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Abstract

This research explores the thermal and osmotic tolerance of the polyp stage of the lrukandiji
jellyfish Carukia barnesi, which provides new insights into potential polyp habitat suitability.
The research also targets temperature, salinity, feeding frequency, and combinations
thereof, as cues for synchronous medusae production. Primary findings revealed 100% sur-
vivorship in osmotic treatments between 19 and 46%., with the highest proliferation at 26%o.
As salinity levels of 26%. do not occur within the waters of the Great Barrier Reef or Coral
Sea, we conclude that the polyp stage of C. barnesi is probably found in estuarine environ-
ments, where these lower salinity conditions commonly occur, in comparison to the medusa
stage, which is oceanic. Population stability was achieved at temperatures between 18 and
31°C, with an optimum temperature of 22.9°C. We surmise that C. barnesi polyps may be
restricted to warmer estuarine areas where water temperatures do not drop below 18°C.
Asexual reproduction was also positively correlated with feeding frequency. Temperature,
salinity, feeding frequency, and combinations thereof did not induce medusae production,
suggesting that this species may use a different cue, possibly photoperiod, to initiate medu-
sae production.

Introduction

Tropical Australian cubozoans are highly seasonal, with the medusa stage usually arriving
along the tropical coastlines during the monsoonal summer months [1-7]. This ‘stinger season’
in Australia is typically between November and May, which has been reported to begin earlier,
and last longer, in warmer areas closer to the equator such as in the Gulf of Carpentaria [3,8,9].
At least part of the observed seasonality of the medusa stage is thought to be driven by the com-
plex life cycle of cubozoans.

Cubozoans have a metagenic life cycle that alternates between benthic polyps, which repro-
duce asexually, and pelagic medusae, that reproduce sexually [2,4,10-16]. Medusa production
in cubozoans is variable and can be in the form of complete metamorphosis of the polyp into a
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medusa [11,12,16-20], metamorphosis that leaves behind a small amount of regenerative
material which is able to develop into a polyp (residuum) [21], and monodisc strobilation that
leaves behind a polyp able to continue asexual reproduction of more polyps [22,23]. Some
cubozoan polyps are known to use environmental factors, such as temperature [19,24,25], a
combination of temperature and light intensity [18], photoperiod [3], or reduced food avail-
ability [26], as a cue to induce synchronous medusa production. It is thought that once medusa
production is initiated, it can be punctuated by significant rainfall events, for example Chirop-
sella bronzie, or is continuous, as in Chironex fleckeri [2,3]. Therefore, medusae production by
the polyps is considered to be one factor that drives the seasonal fluctuation in abundance of
the medusae stage [2-4,20].

The medusa stage of Carukia barnesi, the Irukandji jellyfish, often causes painful and poten-
tially fatal stings [1,6,7,27,28]. A sting from C. barnesi is also renowned for causing Irukandji
syndrome which often requires hospitalization for treatment [1,27,28]. Considerable costs are
associated with treating sting victims and lost revenue to the tourism industry annually is
believed to be substantial [1]. Although only the medusa stage of this cubozoan poses a threat
to humans, the polyp stage is expected to contribute to the seasonal periodicity through the
synchronous timing of medusae production causing the start of the stinger season. Similarly,
the abundance of medusae present during the season may be reflective of the success of the
polyp stage.

The polyp stage also contributes to the abundance of medusae present by asexually repro-
ducing more polyps, thus increasing the number of polyps able to produce medusae at any one
time. Thermal, osmotic and food availability parameters are known to influence the rate of
asexual reproduction of the polyp stage of Alatina nr mordens [26,29] and Carybdea marsupia-
lis [30-32]. However, in most instances, the in situ parameters of the polyps are not known due
to the unknown location of the polyps, and to date, cubozoan polyps have only been discovered
in situ for two species: C. fleckeri and C. marsupialis [4,12,20,32]. Because of this, laboratory-
based cultures of cubozoan polyps are essential for exploring the factors that affect polyp survi-
vorship and proliferation in order to deduce where the polyps may reside, which may also shed
light on the factors affecting the seasonal influx of medusae.

Carukia barnesi, like other Australian cubozoans, exhibits a marked seasonality. Little is
known about the ecology of the early life stages of this species [22], even though it was discov-
ered as causing Irukandji syndrome over 50 years ago [6,33,34]. The medusa stage of C. barnesi
is considered oceanic and is typically found around coral reefs and islands and under certain
condition along beaches [1,5,6,34,35]. However, nothing is known about the thermal and
osmotic preference or the location of the polyp stage in situ. Therefore, a series of temperature,
salinity, and feeding frequency experiments were conducted on the polyp stage in order to gain
a better understanding of the ecology of this species.

The primary aims of this research were: 1) to determine the thermal and osmotic tolerance
of the polyps, and use these data to discuss where these polyps may live; 2) to explore the
effects of feeding frequency on survivorship and asexual reproduction and discuss intrinsic
population growth rates under different feeding regimes; 3) to determine the effect of thermal
and osmotic parameters, and combinations thereof, as well as feeding frequency, as cues for
medusae production.

Method
Specimen Identification

Carukia barnesi is a small species in the family Carukiidae. The medusa stage has a bell height
of up to 35 mm and tentacles up to 1.2 m long [6,34-37] with a single tentacle that extends
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from each of the four pedalia; rhopaliar niches with horns; and tentacles that have an alternat-
ing pattern of large and small nematocyst crescents that resemble “neckerchiefs” [6,34-36].
The polyps of C. barnesi average 0.9 mm in length and have 11 capitate tentacles on average.
The polyps asexually reproduce ciliated swimming polyps and produce medusae through
monodisc strobilation (see [22]). Little is known about the distribution of this species; however,
medusae are often present along the north-eastern coast of Australia during the warm mon-
soonal months (November to May) between Lizard Island and Fraser Island [5,6,34-36].

Experimental Design and Pre-treatment

This project consisted of two separate experiments in which polyps of C. barnesi were exposed
to different temperature, salinity and/or feeding frequency treatments that were monitored for
survivorship, population increase through asexual reproduction, and medusae production fol-
lowing a previously published method [26]. The C. barnesi polyps were derived from the labo-
ratory-based culture outlined in Courtney et al. [22], which was established approximately six
months prior to these experiments from wild caught adult medusae. This polyp culture was
maintained at a constant temperature of 28°C + 0.5°C and a salinity level of 33%o + 0.5%o.

Both of the experiments presented here were conducted in 24 well sterile micro-plates and
only 12 of the wells within each plate were used to allow for blank wells between different treat-
ments. Each well had a surface area of 11.5 cm® and a volume of 3.5 ml. The mature polyps of
C. barnesi produce swimming stage polyps through lateral budding [22]. These swimming pol-
yps were harvested from the primary cultures and transferred into the 24 well micro-plates at a
density of approximately 15 swimming polyps per well. As these polyps settled and developed
into secondary polyps, they were fed freshly hatched Artemia sp. nauplii to satiation (approxi-
mately 20 Artemia sp.) every seven days. A complete water exchange was carried out 24 hours
post each feeding event with filtered artificial seawater. The water quality parameters were
maintained at the original culture parameters (28°C + 0.5°C and 33%o + 0.5%o) for four weeks
prior to any experimental trials to allow the polyps to acclimate, grow to maturity, and begin
asexual reproduction. During this time, and during all experiments, a photoperiod of 13 hours
light: 11 hours dark was maintained. These polyps were then exposed to one of the conditions
outlined below; polyps were only exposed to one treatment, there was no mixing of water
between replicates or treatments, and all treatments in each experiment were conducted
simultaneously.

The first experiment consisted of 80 thermal and osmotic treatments (see Method: Thermal
and Osmotic Effects on Survivorship and Asexual Reproduction), which were monitored using
a binocular dissection microscope, for polyp survival, asexual reproduction, and medusae pro-
duction over a six-week period. Each treatment comprised six independent replicates and
each replicate consisted of an average of 18.63 polyps at the beginning of the experiment (i.e.,

X =18.63, SD = 5.87 polyps; housed in each of 480 wells). Each replicate (well) was fed approxi-
mately 20 Artemia nauplii once per week and this quantity was increased as the polyp numbers
increased (i.e., approximately one Artemia per polyp per week). Each feeding event was fol-
lowed by a complete water exchange with artificial seawater of the same parameters as each
experimental treatment (temperature and salinity).

The second experiment required a further five treatments to determine the effects of feeding
frequency on asexual reproduction, survivorship, and medusae production (see Method: The
Effects of Feeding Frequency on Survivorship and Asexual Reproduction). This experiment
was conducted at the original polyp culture conditions of 28°C + 0.5°C and 33%o + 0.5%o over
a six-week period. Each treatment comprised six replicates and each replicate consisted of an
average of 20.5 polyps at the beginning of the experiment (i.e., X = 20.50, SD = 2.79 polyps;
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housed in each of 30 wells). Each replicate (well) was fed approximately 20 Artemia sp. nauplii
per feeding event and this quantity was increased as the polyp numbers increased (i.e., one
Artemia per polyp per feeding event).

Thermal and Osmotic Effects on Survivorship and Asexual
Reproduction

To determine the thermal and osmotic tolerance of C. barnesi polyps, and the effects these
treatments had on survival, asexual reproduction and medusae production, replicates of polyps
(as described above) were exposed to an 80 combination matrix of eight temperatures (11, 14,
18, 21, 25, 28, 31, and 34°C + 0.5°C) and ten salinities (16, 19, 22.5, 26, 29, 33, 36, 39, 42.5, and
46%o + 0.5%0) over a period of six weeks. Each incubation temperature was maintained by par-
tially submerging each test plate into one of eight temperature controlled water baths for the
duration of the experiment. The range of temperatures selected encompasses the potential
thermal regime a polyp may experience in the Coral Sea (temperatures commonly below 11°C
at depths of approximately 500 m) and along the adjacent Australian coastline including estua-
rine environments (temperatures commonly occur above 34°C in shallow estuarine pools).
The salinity range tested encompasses common salinities found in the Coral Sea and also
included both hypersaline and hyposaline conditions that are commonly found in estuarine
environments. These environmental parameters were explicitly targeted to deduce the thermal
and osmotic tolerance of the polyp stage. Prior to the beginning of this experiment each repli-
cate was photographed and the number of polyps in each well was determined. Every seven
days during the six-week experiment, each replicate was fed and water exchanged (as described
above). Each replicate was again photographed and the number of polyps in each well was
determined in seven-day intervals during the six-week experiment.

To determine the thermal and osmotic tolerance of polyps, the change in population num-
bers was determined in seven-day intervals during the six-week experiment. To allow for com-
parisons between treatments, a model was fitted across all treatments that described final polyp
density as a function of initial density, temperature, and salinity. We assumed that the final
polyp density was proportional to the initial density, functions of temperature F(T) and salinity
G(S), and a parameter a which describes the maximum population change at optimal condi-
tions such that,

Pﬁmll = aF<T)G(S)Pinitiul' (1)

Thus, we assume independent effects of temperature and salinity on growth rates. Preliminary
analyses suggested including interactive effects between temperature and salinity did not quali-
tatively change the results. We model F(T) and G(S) as asymmetrical modified Gaussian func-

tions centered around the optimal temperature and salinity, respectively such that,

—(T,, — T)
exp [(L”],forT< T,

—(T,, —TY)
exp [(LQ)], for T > T,
h
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where T, and S, describe the optimal temperature and salinity, respectively. The o; ,jz param-
eters represent the slope for independent variable i (temperature or salinity) and j, the side of
the curve (low, or high). We assume that the final polyp density follows a negative binomial
distribution, and fit the models and calculated the log-likelihood, maximum likelihood esti-
mates and 95% maximum likelihood profile confidence limits using the bbmle package, version
1.0.18 [38], in the statistical package R, version 3.2.4 [39,40]. The raw data file and R code has
been included in Supporting Information (S1 Dataset and S1 R Code). To evaluate the effects
of salinity and temperature, we used AIC values (Akaike Information Criterion) to compare
the full model with models containing only temperature or salinity (i.e., Psnar = aF(T) Piyitiar OF
Pfinai = aG(S)Pipisiar). Here, large changes in AIC (presented as AAIC) with removal of tempera-
ture or salinity suggest the importance of the respective environmental component for repro-
duction and/or survival. Although there is no standard cut-off value for AIC, like there is for p-
values, we used a conservative value of AAIC = 7, which corresponds to significance levels in
the vicinity of 0.003 for nested models [41].

Effects of Feeding Frequency on Survivorship and Asexual
Reproduction

In order to determine the effect of feeding frequency on survivorship and asexual reproduction,
polyps were exposed to five feeding regimes over a six-week period while held at the original
culture conditions of 28°C + 0.5°C and 33%o + 0.5%o. The five feeding regimes consisted of
feeding every 1, 3, 7, or 14 days and a no food treatment over a six week period. Each feeding
event consisted of food saturation for 24 hours (approximately one Artemia sp. nauplii per
polyp per feeding event as outlined above) followed by a 100% water exchange 24 hours post
feeding event with artificial pre acclimated sea water of 28°C + 0.5°C and 33%o + 0.5%o. In the
14-day and no food treatments, water exchanges were conducted every seven days during the
six-week experiment. Each replicate was photographed and the number of polyps in each repli-
cate was determined at the start and in seven-day intervals during the experiment. Polyp den-
sity was analysed with a generalised linear mixed model with feeding frequency, time and the
interaction between time and feeding frequency as fixed effects and replicate number as a ran-
dom effect. This was analysed via proc glimmix in SAS, version 9.4 [42], using the ar(1) covari-
ance matrix to describe temporal autocorrelation, and we assumed polyp density followed a
negative binomial distribution with a log-link function, typical for count data [43]. We evalu-
ated statistical inference tests with Wald F tests conducted in proc glimmix. The raw data file
has been included in Supporting Information (S2 Dataset).

Environmental Cues for Medusae Production

To explore feeding frequency, temperature, salinity and combinations thereof as potential
cues for medusae production, each of the previously described six-week experiments was also
monitored for medusae production. Medusae production for this species is in the form of
monodisc strobilation [22] and each polyp was monitored for a change in body shape,
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formation of statoliths, attached and free swimming medusae. At the end of the six-week
experiments each replicate of each treatment (80 temperature and salinity treatments and
five feeding frequency treatments) was rapidly returned (shocked) back to the original culture
condition of 28°C + 0.5°C and 33%o + 0.5%o and were monitored for a further four weeks
(i.e., six weeks in treatment and four weeks post treatment). During this additional four-week
period, the polyps were fed once per week followed by a complete water exchange 24 hours
post feeding event.

Results

Thermal and Osmotic Effects on Survivorship and Asexual
Reproduction

Polyp survivorship and asexual reproduction rates significantly decreased as environmental
values moved away from the optimal temperature and salinity, and removal of parameters
describing the effects of each environmental variable suggested each variable was important
(effect of removing temperature parameters by setting F(T) = 1: AAIC = 594, and effect of
removing salinity parameters by setting G(S) = 1: AAIC = 164). These AAIC values are dis-
tinctly higher than our conservative baseline of AAIC = 7, and suggest that temperature and
salinity alone are not sufficient to explain the data, and polyp survival and/or reproduction is
indeed a function of both temperature and salinity. Summary statistics describing the data
used to generate the model are provided in Supporting Information (S1 Table). The optimal
temperature and salinity for polyp proliferation occurred at 22.9°C and 26.0%o, respectively,
where the population increased by over 10 times during the six-weeks (see Table 1) compared
to 100% mortality associated with both high and low temperatures and very low salinity levels.
The temperature and salinity range that allowed for population stability (i.e., equal to or greater
than 100% of the starting population) consisted of thermal treatments between 18°C and 31°C
at salinity levels between 19%o and 46%o. Although asexual reproduction was high at tempera-
tures that commonly occur in the waters of the Great Barrier Reef, this was not the case with
salinity, where the highest polyp proliferation was not encompassed by salinity levels that
occur in the waters of the Great Barrier Reef (see Fig 1). While variation in population growth
surrounding the optimum temperature and salinity was relatively symmetrical with respect to
temperature (o, = 3.47, o, = 5.01), population reproduction showed a steeper decrease with
lower salinity (o = 5.19) than higher salinity (oy, = 31.07).

Table 1. Maximum Likelihood Estimates for Parameters Describing Proportional Change in Polyp Density of Carukia barnesi, After Six Weeks,
Modelled as a Function of Temperature and Salinity.

Symbol
a
O
Oth
To pt
Os1
Osh
Sopt

Description Value 2.5% CL 97.5% CL

Maximum proportional change 11.48 9.00 14.95

Temperature curve low 3.47°C 2.91°C 4.02°C
Temperature curve high 5.01°C 4.39°C 5.72°C
Optimum Temperature 22.91°C 21.92°C 23.86°C
Salinity curve low 5.19%o 4.39%0 6.22%o
Salinity curve high 31.07%o 21.70%o 89.95%0
Optimum Salinity 26.04%o 24.54%0 27.85%0

Model output describes proportional change in polyp density for different temperature and salinity values as described in Egs 1, 2 and 3. Models were fit to

data collected from a matrix of eight temperature and ten salinity treatments, each replicated six times. Estimated parameter values are based on the best fit

parameters and 95% maximum likelihood profile confidence limits are provided.

doi:10.1371/journal.pone.0159380.t001
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Fig 1. Maximum likelihood estimated proportional change in polyp density after six weeks plotted as a
function of temperature and salinity from best-fit model. Model output describes proportional change in polyp
density for different temperature and salinity values as described in Eq 1. Solid black line represents values of 1, where
polyp density is expected to remain constant. The area encompassed by the dashed line indicates sea surface
temperature and salinity levels that commonly occur within the waters of the Great Barrier Reef [44,45]. Models were fit
to data collected from a matrix of eight temperature and ten salinity treatments, each replicated six times. Summary
statistics describing the data used to generate the model are provided in Supporting Information (S1 Table).

doi:10.1371/journal.pone.0159380.g001

Effects of Feeding Frequency on Survivorship and Asexual Reproduction

Feeding frequency significantly increased asexual reproduction (F, ,5 = 16.76, p < 0.001). In
addition, there was significant temporal variation in polyp proliferation (Fg, 149 = 78.65,

p < 0.001) and the positive effect of feeding frequency became incrementally stronger over
time (Fa4, 149 = 5.21, p < 0.001). Polyps that were fed daily increased mean population numbers
by over three times during the six-weeks, and polyps that were unfed increased in population
by 0.5 times over the same time frame (Fig 2).

Environmental Cues for Medusae Production

Temperature, salinity, and feeding frequency, and variations thereof, did not trigger medusae
production during the six-week experiments or during the four-week post treatment monitoring
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Fig 2. The relative change in Carukia barnesi polyp density, over six weeks of exposure, to five feeding
regimes. The feeding levels consisted of: fed every day (dark circles); fed every three days (light squares); fed every
seven days (dark triangles); fed every 14 days (light circles); unfed for 42 days (dark squares). Each of the five feeding
treatments consisted of six independent replicates, each of which consisted of a mean staring polyp density of 20.5
polyps per well (n = 30, x =20.5, SD = 2.8). The values for each time sequence were calculated as the proportional
change in polyp density from the starting population density at time zero, where values of one indicate no population
change and values above one indicate polyp proliferation through asexual reproduction. Values are reported as means
and error bars represent 95% Cl assuming a normal distribution. All counts were conducted in seven-day intervals
however the values have been graphed offset on the time axis for clarity.

doi:10.1371/journal.pone.0159380.9002

period. Only one polyp went through medusae production during the ten-weeks. This occurred
in the 31°C and 46%o treatment and was identified during week five of the experiment. As a per-
centage, one polyp undergoing medusae production during this experiment was not significant.
Returning the polyps to the original culture conditions of 28°C + 0.5°C and 33%e also did not
cause medusae production over the four-week post experiment monitoring period.

Discussion

Carukia barnesi polyps had a high tolerance to osmotic treatments with 100% survivorship
from treatments between 18 and 46%o (Fig 1), which indicates that this species may inhabit
areas with a high degree of osmotic variation. The osmotic treatment that yielded the highest
degree of polyp proliferation was 26%o. Salinity levels this low do not occur in the waters of the
Great Barrier Reef or in the Coral Sea, however these low salinity conditions are a common
occurrence in estuarine systems [46-49]. These results indicate that although the polyp stage
does not seem restricted to low salinity waters, the observed increase in asexual reproduction
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under low salinity conditions suggests that the polyp stage is probably an estuarine inhabitant.
Cubozoans that have coastal or estuarine polyp stages have previously been reported for two
species; C. fleckeri polyps were located in situ attached to the underside of rocks near a river
mouth in Queensland [4], and polyps of C. marsupialis were once located attached to bivalve
shells in a mangrove habitat in Puerto Rico [12]. To date, these are the only two discoveries of
cubozoan polyps in situ globally, however at least one other Australian cubozoan polyp, those
of C. bronzie, has also been suggested to be estuarine [2]. The possibility that C. barnesi has an
estuarine polyp stage has not previously been considered primarily due to their distinctly oce-
anic medusa stage [5,6,34] compared to species which are known to be primarily coastal, such
as C. fleckeri and C. bronzie [2,3,50-52]. There have been no reported sightings, or documented
stings caused by C. barnesi from estuaries; however this does not discount the possible presence
of medusae in these areas when they are newly detached and small. It is currently unknown
how the polyps enter low salinity habitats and nothing is known about the osmotic tolerance of
the medusa stage or where or when the medusae spawn. In speculation, due to there being no
reports of adult C. barnesi medusae within estuarine systems, it is plausible that the eggs, that
are known to have a long encapsulated planula stage from six days to six months [22], are
transported inshore on currents. Future research is required on the medusa stage, such as
determining their osmotic tolerance, to better understand how the life cycle is completed in
situ.

Temperature also affected both the survivorship and asexual reproduction rate of C. barnesi
polyps. There was notable symmetry between the high and low temperature curves with a
modelled optimum temperature of 22.9°C (Table 1). As the thermal treatments moved away
from optimum the amount of polyp proliferation through asexual reproduction was reduced.
The minimum and maximum thermal constraints of the polyps were between 18°C and 31°C,
which indicates that the polyp stage has a suitable operating envelope of approximately 13
degrees, whereby positive population growth is possible over a period of six weeks.

The southern distribution limit of the medusa stage of C. barnesi is not well established.
However, at present it is considered to be near Fraser Island based on sting and capture records
(Seymour unpublished). The winter (July) sea surface temperature near Fraser Island typically
averages 20°C and increases to 27°C during the summer (February) [45], which is within the
thermal capacity range for population growth of the polyp stage and encompasses their ther-
mal optimum of 22.9°C. Although the temperature profile of C. barnesi polyps seems to fit well
with the water temperature near Fraser Island, it is expected that the water temperature in estu-
arine systems near river mouths, which are predominately large river systems along the eastern
coast of Queensland, to be significantly lower in temperature than the adjacent open ocean.
For example, temperatures near the mouth of the Noosa Rivers (approximately 100km south
of Fraser Island) are known to average as low as 18°C during the winter [53] compared to 20°C
in the open ocean near Fraser Island [45]. Therefore, the polyp stage of C. barnesi may be
restricted to warmer estuarine areas where the winter water temperature does not drop as low
as 18°C north of Fraser Island. This suggests that the medusa stage may limit the southern dis-
tribution of this species, though no data exists on the thermal tolerance of the medusa stage to
confirm this.

The observed rate of asexual reproduction of C. barnesi during these experiments was high
compared to another cubozoan polyp, A. nr mordens [26]. For example, a maximum polyp
population increase of 50% was recorded for A. nr mordens over six weeks [26] compared to
over 1000% in C. barnesi during this replicated experiment (Fig 1). This high rate of reproduc-
tion is expected to increase the number of polyps able to produce medusae at any one time and
in turn influence the abundance of medusae present. Highly reproductive populations are
expected to make use of rapid environmental changes [54-56]. Purely in speculation, and
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assuming these polyps are estuarine and require hard substrate for attachment similar to other
cnidarian polyps [57-60], increasing manmade structures within marine environments (e.g.,
marinas, boat ramps and mooring platforms), may increase the available hard substrate for
polyp attachment. This anthropogenic effect has been suggested to positively impact on scy-
phozoan polyp populations [61-65]. Not surprisingly, increased asexual reproduction was cor-
related with increased feeding frequency. Therefore, changes in estuarine trophic dynamics,
primarily eutrophication, may lead to increased copepod density [66,67], presumably a pri-
mary food source for polyps and early stage medusae, which may influence polyp proliferation
and in turn affect medusae abundance.

Some cubozoan polyps are known to use environmental factors, such as temperature
[19,23-25], or reduced food availability [26], as a cue for medusae production. However, tem-
perature, salinity, feeding frequency, and combinations of these factors, did not trigger
medusae production in C. barnesi. This suggests that the polyps may use a different cue for
synchronous medusae production. Because of the consistency of the first arrival of the medusae
stage over the last 50 years [68], it is possible that this species uses increasing photoperiod as a
cue due to the interannual variation in environmental parameters such as temperature and
salinity. This type of cue has also been suggested for C. fleckeri due to the consistency of occur-
rence during a seven-year study [3]. There is also evidence that the stinger season length has
increased over the last 50 years from 15 days to 151, which has been speculated to be caused
by increasing global sea temperatures [68]. Therefore it is possible that C. barnesi polyps use
photoperiod to initiate synchronous medusae production but continue to produce medusae
throughout the season until the winter water temperature becomes too low.

Future research should pursue determining the thermal and osmotic parameters of the
medusa stage of C. barnesi, and experimentally determine possible environmental cues for
medusae production. Understanding the contributing factors that lead the spatial and temporal
variability in medusae abundance may in turn prove valuable to predicting future C. barnesi
abundance, and/or distributional range extensions, under projected sea temperature rise
scenarios.

Supporting Information

S1 Dataset. Carukia barnesi Polyp Count Data Associated With “Thermal and Osmotic
Effects on Survivorship and Asexual Reproduction”. Variable list/description: Sample identi-
fication number; Well number; Treatment number; Temperature (°C); Salinity (%o); Time
(weeks) (e.g., Time 0 indicates start of experiment and Time 6 indicates after 6 weeks; Total
(total number of polyps counted); Proportion (proportional change in polyp density), this vari-
able was calculated as Total polyps at Time 6/Total polyps at Time 0.

(CSV)

S2 Dataset. Carukia barnesi Polyp Count Data Associated With “Effects of Feeding Fre-
quency on Survivorship and Asexual Reproduction”. Variable list/description: Sample iden-
tification number; Time (weeks) (e.g., Time 0 indicates start of experiment and Times 1-6
indicate after 1-6 weeks; Well number; Temperature (°C); Salinity (%o);Total (total number of
polyps counted); Proportion (proportional change in polyp density), this variable was calcu-
lated as Total polyps at Times 1-6/Total polyps at Time 0.

(CSV)

S1 R Code. The R Code Used for Analysis of “Thermal and Osmotic Effects on Survivorship
and Asexual Reproduction”.
(TXT)
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S1 Table. Mean Values and Standard Errors of the Number of Polyps Present after Six
Weeks Exposure to a Matrix of Eight Temperatures and Ten Salinity Treatments. All values
were calculated as the relative change in polyp density and are presented as proportional
change, where values above one indicate population increase through asexual reproduction
and values below one indicate polyp mortality. There were six independent replicates for each
treatment, therefore n = 6 for all means presented below and standard errors were calculated

assuming a normal distribution.
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