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Nucleic acid-binding proteins (NABPs), including DNA-binding proteins (DBPs) and RNA-binding proteins
(RBPs), play vital roles in gene expression. Accurate identification of these proteins is crucial. However,
there are two existing challenges: one is the problem of ignoring DNA- and RNA-binding proteins
(DRBPs), and the other is a cross-predicting problem referring to DBP predictors predicting DBPs as
RBPs, and vice versa. In this study, we proposed a computational predictor, called DeepMC-iNABP, with
the goal of solving these difficulties by utilizing a multiclass classification strategy and deep learning
approaches. DBPs, RBPs, DRBPs and non-NABPs as separate classes of data were used for training the
DeepMC-iNABP model. The results on test data collected in this study and two independent test datasets
showed that DeepMC-iNABP has a strong advantage in identifying the DRBPs and has the ability to alle-
viate the cross-prediction problem to a certain extent. The web-server of DeepMC-iNABP is freely avail-
able at http://www.deepmc-inabp.net/. The datasets used in this research can also be downloaded from
the website.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Interactions between proteins and nucleic acids (general terms
of DNA and RNA) define and regulate diverse cellular functions,
such as splicing, translation, posttranscriptional modifications,
protein synthesis, DNA transcription and replication [1–7]. They
are also closely related to some diseases such as cancer [8–12]
and involved in virus infection [13,14]. Therefore, it is important
to accurately identify the proteins that bind to nucleic acids
(DNA or RNA).

Nucleic acid-binding proteins (NABPs) are traditionally divided
into proteins that have the ability to bind DNA or RNA, namely,
DNA-binding proteins (DBPs) and RNA-binding proteins (RBPs).
However, there are some proteins that can bind to both DNA and
RNA (DRBPs), and these types of protein also play an important
role in gene expression [15–17]. Therefore, accurate identification
of DBPs, RBPs and DRBPs is vitally important.

In recent years, with the rapid development of high-throughput
sequencing technologies and the reduction of sequencing costs, a
large amount of bioinformatics data has been accumulated
[18,19]. Machine learning and deep learning techniques have been
widely applied for the analysis of large amounts of biological data
[20–25]. Among them, protein sequences have shown exponential
growth, which makes deep learning models for the prediction of
nucleic acid-binding proteins from primary sequences strongly
feasible [26–28].

Existing computational models treat DBP identification and RBP
identification as two independent tasks, and most of them are
binary-class prediction tasks. Because DBPs and RBPs have high
similarities, the existing computational models generally have
cross-predicting problems. Cross-prediction refers to the DBP pre-
dictor identifying true RBPs as DBPs, whereas the RBP predictor
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predicts true DBPs as RBPs. Moreover, they usually ignore the exis-
tence of DRBPs. That is because in these independent binary-class
classification models, only DBPs or RBPs are used to build
predictors of DNA binding or RNA binding, respectively. Thus,
the predictors identified either ‘‘DBPs and non-DNA binding
proteins (non-DBPs)”, or ‘‘RBPs and non-RNA binding proteins
(non-RBPs)”.

Recent studies [2,29] on the prediction of nucleic acid-binding
residues show that although the existing DNA-binding or RNA-
binding residue predictors have strong predictive performance,
they cannot discriminate DNA- and RNA-binding residues. Because
independent predictors are built using exclusive data (either DNA-
binding or RNA-binding residues), they are unable to learn to sep-
arate DNA-binding from RNA-binding residues. William et al.
revealed through experiments that DRBPs are an important part
of cellular proteins and play important cellular roles [17].

To solve the above problems, in this study, we proposed a new
computational predictor called DeepMC-iNABP by applying a mul-
ticlass learning strategy to identify NABPs based on deep learning.
Four categories, ‘‘DBP”, ‘‘RBP”, ‘‘DRBP” and ‘‘non-nucleic acid bind-
ing protein (non-NABP)”, were defined and used for learning the
multiclass classification model. By applying the multiclass classifi-
cation model based on a convolutional neural network and a recur-
rent neural network, the DeepMC-iNABP predictor predicts a
protein as each of these classes. The DeepMC-iNABP predictor
overcomes the problem of cross-predicting because both DBPs
and RBPs are used for training the multiclass learning model.
DeepMC-iNABP can not only identify nuclei acid-binding protein
but also detect DBPs and RBPs, which will help with the functional
annotation of proteins. Moreover, because DRBPs as separate class
data are used for training, DRBPs can be identified by the DeepMC-
iNABP predictor.
2. Material and methods

2.1. Data resources

In this study, an initial dataset containing 15,654 DBP chains,
15,009 RBP chains,1,218 DRBP chains and 146,900 non-NABP
chains was first collected from the UnitProt Knowledgebase (Uni-
ProtKB) [30]. DBP chains were collected by searching reviewed
data with the Gene Ontology (GO) annotation keywords ‘‘DNA
binding” and ‘‘NOT RNA binding”, whereas RBP chains were col-
lected by searching reviewed data with the GO annotation key-
words ‘‘RNA binding” and ‘‘NOT DNA binding”. DRBP chains
were obtained by searching reviewed data with the GO annota-
tion keywords ‘‘DNA binding” and ‘‘RNA binding”. Non-NABP
chains were collected by searching the reviewed data with the
keyword ‘‘NOT nucleic acid binding”. Then, we deleted duplicate
chains and filtered the chains with lengths of less than 40 or
more than 1,000. The redundancy between each dataset was
reduced by the BLASTP program [31] with the bit-score set
as greater than 50.0. After data preprocessing, 12,471 DBP chains,
12,068 RBP chains,1,218 DRBP chains and 143,650 non-NABP
chains were remained. Then, we randomly selected sequences
data to form the final datasets containing 12,000 DBP chains,
12,000 RBP chains,1,200 DRBP chains and 12,000 non-NABP
chains. We first split the final dataset into two (training and test-
ing) at a ratio of 10:1. After this, we kept aside the test set and
randomly chose 90% of our training data to be the actual training
set and the remaining 10% to be the validation set. The statistical
information of the training data, validation data and test data we
collected is listed in Table 1.

In this study, we also used two independent test datasets
(Table 2) to evaluate the performance of the DeepMC-iNABP
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predictor, including TEST474 [32] and DRBP206 [32]. Due to
very little information found in the prior studies on the identi-
fication of DRBPs, TEST474 and DRBP206 are rare independent
datasets containing DRBP data. A total of 175 DBP chains, 68
RBP chains, 8 DRBP chains and 233 non-NABP chains collected
from the Swiss-Prot database to construct the TEST474 dataset.
The DRBP206 dataset contains only 103 DRBP chains, and 103
non-NABP chains were also collected from the Swiss-Prot
database.

2.2. Multiclass learning strategy

RBP identification and DBP identification are usually considered
two separate prediction tasks in most previous studies, resulting in
cross-prediction problems. Although a few studies [33,34] have
focused on the cross-prediction problem for the identification of
nucleic acid-binding protein, they obtained low recognition preci-
sion, possibly due to the limitations of datasets or sequence feature
representations, such as small training datasets and manual selec-
tion of sequence features. Here, we treat the identification of
NABPs as a multiclass learning task. Multiclass classification refers
to the prediction of more than two classes; in fact, there are four
protein categories containing DBPs, RBPs, DRBPs and non-NABPs.
In multiclass classification, we first design the classifier model,
then train the model using training data and validation data, and
finally predict the collected test data or independent test data into
multiple class labels.

In this study, we applied the ‘‘one-vs.-all” multiclass classifica-
tion technique. In one-vs.-all classification, the number of class
labels present in the dataset and the number of generated binary
classifiers must be the same [35,36]. Thus, we create four classifiers
here for four respective classes. For each data instance, our model
will output one variable containing four different values (score) to
show the probabilities of the input protein predicted as the corre-
sponding class. The output value with the largest score will be
taken as the class predicted by the model. Therefore, a protein
can be identified as one of four categories of proteins (DBP, RBP,
DRBP or non-NABP).

In this study, we modelled a multiclass classification problem
using deep neural networks, including convolutional neural net-
works (CNNs) and long short-term memory networks (LSTMs). It
should be noted that we applied one hot encoding to reshape the
categorical variable (label variable) for the data instance to imple-
ment this deep multiclass classification model.

2.3. Network architecture of DeepMC-iNABP

The fundamental architecture of the DeepMC-iNABP model is
shown in Fig. 1. The architecture outlines several parts: (1) deep
representation learning for protein sequences, (2) the combination
of the two neural networks (CNN and LSTM), and (3) a multiclass
fully connected network. First, one-hot encoding and deep repre-
sentation learning with neural networks were utilized to convert
the protein sequence into a fixed-dimension matrix of vector
embeddings. CNNs have the advantage of selecting good feature,
and LSTMs have a good ability to learn sequential data, which is
of great importance in protein structure and function prediction
[37–43]. In this study, CNN and LSTM were combined for protein
sequence feature learning [44,45]. Moreover, a one-vs.-all multi-
class fully connected network was employed to address the
cross-prediction problem, in which each of the output nodes repre-
sents a different class. More specifically, the network of the
DeepMC-iNABP model contains 15 layers, including an input layer,
an embedding layer, 3 convolution layers, 3 pooling layers, 4 drop-
out layers, a long short -term layer, a dense layer, and an output
layer.



Table 1
Data collected in this study for training, validation and testing.

Classes Train data Validation data Test data In total

DBP chains 9,720 1,080 1,200 12,000
RBP chains 9,720 1,080 1,200 12,000
DRBP chains 972 108 120 1,200
Non-NABP chains 9,720 1,080 1,200 12,000
In total 30,132 3,348 3,720 37,200

Abbreviations: DBP, DNA-binding protein; RBP, RNA-binding protein; DRBP, DNA- and RNA- binding protein; non-NABP, non-nucleic acid-binding protein.

Table 2
Independent test datasets.

Test datasets DBPs RBPs DRBPs non-NABP In total

TEST474 175 68 8 233 474
DRBP206 103 0 0 103 206

Fig. 1. Fundamental architecture of the DeepMC-iNABP model.
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2.4. Sequence representation learning

In protein-related tasks, deep learning approaches can directly
learn rich data representations directly from primary sequences
instead of manually extracting feature information for protein
sequence numeric representation, as in traditional machine learn-
ing methods [46–48]. Deep representation learning in an end-to-
end model [49–51] can be relatively easy to implement because
the intermediate layers, including sequence embedding layers
and other neural network layers for prediction between inputs
and outputs, are trained as a whole part (i.e., treated as a ‘‘black
box”). Here, we utilized the widely used end-to-end representation
scheme, a one-hot encoding-based deep representation of protein
sequences.
2022
2.5. Combination of CNNs and LSTMs

In this study, we combine CNNs and LSTMs to conduct a mul-
ticlass classification model. Multiple convolutional filters slide
over the embedded sequence matrix to produce a new feature
map in convolutional layers. In the max-pooling layer, the max-
imum value is calculated as a feature corresponding feature to
the specific filter. Then, the outputs of the max-pooling layer
are inputted into the cell of the LSTM layer to learn the long-
term dependencies of motifs (features of sequences). The output
vectors of the LSTM cells are concatenated and become inputs to
the dense layer. A softmax activation function is applied to gen-
erate the final outputs containing 4 output values (one for each
class).
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2.6. Loss function

The loss function assesses the distance between the predicted
output and the actual output to evaluate the performance of the
neural network during training. For multiclass classification tasks,
the loss function of the neural network usually chooses categorical
cross entropy, since one example can be considered to belong to a
specific category with probability 1, and to other categories with
probability 0. The categorical cross-entropy loss function calculates
the loss of an example by computing the following sum:

LOSS ¼ �
XN
i¼1

yi � logbyi

where byi is the i-th value in the model output, yi is the correspond-
ing target value (true value), and N is the number of values in the
model output (total number of classes).

2.7. Deep neural network parameters

As the length of input sequence was set to 1,000 (processing of
padding or truncating), the number of nodes in the input layers of
DeepMC-iNABP model was set as the number of the length of each
sequence. As DeepMC-iNABP was designed to implement multi-
class classification, the number of nodes in output layer was set
just the same as the number of categories, i.e., 4. In embedding
layer, the output dimensionality was set to 100 which showed
the best performance after comparing the results of serval situa-
tions (64, 100, 110, 120). In DeepMC-iNABP, there are three convo-
lutional layers, and the number of filters in each convolutional
layer was set to 128, 64, 32; the number of kernels was set to
10, 5, 3, respectively. Max pooling is added to CNNs following indi-
vidual convolutional layers. A dropout layer was designed after
each convolutional part which helps to prevent overfitting, as the -
dropout layer randomly sets input units to 0 with a frequency of
rate at each step during training time. The dropout rate was set
to 0.2. The output dimension of the LSTM layer was set to 70. All
layers used rectified linear unit (ReLU) activation function except
the output layer. The activation function of the output layer used
softmax function. For the optimizer, we chose Adam, and the learn-
ing rate was set to 0.001. We chose categorical crossentropy loss
function, and epoch was set to 100.

2.8. Performance evaluation

To evaluate the performance of the prediction, the assessment
measurements used herein included accuracy, recall, precision
and F1 score. These are defined as follows:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

Recall ¼ TP
TP þ FN

Precision ¼ TP
TP þ FP

F1score ¼ 2� TP
2� TP þ FP þ FN

where TP, TN, FN, and FP are the numbers of true positives, true
negatives, false negatives, and false positives, respectively. Among
these measures, recall indicates the accuracy of predicting positive
samples, precision is the ratio of correctly predicted positive obser-
vations to total predicted positive observations, F1 score is the
weighted average of precision and recall, and accuracy as the most
2023
intuitive performance measure is simply a ratio of correctly pre-
dicted observations to total observations.

For all measures, the maximum value is 1, and the minimum
value is 0. A value of 0 indicates the worst performance, which
means that the predicted observations differ greatly from the
actual observations, while a value of 1 indicates the best perfor-
mance, which means that the predicted observations are very close
to the actual observations.

Moreover, an AU-ROC curve (area under the receiver operating
characteristics curve) was used to visualize the performance of the
multiclass classification problem in this study. The ROC curve is a
graph showing the performance of a classification model at all clas-
sification thresholds, which can evaluate classifier output quality.
ROC curves typically feature true-positive rates on the Y axis, and
false-positive rates on the X axis, which means that a larger area
under the curve (AUC) is usually better.
3. Results and discussion

3.1. Performance of the DeepMC-iNABP predictor on the test data and
independent dataset

We evaluated the performance of DeepMC-iNABP on the test
data we collected and two dependent datasets (TEST474 and
DRBP206 datasets). The corresponding results are shown in Table 3
and Fig. 2.

The confusion matrix shown in Fig. 2A shows the results of mul-
ticlass classification on the test data collected in this study. It
shows that 1024 of 1200 total sequences of non-NABPs (Class 0),
848 of 1200 total sequences of DBPs (Class 1), 983 of 1200 total
sequences of RBPs (Class 2) and 75 of 120 total sequences of DRBP
(Class 3) were correctly identified. Most multiclass data in the test
data were correctly classified. From the confusion matrix (Fig. 2A),
64 and 112 sequences of the non-NABP class were identified as
DBPs and RBPs, respectively; 241 sequences of the DBP class and
182 sequences of the RBP class were identified as non-NABPs. Fur-
thermore, 109 sequences of the DBP class were identified as RBPs,
while 31 sequences of the RBP class were identified as DBPs. How-
ever, few non-NABPs, DBPs and RBPs were identified as DRBPs.
Moreover, the evaluation metrics, including precision, recall, F1
score and accuracy, were calculated, as shown in Table 3, to assess
the performance of the DeepMC-iNABP predictor on the test data
we collected. These results indicate that the evaluation values of
DBP, RBP, DRBP and non-NABP are good, especially the classifica-
tion of DRBP. Fig. 2B, 3C and 3D show the ROC curves and AUCs
of DeepMC-iNABP on test data collected in this study, TEST474
and DRBP206, respectively.

The confusion matrix (Fig. 2A), ROC-AUC curves (Fig. 2B) and
evaluations (Table 3) indicate that the DeepMC-iNABP predictor
achieves good results on the collected test data. Meanwhile, the
ROC curves and AUCs in Fig. 2C and 3D also show that the
DeepMC-iNABP model preforms well on the two independent test
datasets.
3.2. Comparison with other methods on the independent dataset
TEST474

For objective evaluation, we compared our model with other
nucleic acid-binding protein classification methods on the inde-
pendent test dataset TEST474. The predicted results are presented
in Table 4 and Fig. 3.

To date, there are almost no multiclass classifiers for NABPs. The
iDRBP_MMC predictor [32] is actually composed of two binary
classifiers (DBP predictor and RBP predictor), not a multiclass clas-
sifier. However, the combination of two classifiers can achieve the



Table 3
Performance evaluation of test data collected in this study.

Precision Recall F1-score

DBP class 0.889 0.707 0.787
RBP class 0.804 0.819 0.812
DRBP class 0.926 0. 625 0.746
Non-NABP class 0.700 0.853 0.769
Average value 0.835 0.725 0.759

Abbreviations: DBP, DNA-binding protein; RBP, RNA-binding protein; DRBP, DNA-
and RNA- binding protein; non-NABP, non-nucleic acid-binding protein.
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classification of non-NABP, DBP, RBP and DRBP. The DeepDRBP-2L
predictor utilizes a two-level framework, in which the first level
detects NABP or not and the second level further identifies the pre-
dicted NABP as DBP, RBP or DRBP [34]. In short, the DeepDRBP-2L
predictor consists of a binary classifier (the first level) and a
multiclass classifier (the second level). Because of the two-level
strategy, it can finally achieve the classification of non-NABP,
DBP, RBP and DRBP. Thus, we compared with these two existing
nucleic acid-binding protein predictors. The evaluation metrics
and predicted results have shown in Table 4, Fig. 3, Fig. 4A and 4C.

DeepMC-iNABP predicted 5 proteins as DRBPs, 4 of which are
true DRBPs (Fig. 3C). The precision, F1 score and recall of
DeepMC-iNABP are 0.80, 0.615 and 0.50, respectively. While
iDRBP_MMC and DeepDRBP-2L predicted 3 and 23 proteins as
DRBPs, respectively, but only one of them was a true DRBP
(Fig. 3A and 4B). The precision, F1 score and recall of DRBPs in
Fig. 2. Performance of the DeepMC-iNABP model on the test dataset and independent te
dataset collected in this study, C and D. ROC-AUC curves of our model on independent tes
DBPs, RBPs and DRBPs, respectively.
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DeepMC-iNABP are far beyond those of iDRBP_MMC and
DeepDRBP-2L. For the identification of DBPs and RBPs, DeepMC-
iNABP predicted 168 proteins as DBPs, 146 of which were true
DBPs, 6 of which were RBPs; 56 proteins were RBPs, of which 40
were true RBPs, and 6 were true DBPs. Whereas DeepDRBP-2L
identified 7 proteins of true RBPs as DBPs, and 6 proteins of true
DBPs as RBPs; iDRBP_MMC predicted 2 true RBPs as DBPs, and 4
true DBPs as RBPs.

According to the results in this study, DeepMC-iNABP alleviates
the cross-prediction problem to a certain extent. These results are
likely to be related to the multiclass classification strategy adopted
in this study, in which DBPs and RBPs as data of different classes
were used for training the classification model. However, although
a deep neural network-based model is able to automatically learn
features from primary protein sequences, because similarity
sequences exist between DBPs and RBPs, it may affect sequence
representation learning, which may affect the identification of
DBPs and RBPs. Further studies that take feature learning of similar
sequences for deep neural networks into account will need to be
undertaken.

For the prediction of all proteins, including DBPs, RBPs, DRBPs
and non-NABPs, the recall, precision and F1 score of DeepMC-
iNABP were much better than those of the DeepDRBP-2L predictor,
as shown in Table 4. Compared with the iDRBP_MMC predictor, our
model outperforms it at the identification of DRBPs, although it is
slightly closer to it at predicting the DBPs, RBPs and non-NABPs.
The results show that the identification of DRBPs is a strong point
st datasets. A and B. Confusion matrix and ROC-AUC curves of our model on the test
t datasets (TEST474 and DRBP206). Class 0–3 in ROC-AUC curves refer to non-NABPs,



Table 4
Comparison of DeepMC-iNABP and existing models on the independent dataset TEST474.

Model DNA-binding RNA-binding DNA- and RNA-binding non-NABP

Recall Precision F1 Recall Precision F1 Recall Precision F1 Recall Precision F1

DeepDRBP-2La 0.817 0.877 0.846 0.456 0.620 0.525 0.125 0.043 0.065 0.888 0.832 0.859
iDRBP_MMC b 0.869 0.950 0.907 0.706 0.727 0.716 0.125 0.333 0.182 0.933 0.849 0.889
DeepMC-iNABP 0.834 0.869 0.851 0.588 0.714 0.645 0.500 0.800 0.615 0.892 0.812 0.850

a The results were obtained using the webserver of DeepDRBP-2L [34].
b The results were obtained using the webserver of iDRBP_MMC [32].

Fig. 3. Confusion matrix of DeepMC-iNABP and existing models on the independent dataset TEST474.
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of the DeepMC-iNABP predictor, rather than ignoring the existence
of DRBPs like other methods.
3.3. Performance for identifying DNA- and RNA-binding proteins

For the purpose of comprehensively evaluating the ability of the
DeepMC-iNABP predictor to identify DRBPs, we utilized another
independent dataset called DRBP206 which contains only DRBPs
and non-NABPs. Fig. 4B presents the performance of DeepMC-
iNABP and the existing predictors on the DRBP206 dataset. Accord-
ing to the comparison, the accuracy, recall and F1 score of
DeepMC-iNABP on the DRBP206 test dataset were quite higher
than those of DeepDRBP-2L and iDRBP_MMC. The precision values
of DeepMC-iNABP were slightly better or almost equal to those of
iDRBP_MMC but were even better than those of DeepDRBP-2L.
Taken together, these results tested on the DRBP206 dataset sug-
gest that DeepMC-iNABP does have a strong advantage in identify-
ing DRBPs. Moreover, feature visualization of represented
sequence data also indicates that DeepMC-iNABP model classified
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the four types of protein sequences well, especially the DRBPs as
shown in Fig. 5.

In the current study, comparing our model with some NABP
predictors showed that DeepMC-iNABP can successfully identify
DRBPs, while few predictors, such as DeepDRBP-2L and
iDRBP_MMC introduced above, may have the ability to recognize
DRBPs but perform very poorly. A possible explanation for this
might be that DeepDRBP-2L or iDRBP_MMC applied binary classi-
fication or multilabel classification, whereas the DeepMC-iNABP
predictor employed a multiclass classification scheme, and DRBP
data as a separate class were used to train the DeepMC-iNABP
model.
4. Conclusions

There are two challenges in the prediction of NABP: one is the
problem of ignoring DRBPs, and the other is the cross-predicting
problem. Very little was found in the prior studies. In this study,
we focused on these two problems, and proposed a NABP predictor,



Fig. 4. Comparison of DeepMC-iNABP and existing models on the independent dataset. A and C. Independent dataset TEST474, B. Independent dataset DRBP206.
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Fig. 5. Feature visualization of DeepMC-iNABP by t-SNE for dimension reduction. A. Feature representation of test dataset collected in this study, B. Feature representation of
independent dataset TEST474, C. Feature representation of independent dataset DRBP206.
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called DeepMC-iNABP, with the goal of solving these difficulties by
utilizing a multiclass classification strategy and deep learning
approaches. The classic deep learning model, the architecture of
which contains one-hot encoding-based sequence representation
and the combination of deep neural networks (CNN and LSTM),
was constructed for identifying the NABPs. DBPs, RBPs, DRBPs and
non-NABPs were used as separate classes of data for training the
DeepMC-iNABP model. The results on several test datasets showed
that DeepMC-iNABP has a strong advantage in identifying DRBPs
and alleviates the cross-prediction problem to a certain extent.

Moreover, the web server of DeepMC-iNABP (https://www.

deepmc-inabp.net/) was provided, which will be useful for
researchers in the field of protein-nucleic acid interactions.

5. Code availability

The web server of DeepMC-iNABP, data resource and codes are

freely available from https://www.deepmc-inabp.net/.
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