Yuan et al. found that HiAlc-Kpn aggravates hepatic
steatosis, inflammation, mitochondrial dysfunction and liver
injury by producing excessive ethanol (71). On the one hand,
alcohol increases the expression of intestinal inflammatory
factors and destroys the intestinal barrier, which is associated
with small intestinal bacterial overgrowth, and aggravates
intestinal dysbiosis (73) (Figure 1). On the other hand,
endogenous alcohol inhibits the tricarboxylic acid(TCA) cycle,
and aggravates hepatic triglyceride accumulation and deposition
(74). Furthermore, the toxic intermediates of alcohol metabolism
(acetaldehyde) and alcohol disorders the function of intestinal
tight junction proteins (75). Therefore, reducing the production
of endogenous alcohol by targeting alcohol-producing bacteria in
the intestine is a promising direction for NASH treatment.
INTESTINAL MICROBIOTA AS A
POTENTIAL THERAPEUTIC STRATEGY
FOR NASH TREATMENT

To date, there are no Food and Drug Administration (FDA)-
approved special drugs for NASH clinical treatment (76).
February 2022 | Volume 13 | Article 812610
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Recently, an increasing number of clinical trials (Table 2) and
animal experiments (Table 3) have attempted to prevent the
development of NASH by targeting intestinal microbiota,
including probiotics, prebiotics, synbiotics and FMT.

Probiotics are living microorganisms that produce health
benefits to the host, mainly including Lactobacillus ,
Bifidobacterium and Streptococcus (91). Both clinical and
Frontiers in Endocrinology | www.frontiersin.org 6
preclinical studies have congruously shown that probiotics
dramatically ameliorate the histological spectrum of NASH
(92, 93). For example, VSL#3 is a mixture of Streptococcus,
Thermophilus, Bifidobacterium and Lactobacillus (94). The
administration of VSL#3 significantly inhibited activation or
production of JNK, NF-kB, a-SMA, metalloproteinases (MMP)
and Cyclooxygenase 2 (COX-2), improved the intestinal
TABLE 2 | Intestinal microbiota-targeted therapies of NASH-clinical trials.

Interventions Samples and models Main conclusions NCT

Probiotics
VSL#3 48 Obese children with

NASH
VSL#3 improved NAFLD in children NCT01650025

Multi-probiotic “Symbiter” 58 patients with NAFLD Significantly decreased fatty liver index, serum AST, TNF-a and IL-6 levels NCT04450875
Lactobacillus bulgaricus and Streptococcus
thermophilus

30 patients with NAFLD Improved hepatic aminotransferases levels NCT02764047

Probiotics and metformin 64 patients with NASH Improved hepatic aminotransferases, cholesterol, and TG contents NCT02764047
Probiotic +omega-3 Fatty Acids 48 patients with NAFLD Decreased fatty liver index, serum triglycerides, and total cholesterol NCT03528707
Lepicol probiotic 20 patients with NASH Reduced liver fat and AST levels NCT00870012
Prebiotics
OFS-enriched inulin 60 patients with NAFLD Attenuated liver steatosis and fibrosis NCT02568605
OFS 14 patients with NASH Reduced histologically-confirmed hepatic steatosis NCT03184376
Synbiotics
Synbiotic supplement 50 patients with NAFLD Significantly reduced hepatic steatosis and fibrosis, and improved HOMA-IR

and insulin sensitivity
NCT02530138

OFS and Bifidobacterium animalis subsp.
lactis BB-12

104 patients
with NAFLD

Altered the fecal microbiome NCT01680640

Synbiotic 52 patients with NAFLD Significantly reduced AST, ALT, TNF-a and fibrosis score NCT01791959
February 2022 | Volume 13
TABLE 3 | Intestinal microbiota-targeted therapies of NASH-animal experiments.

Interventions NASH models Main conclusions and mechanisms Ref.

Probiotics
Blueberry juice and probiotics (BP) HFD—induced NASH BP prevents NASH development by inhibiting SREBP-1c/PNPLA-3 pathway via improving the

activity of PPAR-a.
(77)

VSL#3 Western diet -induced
NAFLD

VSL#3 normalized bile acid homoeostasis by changing the metabolic pathway of bile acids
and activating the ileal G protein-coupled BA receptor 1 (GPBAR1) signaling.

(78)

Lactobacillus plantarum NA136 high-fat and fructose diet-
induced NAFLD

L. plantarum NA136 improved IR, dysbiosis, and the expression of intestinal tight junction
proteins (ZO-1, claudin-1 and occludin), and reduces NF-kB mediated inflammation.

(79)

Probiotics plus ARB CDAA- induced NASH Probiotics plus ARB inhibited the expression of liver TLR4 and LBP and improved the
permeability of the intestinal barrier.

(80)

Lactobacillus plantarum NA136 high-fat diet and fructose
-induced NAFLD

L. plantarum NA136 attenuated NAFLD by increasing the activation of AMPK/Nrf2 pathway,
which will improve hepatic lipid metabolism and ameliorate oxidative stress.

(81)

Bifidobacteria and resveratrol HFD-induced NAFLD Significantly alleviated obesity and NAFLD. (82)
Prebiotics
Fructooligosaccharides (FOS) MCD diet-induced NASH FOS ameliorated hepatic inflammation by reducing the expression of TLR4 and CD14, and

improved steatosis and tight junctions by regulating the production of SCFAs.
(83)

Isomalto-oligosaccharides (IMOs) HFD-induced NAFLD IMOs improved intestinal microbial abundance, systemic inflammation and endotoxemia. (84)
FOS monosodium glutamate

(MSG) - induced NASH
FOS ameliorated steatohepatitis and chronic inflammation by increasing SCFA production and
decreasing the M1 macrophage frequency.

(85)

Synbiotics
L. paracasei B21060 based synbiotic HFD-induced NAFLD The synbiotic improved the permeability of the intestinal barrier, increased the expression of

PPARa and FGF21, and reduced TLR2,4,9 mRNAs expression.
(86)

Synbiotic 2000®Forte (Synb) high-fat choline deficient
diet-induced NASH

Synb reduced serum levels of LPS and ameliorated hepatic fibrosis. (87)

Bifidobacterium infantis and milk
oligosaccharides

Western diet-induced
NASH

B. infantis and MO increased TGR5-regulated signaling, and reduced bile acid synthesis by
decreasing hepatic CYP7A1.

(88)

FMT
8-week FMT intervention HFD-induced NASH FMT alleviated steatohepatitis by correcting microbiota disturbance and increasing the

production of butyrate.
(89)

transfer the intestinal microbiota
remodeled by pectin diet

HFD-induced NAFLD FMT improved steatosis by increasing in the concentration of SCFAs. (90)
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permeability and alleviating oxidative stress, all of which were
conductive to NASH therapy (94, 95).

Prebiotics, mainly including various oligofructoses (OFSs) or
fructooligosaccharides (FOSs), refer to dietary supplements and
indigestible food ingredients. Prebiotics improve host health by
selectively stimulating the growth and activity of beneficial bacteria
(96). Cani et al. found that prebiotics increased the production of
proglucagon-derived peptide (GLP-2) in ob/ob mice, subsequently
reducing plasma LPS levels and decreasing hepatic inflammatory
and oxidative stress (97). Other studies have consistently shown
that FOS attenuates hepatic lipid accumulation and steatohepatitis
(84). In clinical trials, prebiotics have shown impressive efficacy
in treating NASH, mainly by reducing serum alanine
aminotransferase (ALT), aspartate aminotransferase (AST) levels
and hepatic inflammation and increasing the abundance of
Faecalibacterium prausnitzii and Bifidobacterium (98).

Synbiotics, the combination of probiotics and prebiotics,
significantly inhibits NASH with liver histology improvement
and inflammatory cytokines and endotoxin decrease (99). For
instance, in a randomized clinical trial conducted by Ferolla et al.
found that synbiotics supplementation effectively reduced
hepatic steatosis and improved BMI and waist circumference
(100). The mechanisms may be that synbiotics inhibited the
subclinical pro-inflammatory signaling and reduced liver fat
without altering the existing intestinal microbiota (100, 101).

FMT is an emerging and underexplored method to alternate
the intestinal microbiota. FMT has been used in the treatment of
a variety of gastrointestinal diseases, such as clostridioides
difficile infections (102), diabetes (103) and irritable bowel
syndrome (104). However, regrettably, there are no published
clinical reports on the role of FMT in patients with NASH, but
animal studies have shown that FMT treatment significantly
improves the intestinal microbiota diversity and alleviates
steatohepatitis (105–107). Zhou et al. found that FMT
corrected the intestinal dysbiosis in HFD-fed mice and
increased butyrate concentration and ZO-1 expression, thereby
alleviating hepatic steatohepatitis (89). Vrieze et al. found that
FMT from healthy donors to recipients with metabolic syndrome
increased insulin sensitivity and butyric-producing microbiota of
the recipient (108). Therefore, as a contemporary emerging
therapeutic technology targeting the intestinal microbiota,
FMT is undoubtedly regarded as a promising method for
NASH treatment, but more clinical studies are urgently needed.
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CONCLUSION

Due to the emergence of 16S ribosomal RNA sequencing and
metagenomics technologies, great progress has been made in
research on the intestinal microbiota in recent years. The
intestinal microbiota is related to a variety of human diseases
mainly through metabolic pathways, such as regulating
lipometabolism and glycometabolism. Studies focusing on the
intestinal microbiota provide satisfactory opportunities for the
pathogenesis and treatment of NASH. However, great challenges
have to be borne. Many pending issues and challenges in this
field need to be elaborate urgently. For example, the changes in
the composition of the intestinal microbiota in NASH patients
and healthy individuals remain largely elusive and controversial.
The specific mechanisms of dysbiosis affecting the progress of
NASH need to be further understood. In addition, many studies
have been conducted only on rodent models. More clinical
evidence and/or results obtained from nonhuman primates are
needed to validate the results from experiments conducted on
rodent models. There have been many clinical trials using
prebiotics, probiotics and synbiotics to treat NASH, but these
trials are relatively new strategies that lack specific mechanisms
and large clinical trials with comparative endpoints. Therefore,
intestinal microbiota analysis based on metagenomics may
become a promising direction for the diagnosis and treatment
of NASH in the future. Ultimately, intestinal microbial targeted
precision medicine in the treatment of NASH, as well as early,
accurate and non-invasive diagnostic and prevention methods
for NASH are expected to be established.
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