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Probabilistic threshold 
analysis by pairwise stochastic 
approximation for decision‑making 
under uncertainty
Takashi Goda* & Yuki Yamada

The concept of probabilistic parameter threshold analysis has recently been introduced as a way 
of probabilistic sensitivity analysis for decision-making under uncertainty, in particular, for health 
economic evaluations which compare two or more alternative treatments with consideration of 
uncertainty on outcomes and costs. In this paper we formulate the probabilistic threshold analysis 
as a root-finding problem involving the conditional expectations, and propose a pairwise stochastic 
approximation algorithm to search for the threshold value below and above which the choice of 
conditionally optimal decision options changes. Numerical experiments for both a simple synthetic 
testcase and a chemotherapy Markov model illustrate the effectiveness of our proposed algorithm, 
without any need for accurate estimation or approximation of conditional expectations which the 
existing approaches rely upon. Moreover we introduce a new measure called decision switching 
probability for probabilistic sensitivity analysis in this paper.

Background.  Probabilistic sensitivity analysis is an attempt to provide a framework for evaluating how the 
uncertainty of input parameters propagates to the uncertainty of model outputs1,2. Let θ = (θ1, . . . , θs) be a 
vector of input random variables and consider a model described by Y = f (θ) . Here the output Y can be also 
regarded as a random variable because of the uncertainty of the input θ . A primary interest of probabilistic sen-
sitivity analysis for this simple setting is to identify which input variable θj (or, which group of input variables) 
affects the variability of the output Y most or least significantly. Among various approaches for measuring the 
relative importance of each input variable, variance-based sensitivity analysis due to Sobol’3,4 has been found 
quite useful for this purpose. Assuming the independence between the input random variables θ1, . . . , θs , the 
following analysis-of-variance (ANOVA) decomposition of a square-integrable function f holds:

where we write θu = (θj)j∈u for a non-empty set u ⊆ {1, . . . , s} , and each term is recursively given by 
f∅ = Eθ [f (θ)] and

Here we note that f∅ is a constant and each function fu depends only on a group of input variables θu . Because 
of the orthogonality of these terms5, the variance of f can be decomposed as

This equality enables us to measure the relative importance played by a group of input variables θu in several 
ways. The famous examples are

f (θ) = f∅ +
∑

∅�=u⊆{1,...,s}
fu(θu),

fu(θu) = Eθ\θu
[

f (θ)
]

−
∑

v⊂u

fv(θv), for ∅ �= u ⊆ {1, . . . , s}.

Vθ

[

f (θ)
]

=
∑

∅�=u⊆{1,...,s}
Vθu

[

fu(θu)
]

.
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where the first one measures the variance explained by θu , whereas the second one measures the total variance 
minus the variance explained by the complement variables θ \ θu . In fact, there is a huge volume of literature on 
how to estimate these sensitivity measures6–10 and also on applications to real problems in various subjects11–14.

Looking only at the variability (or, the variance) of the output from a single model is not enough, however, if 
we are faced with a decision-making problem15,16. Let D be a finite set of possible alternative options for decision, 
and consider that each option d ∈ D is associated with its model described by an utility function Yd = fd(θ) . In 
the context of health economic evaluations, for instance, D denotes the set of alternative treatments for a certain 
disease, fd represents the cost-effectiveness (or, the monetary net benefit) of each treatment d ∈ D , and the input 
variables θ include various unknown parameters related to the cost-effectiveness, such as the probability of side 
effect and the cost of treatment. Note that we assume that the set of input variables θ is common across all of the 
options and that the output Yd can be again regarded as a random variable because of the uncertainty of θ . The 
fundamental problem here is two-fold: 

1.	 to identity which option d ∈ D is optimal under uncertainty on θ , and
2.	 to identity which input variable θj (or, which group of input variables) affects the variability of the optimal 

option d ∈ D most or least significantly.

Regarding the first problem, in the absence of any knowledge about θ , the optimal option should be the one 
which maximizes the expected utility, i.e.,

Throughout this paper, we assume that dopt(∅) is unique, that is, exactly one option achieves the maximum 
expected utility. In order to address the second problem above, the so-called expected value of partial perfect 
information (EVPPI) considers an ideal situation where the uncertainty on an individual variable or a group 
of variables can be removed completely, and evaluates how such a partially perfect knowledge on θ can lead to 
an optimal option different from the prior one dopt(∅) and yield an increment of the expected utility17–20. To 
be more precise, let us consider a partition of the components in the vector θ = (θ1, θ2) . If we know the exact 
value of every component in θ1 , the optimal option should be the one which maximizes the conditional expected 
utility given θ1 , i.e.,

which can change depending on θ1 . We note that, when dopt(θ1) is not unique, that is, when several different 
options yield the same maximum conditional expected utility, the choice is arbitrary. Taking the average of the 
maximum conditional expected utility with respect to θ1 , the EVPPI for θ1 is defined as its increment from the 
prior expected utility, i.e.,

The EVPPI takes a non-negative value and is bounded above by the expected value of perfect information 
(EVPI):

This way, it is indicated that the uncertainty of the random variables θ1 with a large EVPPI (close to EVPI) 
significantly affects the choice of the optimal option, whereas it is not the case for those with a small EVPPI. In 
fact, the equality EVPPIθ1 = 0 is equivalent to that dopt(θ1) = dopt(∅) happens almost surely (up to uniqueness 
of the argument), that is, the perfect knowledge on θ1 does not change the choice of the optimal option. This 
is how probabilistic sensitivity analysis can be performed for a decision model, and a strong interest in such 
decision-theoretic probabilistic sensitivity analysis can be found not only in health economic evaluations21–24 
but also in petroleum engineering16,25,26. Here we emphasize that EVPPI is not the only measure for evaluating 
the relative importance of each input variable, and we shall introduce a new sensitivity measure called decision 
switching probability in this paper.

What is probabilistic threshold analysis?  Based on the indication from EVPPI, it is natural to evalu-
ate the threshold of θ1 around which the choice of the optimal option, dopt(θ1) , possibly changes. This is the 
aim of the so-called probabilistic parameter threshold analysis, which has been introduced quite recently as a 
way of probabilistic sensitivity analysis for decision-making under uncertainty27. Following the closely-related 
literature27,28, let us focus on the case where all of the input variables in θ are continuous and θ1 consists only of 
a single input variable θj for some 1 ≤ j ≤ s . Then the probabilistic parameter threshold for θj , denoted by Kj , is 
simply defined as follows.

∑

∅�=v⊆u

Vθv

[

fv(θv)
]

and
∑

∅ �= v ⊆ {1, . . . , s}
v ∩ u �= ∅

Vθv

[

fv(θv)
]

= Vθ

[

f (θ)
]

−
∑

∅�=v⊆{1,...,s}\u
Vθv

[

fv(θv)
]

,

dopt(∅) = argmax
d∈D

Eθ

[

fd(θ)
]

.

dopt(θ1) = argmax
d∈D

Eθ2|θ1
[

fd(θ)
]

,

EVPPIθ1 = Eθ1

[

max
d∈D

Eθ2|θ1 [fd(θ)]

]

−max
d∈D

Eθ [fd(θ)].

EVPI = Eθ

[

max
d∈D

fd(θ)

]

−max
d∈D

Eθ [fd(θ)].
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Definition 1  (Probabilistic parameter threshold) With the notation above, the probabilistic parameter threshold 
Kj for an individual variable θj is defined by the set

Throughout this paper, we assume that the cardinality of Kj is at most finite. Figure 1 shows a schematic of 
the probabilistic parameter threshold Kj for the case |D| = 3 . The conditional expectation for each option d ∈ D 
is drawn in a different color as a function of θj . The optimal option dopt(θj) which maximizes the conditional 
expectation is equal to d3, d2 and d1 in the left, middle and right intervals, respectively. The probabilistic param-
eter threshold Kj consists of two intersection points in this example, with one between d3 and d2 and the other 
between d2 and d1.

Remark 1  It is obviously possible that Kj is empty. In such a case, it implies from the continuity of θj that dopt(θj) 
does not change regardless of the value of θj . Let us write d′ = dopt(θj) . If d′ �= dopt(∅) holds, the tower property 
of conditional expectations leads to

which contradicts our assumption that dopt(∅) is unique. Thus we must have d′ = dopt(θj) ≡ dopt(∅) for any θj , 
leading to EVPPIθj = 0.

By definition, the probabilistic parameter threshold is not designed to measure the relative impor-
tance of each input variable for a decision model. Instead, it evaluates whether removing the uncertainty on 
θj completely can change the optimal option (for instance, from the prior one dopt(∅) ), and if so, that is, if 
Kj is not empty, which values of θj make such change happen. This informs us of the following additional 
aspect for a decision problem, which cannot be captured only by the EVPPI. Suppose that both θi and θj , with 
1 ≤ i < j ≤ s , follow the standard normal distribution independently, and also that we have EVPPIθi ≈ EVPPIθj . 
If Ki = {1},Kj = {3}, dopt(θi) = dopt(∅) for θi < 1 and dopt(θj) = dopt(∅) for θj < 3 , then, although an increment 
of the expected utility by knowing the exact value of either θi or θj is assumed almost the same each other, the 
chance of changing an optimal option d ∈ D from dopt(∅) is quite different. For the variable θj , such change hap-
pens when θj > 3 , whose probability is only 0.0013, whereas it happens with probability 0.1587 for the variable 
θi . Therefore, we can say that the variable θi is more sensitive to the variability of the optimal option than θj.

Although our primary interest of this paper is in an efficient estimation of the probabilistic parameter thresh-
old Kj , the above argument inspires us to introduce a related measure for decision-theoretic probabilistic sensitiv-
ity analysis as defined below. In what follows we call it decision switching probability.

Definition 2  (Decision switching probability) Let θ = (θ1, θ2) be a partition of the vector θ . With the notation 
above, the decision switching probability for the variables θ1 is defined by

In particular, for an individual parameter θj , we simply write Pj instead of Pθj.

It is clear that the decision switching probability is defined as the probability of switching the optimal option 
dopt(θ1) from dopt(∅) by knowing the exact values of θ1 . This way, the decision switching probability can be useful 
in understanding which input variable a given decision-making problem under uncertainty is most (or least) 

Kj :=
{

θj | dopt(θj) is not unique
}

.

Eθ

[

fd′(θ)
]

= EθjEθ\θj
[

fd′(θ)
]

≥ EθjEθ\θj
[

fdopt(∅)(θ)
]

= Eθ

[

fdopt(∅)(θ)
]

,

Pθ1 := Pθ1

[

dopt(θ1) �= dopt(∅)
]

.

Figure 1.   Schematic of the conditional expectations Eθ\θj
[

fd(θ)
]

 for different options d ∈ D as functions of θj , 
the conditional optimal option dopt(θj) and the probabilistic parameter threshold Kj.
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sensitive to, measuring a decision-theoretic probabilistic sensitivity in a different way from the EVPPI. A con-
nection between Kj and Pj is straightforward in that the domain of θj such that dopt(θj)  = dopt(∅) is determined 
by Kj , so that Pj can be computed by using the (marginal) probability distribution of θj . Moreover, as explained 
above, EVPPIθ1 = 0 is equivalent to Pθ1 = 0 , as the latter means that dopt(θ1) = dopt(∅) happens almost surely. 
However, as discussed in Supplementary Information 1, the larger EVPPIθ1 does not necessarily mean the larger 
Pθ1 and vice versa, and hence, the decision switching probability can provide a complementary information to 
the existing decision-theoretic probabilistic sensitivity measure.

Regarding an estimation of the probabilistic parameter threshold Kj , a nested Monte Carlo approach is origi-
nally employed27. The computational procedure with the detailed input and output at each step is described in 
Algorithm 1. We can see that the algorithm takes a double-loop procedure with the outer loop for generating 
random samples of θj and the inner loop for generating random samples of θ−j := θ \ θj conditional to each 
sample of θj , where M and N denote the numbers of inner and outer samples used, respectively. In the third 
item of Algorithm 1, the nominal choice of θ∗j  is given by the midpoint (θ(n)j + θ

(n+1)
j )/2 . In order to reduce 

the necessary computational cost, a regression-based approach has been proposed28, which first approximates 
the inner conditional expectation Eθ−j |θj

[

fd(θ)
]

 by a regression model (as a function of θj ) and then applies a 
single-loop Monte Carlo sampling for θj to estimate Kj . However, these existing approaches rely upon accurate 
estimation (with large M) or approximation of inner conditional expectations, and both lack a theoretical sup-
port on convergence and computational complexity. 

Organization and contributions of this paper.  Motivated mainly by applications to health economic 
evaluations, the aim of this paper is to develop an efficient algorithm to estimate the probabilistic parameter 
threshold Kj . We start from providing a formulation of the probabilistic threshold parameter analysis as a root-
finding problem involving the conditional expectations. Then we propose a pairwise stochastic approximation 
approach to search for Kj efficiently. The key difference from the existing approaches27,28 is that our proposed 
approach only requires an unbiased, but rough estimator of the inner conditional expectations and that the 
parameter threshold estimate is generated randomly only at the initial step and then updated iteratively. In fact, 
in our numerical experiments below, we use only one Monte Carlo sample to estimate the inner conditional 
expectations at each iteration step. Under some mild assumptions on θ and fd’s, the standard theory on stochastic 
approximation from the literature29–34 directly applies to our proposed approach, so that the each element in Kj 
can be found with a probabilistic error ε typically by the computational cost of O(|D|2ε−2) . Numerical experi-
ments for a simple synthetic testcase which compares three treatments and for a chemotherapy Markov model 
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(see Supplementary Information  2 for the latter) both illustrate the effectiveness of the proposed approach. 
Finally we conclude this paper with some remarks. In summary, the main contributions of this paper are given 
as follows: 

1.	 By reformulating the probabilistic threshold parameter analysis, an efficient pairwise stochastic approxima-
tion algorithm is proposed to estimate the probabilistic threshold.

2.	 Besides that our proposed algorithm is theoretically supported by the standard theory on stochastic approxi-
mation, numerical experiments for two examples confirm the effectiveness of our proposed algorithm and 
the superiority over the existing nested Monte Carlo method.

3.	 As discussed already, a new decision-theoretic sensitivity measure called decision switching probability is 
introduced in this paper, providing a complementary information to the existing measure EVPPI.

Methods
Formulation as a root‑finding problem.  Let us recall that, for a fixed value of θj , the optimal option 
which maximizes the conditional expectation is denoted by

and that our task is to find θj such that dopt(θj) is not uniquely defined. Let the set {d1(θj), d2(θj), . . . , d|D|(θj)} 
be a reordering of the elements in D such that the inequality

holds. Note that this ordering is arbitrary wherever the equality holds. With this notation, the fact that dopt(θj) 
is not unique is equivalent that the ordering of d1(θj) and d2(θj) is arbitrary, meaning that the corresponding 
conditional expectations are equal to each other. Hence, the probabilistic parameter threshold Kj is equivalently 
given by

 Through this representation, our problem reduces to a root-finding problem which involves the conditional 
expectations. However, it is generally unknown which options correspond to d1(θj) and d2(θj) , respectively, for 
given θj.

Now, for two different options d1, d2 ∈ D , we write

Note that K (d1,d2)
j  can be the empty set if either

holds for any θj . It is obvious that we have K (d1,d2)
j = K

(d2,d1)
j  and

if |D| = 2 , and

if |D| ≥ 3 . Thus it suffices to search for the set K (d1,d2)
j  for all the possible pairs d1, d2 ∈ D first and then to check 

whether each element in 
⋃

d1, d2 ∈ D
d1 �= d2

K
(d1,d2)
j  is contained in Kj or not. Note that the second step is not neces-

sary for the case |D| = 2.
Motivated by the formulation presented here, we below consider applying a stochastic approximation to find 

the roots of the conditional expectation Eθ−j |θj
[(

fd1 − fd2
)

(θ)
]

 and then propose a pairwise stochastic approxi-
mation approach to search for the threshold Kj , wherein some postprocessing based on a statistical hypothesis 
testing is required for the case |D| ≥ 3 to see whether each element in 

⋃

d1, d2 ∈ D
d1 �= d2

K
(d1,d2)
j  is contained in Kj or 

not.

Stochastic approximation for root‑finding.  Let d1, d2 ∈ D be two different options. In order to find 
the set K (d1,d2)

j  , i.e., the roots of the conditional expectation Eθ−j |θj
[(

fd1 − fd2
)

(θ)
]

 , we use a stochastic approxi-
mation method. We refer to the book35 and the review article36 for a comprehensive information on stochastic 
approximation algorithms. In what follows, we briefly describe the stochastic approximation algorithm, as if the 

dopt(θj) = argmax
d∈D

Eθ−j |θj
[

fd(θ)
]

,

Eθ−j |θj
[

fd1(θj)(θ)
]

≥ Eθ−j |θj
[

fd2(θj)(θ)
]

≥ · · · ≥ Eθ−j |θj
[

fd|D|(θj)(θ)
]

Kj =
{

θj | Eθ−j |θj
[

fd1(θj)(θ)
]

= Eθ−j |θj
[

fd2(θj)(θ)
]}

=
{

θj | Eθ−j |θj
[(

fd1(θj) − fd2(θj)

)

(θ)

]

= 0
}

.

K
(d1,d2)
j =

{

θj | Eθ−j |θj
[(

fd1 − fd2
)

(θ)
]

= 0
}

.

Eθ−j |θj
[(

fd1 − fd2
)

(θ)
]

> 0 or Eθ−j |θj
[(

fd1 − fd2
)

(θ)
]

< 0

Kj = K
(d1,d2)
j ,

Kj ⊆
⋃

d1, d2 ∈ D
d1 �= d2

K
(d1,d2)
j ,
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set K (d1,d2)
j  contains only one element, which is denoted by θ̃ (d1,d2)j  . Note that the resulting estimate will diverge 

if K (d1,d2)
j  is empty, and also that several independent runs with different initial estimates are required if K (d1,d2)

j  
contains more than one element and all the elements are needed to be found.

For a fixed value of θj and M ∈ Z>0 , we denote by θ (1)−j , . . . , θ
(M)
−j  the i.i.d. random samples of θ−j conditional 

on θj . Then the conditional expectation Eθ−j |θj
[(

fd1 − fd2
)

(θ)
]

 can be estimated unbiasedly by the following 
Monte Carlo estimator:

Then the classical Robbins-Monro algorithm29 searches for the solution θ̃ (d1,d2)j  by

with an initial point θ1j  and a sequence of decreasing step sizes α1,α2, . . . > 0 . The initial estimate θ1j  can be 
generated, for instance, randomly from the marginal probability distribution of the variable θj . The well-known 
averaging technique, found independently by Polyak32 and Ruppert33, outputs the average

instead of the nominal estimate θ tj  . In order to establish a convergence result of the estimate θ tj  to θ̃ (d1,d2)j  , Robbins 
and Monro originally consider the following assumptions29: 

1.	 (conditional expectation) 

2.	 (conditional variance) 

 holds for any θj.
3.	 (step sizes) 

It is obvious that when the sign of the conditional expectation given in the first item is opposite, the recursion 
(2) should be replaced by

It follows from the third item that the step sizes must decay at the order of t−α with 1/2 < α ≤ 1 . As shown by 
Ruppert and Juditsky34, if the conditional expectation Eθ−j |θj

[(

fd1 − fd2
)

(θ)
]

 is linear in θj , this condition can 
be relaxed to 0 < α < 1 by the Polyak-Ruppert averaging, which allows for more slowly decaying step sizes. 
Regarding the results on the convergence rates, we refer to Section 5 of the review article36 both for the standard 
Robbins-Monro iteration and for the Polyak-Ruppert averaging. Roughly speaking, the estimate ( θ tj  or �t

j ) typi-
cally converges almost surely to θ̃ (d1,d2)j  with the rate of 1/

√
t under mind assumptions on θ and fd’s.

Remark 2  The stochastic approximation algorithm described above does work to search for the pairwise set 
K
(d1,d2)
j  for any sample size M ≥ 1 in (1). Hence, by formulating the probabilistic threshold analysis as a stochastic 

root-finding problem, we can avoid the difficulty inherent to the nested structure considered in the literature27,28. 
Moreover, in order to improve the stability of the algorithm, we can apply some of variance reduction techniques 
including Latin hypercube sampling37 or (randomized) quasi-Monte Carlo sampling38, as long as the resulting 
estimator is unbiased as with the standard one (1).

Search for parameter threshold.  Having estimated the set K (d1,d2)
j  for all the possible pairs d1, d2 ∈ D , it 

suffices to check whether each element in the estimated set K (d1,d2)
j  is contained in Kj or not. Note again that this 

step is not necessary if |D| = 2 . For |D| ≥ 3 , we carry out this step by the following statistical hypothesis testing.
Let θ̂ (d1,d2)j  be an element in the estimated set K (d1,d2)

j  . Then the null and alternative hypotheses are given by

respectively. The condition for the null hypothesis H0 is equivalent that

(1)fd1 − fd2
M
(θj) :=

1

M

M
∑

m=1

(

fd1 − fd2
)

(θ
(m)
−j , θj).

(2)θ t+1
j = θ tj − αt × fd1 − fd2

M
(θ tj )

�t
j :=

1

t

t
∑

u=1

θuj ,

{

Eθ−j |θj
[(

fd1 − fd2
)

(θ)
]

< 0 for θj < θ̃
(d1,d2)
j ,

Eθ−j |θj
[(

fd1 − fd2
)

(θ)
]

> 0 for θj > θ̃
(d1,d2)
j .

Vθ−j |θj
[(

fd1 − fd2
)

(θ)
]

≤ σ 2
j < ∞

∞
∑

t=1

αt = ∞ and

∞
∑

t=1

α2
t < ∞.

θ t+1
j = θ tj + αt × fd1 − fd2

M
(θ tj ).

H0 : θ̂ (d1,d2)j ∈ Kj and H1 : θ̂ (d1,d2)j �∈ Kj ,
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hold for all d ∈ D \ {d1, d2} , while the condition for the alternative hypothesis H1 is equivalent that there exists 
at least one option d ∈ D \ {d1, d2} such that either

holds. Assuming the normality of the Monte Carlo estimators

for all d ∈ D \ {d1, d2} with large sample size N, for instance, the conventional one-sided t-test applies indepen-
dently to each individual inequality null, and the null hypothesis H0 will be rejected or not with some significance 
level.

The necessary cost of the hypothesis testing is considered moderate or even negligible as compared to that 
of estimating the set K (d1,d2)

j  for all the possible pairs d1, d2 ∈ D . Since the convergence results on the stochastic 
approximation method implies that each element in K (d1,d2)

j  can be estimated with a probabilistic error ε by the 
cost of O(ε−2) , the total cost of our proposed approach to estimate the probabilistic threshold Kj itself is of order 
O(|D|2ε−2) (up to the cardinality of each pairwise set K (d1,d2)

j  ), where the factor |D|2 comes from the number of 
possible pairs d1, d2 ∈ D , which is |D|(|D| − 1)/2 . The overall computational procedure of our proposed approach 
is summarized in Algorithm 2.

Numerical experiments
To demonstrate the effectiveness of our proposed approach, here we conduct numerical experiments for a 
simple synthetic testcase39 comparing three medical treatments. In Supplementary Information 2, we present 
our numerical results for a more complicated chemotherapy Markov model introduced by Heath and Baio40.

Model setting.  The example we use here is taken from Hironaka et al.39, which extends the model originally 
introduced by Ades et al.41 in the context of medical decision making. As was explained39, the original version 
of this synthetic cost-effectiveness model compares only two treatments (some standard of care and a new treat-
ment) on the prevention of a critical event, denoted by E, whereas three different treatments D = {d1, d2, d3} 
are compared in the extended model with d1 being the standard of care and d2 and d3 being two different new 
treatments. The standard of care d1 , on the one hand, is cost-free and has no risk that the side effect (SE) occurs, 
while the probability that the critical event occurs is relatively large. The new treatments d2 and d3 , on the other 
hand, are both costly and have some probabilities that the side effect occurs, while the probabilities of the critical 
event are relatively smaller than d1.

Importantly, the above-mentioned costs and probabilities of the critical event and the side effect themselves 
are not known precisely, so that we model them as random variables. We refer to Table 1 for a detailed description 
on these model inputs. The utility function fd for each treatment d ∈ D represents the monetary net benefit of d as 
a function of the input vector θ which consists of 12 individual random variables L, QE , QSE , CE , CSE , CT ,d2 , CT ,d3 , 

E
θ−j |θ̂

(d1,d2)
j

[(

fd − fd1
)

(θ)
]

≤ 0 and E
θ−j |θ̂

(d1,d2)
j

[(

fd − fd2
)

(θ)
]

≤ 0

E
θ−j |θ̂

(d1,d2)
j

[(

fd − fd1
)

(θ)
]

> 0 or E
θ−j |θ̂

(d1,d2)
j

[(

fd − fd2
)

(θ)
]

> 0

fd − fd1
N
(θ̂

(d1,d2)
j ) and fd − fd2

N
(θ̂

(d1,d2)
j )
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PE,d1 , ORE,d2 , ORE,d3 , PSE,d2 , PSE,d3 , which are denoted by θ1, . . . , θ12 , respectively, in this order. Furthermore, the 
model contains three constants CT ,d1 , PSE,d1 , � , while two parameters PE,d2 and PE,d3 are defined as functions of 
PE,d1 ,ORE,d2 and PE,d1 ,ORE,d3 , respectively. Here, unlike the original model41, the extended model includes the 
correlations between odds ratios (OR) of the critical events ( ORE,d2 , ORE,d3 ), treatment costs ( CT ,d2 , CT ,d3 ), and 
probabilities of side effects ( PSE,d2 , PSE,d3 ), which makes the decision-making problem computationally harder.

Now the net benefit function fd for each treatment d ∈ D is defined by

where the first four terms correspond to possible four outcomes (whether or not the side effect occurs and 
whether or not the critical event occurs) and the fifth term denotes the cost of d. We note that the net benefit is 
expressed as a multi-linear function of most of the elements in θ . However, fd2 and fd3 are both nonlinear with 
respect to PE,d1 ,ORE,d2 and PE,d1 ,ORE,d3 , respectively, which makes it hard to compute the probabilistic parameter 
thresholds exactly for this model. As has been discussed, our interest is to infer which input parameter affects 
the choice of the optimal treatment more or least significantly.

Results and discussion
Reference results.  Let us consider below estimating the probabilistic parameter thresholds for 6 input vari-
ables θ3 , θ5 , θ7 , θ10 , θ11 and θ12 , respectively. Before applying our proposed approach, we first show some refer-
ence results by estimating the conditional expectations Eθ−j |θj [fd(θ)] here. More precisely, for each considered 
input variable θj , we estimate the conditional expectations Eθ−j |θj [fd(θ)] for all d ∈ {d1, d2, d3} by using the naive 
Monte Carlo average

with large sample size N = 218 for various values of θj . Here, because of the multi-linearity of the functions fd , 
the exact mean of an individual random variable can be substituted directly wherever available. The results are 
shown in Fig. 2. Except for the variable θ10 , we can see that there exists exactly one intersection between every two 
different treatments: (d1, d2) , (d1, d3) and (d2, d3) , where the intersection of the pair (d1, d3) for θ7 exists beyond 
the range of this plot. It follows that the probabilistic parameter threshold Kj consists of two elements for the 
variables except θ10 . Regarding the variable θ10 , the treatment d2 always leads to a larger conditional expectation 
than the treatment d3 and the corresponding probabilistic parameter threshold K10 consists of only one element. 
We can use these results as a reference to see whether our proposed approach can search for the probabilistic 
parameter thresholds correctly.

fd(θ) = PSE,dPE,d

[

�

(

L
1+ QE

2
− QSE

)

− (CSE + CE)

]

+ PSE,d(1− PE,d)[�(L− QSE)− CSE]

+ (1− PSE,d)PE,d

[

�L
1+ QE

2
− CE

]

+ (1− PSE,d)(1− PE,d)�L− CT ,d ,

Eθ−j |θj [fd(θ)] ≈
1

N

N
∑

n=1

fd(θ
(n)
−j , θj)

Table 1.   The input parameters involved in the synthetic testcase. Note that log-normal(µ,�) and 
logit-normal(µ,�) denote the log-normal and logit-normal distributions, respectively, with µ and � being 
the mean vector and the covariance matrix of the corresponding normal distribution, respectively. Beta(α,β) 
denotes the Beta distribution with shape parameters α,β > 0 . The word QALY appearing in the first column 
stands for quality-adjusted life year.

Description Parameter Distribution

Lifetime remaining L (θ1) N (30, 25)

QALY after critical event, per year QE (θ2) logit-normal(0.6, 1/36)

QALY decrement due to side effects QSE (θ3) N (0.7, 0.01)

Cost of critical event CE (θ4) N(2× 105, 108)

Cost of side effect CSE (θ5) N(105, 108)

Cost of treatment d = d1 CT ,d1 0 (constant)

Cost of treatments d = d2, d3 CT ,d (θ6, θ7) N

((

1.5× 104

2× 104

)

,

(

300 100
100 500

))

Probability of critical event on treatment d = d1 PE,d1 (θ8) Beta(15, 85)

Odds ratios of critical event
relative to treatment d = d1 

PE,d/(1−PE,d )

PE,d1 /(1−PE,d1 )

ORE,d (θ9, θ10) log-normal

((

−1.5
−1.75

)

,

(

0.11 0.02
0.02 0.06

))

Probability of critical event on treatments d = d2, d3 PE,d Derived from PE,d1 and ORE,d
Probability of side effect on treatment d = d1 PSE,d1 0 (constant)

Probability of side effect on treatments d = d2, d3 PSE,d (θ11, θ12) logit-normal

((

−1.4
−1.1

)

,

(

0.10 0.05
0.05 0.25

))

Monetary value of 1 QALY � 75,000 (constant)
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Figure 2.   The conditional expectations Eθ−j |θj [fd(θ)] as functions of θj for d ∈ {d1, d2, d3} . The results for θ3 
(left top), θ5 (right top), θ7 (left middle), θ10 (right middle), θ11 (left bottom) and θ12 (right bottom) are shown 
respectively.
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Experimental setup.  We use our proposed Algorithm 2 with M = 1,T = N = 104 to estimate the thresh-
old Kj , which means that we use only one sample of θ−j at each iteration step in the second item of Algorithm 2. 
For the variables θ10, θ11 and θ12 , we consider the transformed variables log θ10, logit(θ11) , and logit(θ12) instead, 
respectively, for the iterations of stochastic approximation. In the first item of Algorithm 2, we generate θ1j  from 
the marginal distribution of θj . We set the sequence of step sizes to

where σ(θj) denotes the standard deviation for the marginal distribution of the variable θj , and consider the 
averaged outputs �t

j with t = 1, 2, . . . ,T as a sequence of our threshold estimates. Regarding the variable θ7 , we 
enlarge αt by a constant factor so that the resulting estimate �t

7 converges within T = 104 iteration steps. We 
carry out 20 independent runs for each considered variable.

Convergence of pairwise estimates.  As the last paragraph shows how to set the input and the first item 
of Algorithm 2, here we discuss the results obtained from the second and third items of Algorithm 2. Figure 3 
shows the convergence behaviors of the estimates �t

j as functions of the iteration step t, obtained from the sec-
ond item of Algorithm 2, for all the possible pairs (d1, d2), (d1, d3) and (d2, d3) . Except for the pair (d2, d3) for 
the variable log θ10 , the mean estimate from 20 independent runs converges to a value which agrees well with 
the intersection point shown in Fig. 2, and the standard error gets smaller with the convergence rate of approxi-
mately t−1/2 as the iteration step t increases. These observations are exactly what we expect from the theory of 
stochastic approximation. Due to the convergence to a constant value, these estimates pass the third item of 
Algorithm 2 and can be subject to the last item.

Regarding the pair (d2, d3) for the variable log θ10 , for which any intersection is not observed in Fig. 2, the 
mean estimate itself does not converge and the magnitude of the standard error stays almost the same along the 
iteration steps. This way, the resulting estimates do not pass the the third item of Algorithm 2 and we can infer 
that the set K (d2,d3)

10  is empty. Interestingly, as clearly seen from the result for the pair (d1, d2) for the variable θ7 , 
the stochastic approximation method can find the pairwise threshold successfully even if it is located far from 
the initial estimate. It seems quite hard to get similar results if we only generate θ7 randomly from its marginal 
distribution as done in the existing approaches27,28.

Estimated probabilistic thresholds.  Finally we go to the fourth item of Algorithm  2. Table  2 sum-
marizes the final estimates obtained from the stochastic approximation after T = 104 iteration steps. Here the 
p-value is computed as follows. As an example, let us consider the estimated set for K (d1,d2)

j  . If it is not empty, we 
apply the one-sided t-test to the two pairs (d1, d3) and (d2, d3) , which gives two p-values. By doing this for each 
of 20 independent runs, we have 20 of two p-values and finally we take the maximum value of the 20 p-values 
for each pair (d1, d3) and (d2, d3) , respectively. In fact, the variables and the pairs in Table 2, which show the set 
of p-values as (1, 1), consistently yield (1, 1) for all 20 independent runs, which indicates that the corresponding 
estimate is contained in the threshold Kj . For some cases, the set of p-values is (0, 0), which clearly indicates that 
the corresponding estimate is not contained in Kj . The marginal case is found only for the pair (d1, d2) for the 
variable log θ10 . As shown in Fig. 2, three intersections of the conditional expectations are close to each other, 
which makes it difficult to estimate Kj correctly. Nevertheless, the p-values are small enough for the pair (d1, d2) , 
so that the estimated K (d1,d2)

10  is properly discarded from the set K10 with a sufficiently small significance level. 
Almost the same results are also obtained by applying one-sided Wilcoxon signed-rank test instead. This way 
our proposed algorithm can give estimates of the parameter probabilistic threshold which agree quite well with 
those expected from the reference results.

Comparison with nested Monte Carlo.  As a comparison, we estimate Kj also by the nested Monte Carlo 
approach (Algorithm 1) with M = 104 and N = 102 . Note that this choice of M and N is close to the one used 
by McCabe et al.27 and that the total cost for each variable is MN = 106 , which is already larger than that of our 
proposed approach. We have the following observations. Firstly, we cannot find any element in Kj for the vari-
ables θ3, θ5, θ7 and log θ10 . This is expected from the fact that the outer samples are generated randomly from 
the marginal distribution for the nested Monte Carlo approach, whereas every threshold is located far from the 
region where the marginal probability distribution is concentrated in this case. Secondly, regarding the variable 
logit(θ11) , the resulting estimate is quite unstable in the sense that some runs (2 out of 20 runs) estimate that the 
threshold K11 is empty, some (13 out of 20 runs) only estimate one of the two elements, and some (4 out of 20 
runs) estimate the two elements but with larger variations than those by our proposed approach, and the remain-
ing run mistakenly estimates that K11 consists of three elements. The last mistaken estimation happens because 
the conditional expectations for at least two treatments are close to each other around the threshold and so the 
Monte Carlo estimation possibly returns a wrong treatment as the one which maximizes the conditional expec-
tation. Finally, for the variable logit(θ12) , one of the two elements around −1.41 , i.e., the intersection of the pair 
(d2, d3) , is estimated correctly for most runs (19 out of 20 runs), whereas the remaining run mistakenly estimates 
three distinct elements around −1.41 . The mean and its standard error for the 19 runs are given by −1.41 and 
1.13× 10−2 , respectively. Note that the mean agrees well with that obtained by our proposed approach, while the 
standard error is about twice larger for the nested Monte Carlo approach. No run can find the other element of 
K12 around 2.37. This result clearly shows the superiority of our proposed approach.

αt =
3σ(θj)

2× 104
√
t
,
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Decision switching probability.  Using the results for the probabilistic thresholds, we can identify the 
intervals of θj where dopt(θj) is equal to d1, d2 and d3 , respectively, as shown in Table 3. As we have dopt(∅) = d2 
for this model, the decision switching probability for a variable θj is given by

Figure 3.   The pairwise probabilistic thresholds for the synthetic testcase found by the stochastic approximation 
with Polyak-Ruppert averaging as functions of iteration steps t. The results for θ3 (left top), θ5 (right top), θ7 (left 
middle), log θ10 (right middle), logit(θ11) (left bottom) and logit(θ12) (right bottom) are shown respectively. For 
each pair of two treatments, the line and the shaded area represent the mean and its standard error estimated 
from 20 independent runs, respectively.
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Each of two terms on the right-hand side can be computed from the marginal cumulative distribution function 
of θj . The results are shown in the fifth column of Table 3. As a reference, we estimate the EVPPI for each variable 
by using the nested Monte Carlo estimator17 with 218 outer samples for θj and 210 inner conditional samples for 
θ−j , wherein the exact mean of a random variable is substituted directly whenever available. Note that the EVPI 
is estimated to be 4063.5 for this model39. Since every threshold for the variables θ3, θ5, θ7 and log θ10 is located 
far from the region where the marginal probability distribution is concentrated, the corresponding decision 
switching probability is extremely small, and so is the EVPPI. On the contrary, one of the thresholds for both 
logit(θ11) and logit(θ12) is in the concentrated region, and so, knowing the exact value of logit(θ11) or logit(θ12) 
has some chance of changing the optimal treatment from d2 . In this case, the decision switching probability for 
logit(θ12) is much larger than that for logit(θ11) , and so is the EVPPI, which indicates that the variable logit(θ12) 
is more sensitive in choosing the optimal treatment.

Concluding remarks
In this paper we have developed an efficient pairwise stochastic approximation approach to estimate the proba-
bilistic parameter threshold. Not only the standard theory on the convergence of stochastic approximation 
algorithms directly applies to our proposed approach but also the numerical experiments have confirmed that 
our proposed approach works quite well both for a simple synthetic testcase and a chemotherapy Markov model. 
Moreover, we have introduced a new measure called the decision switching probability for probabilistic sensitiv-
ity analysis in the context of health economic evaluations, or more broadly, decision-making under uncertainty, 
which can deliver a complementary information to the existing decision-theoretic probabilistic sensitivity meas-
ure EVPPI.

The following issues are left for future research:

Pj = Pθj [dopt(θj) = d1] + Pθj [dopt(θj) = d3].

Table 2.   The results of the pairwise probabilistic thresholds for the synthetic testcase found by the stochastic 
approximation with Polyak-Ruppert averaging after 104 iterations. The mean and its standard error are 
estimated from 20 independent runs, respectively. The p-values denote the maximum values for the one-sided 
t-test among 20 independent runs. The bold-typed numbers indicate that the corresponding elements are 
contained in the threshold Kj.

Variable K
(d1,d2)
j K

(d1,d3)
j K

(d2,d3)
j

θ3
Mean (std) 2.02 (0.0176) 1.30 (0.0130) −1.18 (0.026)

p-value (1, 1) (0, 0) (1, 1)

θ5
Mean (std) 1.99× 10

5 (1.31× 103) 1.45× 105 (1.00× 103) −4.19× 10
4 (1.88× 103)

p-value (1, 1) (0, 0) (1, 1)

θ7
Mean (std) 1.15× 10

5 (1.21× 103) 3.17× 104 (2.29× 102) 1.08× 10
4 (2.49× 102)

p-value (1, 1) (0, 0) (1, 1)

log θ10
Mean (std) 0.45 (1.77× 10−2) −1.21 (8.73× 10−3)

Empty
p-value (1, 1) (0, 0)

logit(θ11)
Mean (std) −0.69 (6.27× 10−3) −0.62 (1.78× 10−2) −0.76 (8.09× 10−3)

p-value (5.36× 10−4, 9.38× 10−8) (1, 1) (1, 1)

logit(θ12)
Mean (std) 2.37 (4.16× 10−2) −0.66 (5.57× 10−3) −1.41 (6.35× 10−3)

p-value (1, 1) (0, 0) (1, 1)

Table 3.   The results of the interval for the synthetic testcase over which the corresponding treatment 
d ∈ {d1, d2, d3} is optimal. The decision switching probability and the EVPPI are also shown in the fifth and 
sixth columns, respectively.

Variable dopt(θj) = d1 dopt(θj) = d2 dopt(θj) = d3 DSP EVPPI

θ3 (2.02,∞) (−1.18, 2.02) (−∞,−1.18) 5.57× 10−40 0.0

θ5 (1.99× 105,∞) (−4.19× 104, 1.99× 105) (−∞,−4.19× 104) 2.17× 10−23 0.0

θ7 (1.15× 105,∞) (1.08× 104, 1.15× 105) (−∞, 1.08× 104) 0.0 0.0

log θ10 (0.45,∞) (−∞, 0.45) None 1.36× 10−19 0.00

logit(θ11) (−0.62,∞) (∞,−0.76) (−0.76,−0.62) 2.17× 10−2 54.3

logit(θ12) (2.37,∞) (−1.41, 2.37) (−∞,−1.41) 2.65× 10−1 1308.9
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•	 As with the existing methods27,28, our proposed approach applies only to the probabilistic parameter threshold 
for a single input variable θj . An extension to the multivariate case is interesting but does not seem straight-
forward.

•	 Although we have not discussed in this paper, it is clear that the decision switching probability can be also 
defined for the sample information and used as a complementary measure to the expected information of 
sample information39,41–44. We need further investigation on how to efficiently estimate the decision switching 
probability for sample information, as our present approach using the probabilistic parameter threshold and 
the marginal probability distribution is not straightforward to extend.
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