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Cardiovascular Manifestations and
Mechanisms in Patients with COVID-19
Qingyu Dou,1,2 XinWei,3 Kehua Zhou,4,2 Shujuan Yang,5,2,* and Peng Jia 6,2,*

Coronavirus disease 2019 (COVID-19) patients with pre-existing cardiovascular
disease (CVD) or with cardiovascular complications have a higher risk of mortal-
ity. The main cardiovascular complications of COVID-19 include acute cardiac
injury, acute myocardial infarction (AMI), myocarditis, arrhythmia, heart failure,
shock, and venous thromboembolism (VTE)/pulmonary embolism (PE). COVID-
19 can cause cardiovascular complications or deterioration of coexisting CVD
through direct or indirect mechanisms, including viral toxicity, dysregulation of
the renin–angiotensin–aldosterone system (RAAS), endothelial cell damage and
thromboinflammation, cytokine storm, and oxygen supply–demand mismatch.
We systematically review cardiovascular manifestations, histopathology, and
mechanisms of COVID-19, to help to formulate future research goals and facili-
tate the development of therapeutic management strategies.
1National Clinical Research Center of
Geriatrics, Geriatric Medicine Center,
West China Hospital, Sichuan University,
Chengdu, China
2International Institute of Spatial
Lifecourse Epidemiology (ISLE), Hong
Kong, China
3Department of Cardiology, West China
Hospital, Sichuan University, Chengdu,
China
4Department of Hospital Medicine,
ThedaCare Regional Medical Center-
Appleton, Appleton, WI, USA
5West China School of Public Health and
West China Fourth Hospital, Sichuan
University, Chengdu, China
6Department of Land Surveying and
Geo-Informatics, The Hong Kong Poly-
technic University, Hong Kong, China

*Correspondence:
rekiny@126.com (S. Yang) and
jiapengff@hotmail.com (P. Jia).
COVID-19 is a pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), which has infected over 20.9 million patients and resulted in 760 633 deaths worldwide
as of August 15, 2020. SARS-CoV-2 is in the same family as severe acute respiratory
syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses. However,
compared with SARS and MERS, COVID-19 has higher transmissibility and lower mortality
(although still higher than influenza) [1]. The mortality rate of COVID-19 was reported to be
~3.4% among all patients and 1.4% among patients without underlying disease, but 13.2%
among patients with pre-existing CVD [2]. Among inpatients with COVID-19, the prevalence
of cardiovascular comorbidities has ranged between 17.1% and 59.6%, and mortality in
those with pre-existing hypertension or CVD is 1.42-fold and 3.15-fold higher than those with-
out, respectively (Table 1) [2–7].

As the deaths from COVID-19 increase, especially among patients with comorbidities, the impact
of COVID-19 on the cardiovascular system is gaining widespread attention. COVID-19 could re-
sult in cardiovascular complications or deterioration of coexisting CVD through direct or indirect
mechanisms. Moreover, the severity of COVID-19 correlates with cardiovascular manifestations.
Given that the COVID-19 pandemic continues to expand, there has been increasing demand for
deeper understanding of the interaction between the cardiovascular system and viral infection. To
satisfy this demand, we provide a comprehensive state-of-the-art review of the cardiovascular
manifestations and pathophysiology of COVID-19. By integrating pathological and clinical find-
ings, this forum article aims to improve our understanding of the potential mechanisms underlying
the effects of COVID-19 on the cardiovascular system, laying the foundation for improved preven-
tative and therapeutic management strategies.

Cardiovascular Manifestations
The clinical cardiovascular manifestations of COVID-19 mainly include acute cardiac injury, AMI,
myocarditis, arrhythmia, heart failure, venous VTE/ PE, and shock (Figure 1).
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Table 1. Characteristics of Respiratory Viral Infections and the Impact of Cardiovascular Comorbidities on Hospitalized Patients with Severe Viral
Respiratory Infectionsa

Viral
respiratory
infection

Infectious R0 Mortality rate Prevalence of cardiovascular comorbidities Influence of cardiovascular comorbidities on
mortality rates

Hypertension Cardiovascular disease Hypertension Cardiovascular disease

H1N1 1.4–1.6 [98] 0.4% (0.3–1.5%) [99] 20% [100] 21% [100] OR = 2.92, 95% CI
1.8–4.9 [96]

Mortality 2.4–6.9% [101]

MERS 0.54–6.7 [102,103] 34.3–40% [104] 30.3%, 95% CI
18.3–42.2% [3]

20.9%, 95% CI
10.7–31.1% [3]

OR = 2.1, 95% CI
1.1–3.7 [105]

OR = 3.5, 95% CI
3.1–4.8 [106]

SARS 0.54–1.13 [103] 9.5% [104] 4.5%, 95% CI
2.0–7.0% [3]

10.4–19.4% [3,107] Mortality 35.7% [108] OR = 7.35, 95% CI
1.8–29.5 [109]
Mortality 25%

COVID-19 2.24–5.7 [110–112] 3.4% [2] 17.1–59.6% [3–6] 21.5% [6] OR = 1.42, 95% CI
0.96–2.11 [6]
Mortality 13.2% [2]

OR = 3.15, 95% CI
2.3–4.4 [7]
Mortality 8.4% [2]

aAbbreviations: CI, confidence interval; OR, odds ratio; R0, reproduction number (average rate of onward transmission).
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Acute Cardiac Injury
Acute cardiac injury is defined as a rise of cardiac troponin values, with or without ejection fraction
decline or electrocardiographic abnormalities. The prevalence of acute cardiac injury among
COVID-19 patients was 10–23% [8–11], with a higher frequency in intensive care unit (ICU) pa-
tients (22.2% versus 2.0%) [9] and non-survivors (59.0% versus 1.0%) [10]. Patients with acute
cardiac injury were associated with more severe illness, including higher C-reactive protein
(CRP), N-terminal pro-B-type natriuretic peptide (NT-proBNP), and creatinine levels, as well as
more multiple mottling and ground-glass opacity, and were more likely to receive noninvasive
or invasive ventilation. Acute cardiac injury was also associated with cardiac dysfunction and ma-
lignant arrhythmias [12]. Patients with acute cardiac injury exhibited a significant higher risk of
mortality both during the time from symptom onset [hazard ratio (HR) = 4.26; 95% confidence in-
terval (CI) 1.92–9.49] and from admission to end-point (HR = 3.41; 95% CI 1.62–7.16) [13].
Greater magnitude and frequency of cardiac troponin elevation was also associated with higher
mortality [13].
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Figure 1. Mechanisms and Manifestations of Cardiovascular Implications of Coronavirus Disease 2019
(COVID-19).
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COVID-19 patients with previous CVD were more prone to suffer acute cardiac injury. Compared
with patients without cardiac injury, there was a higher prevalence of CVD (29.3% versus 6.0%)
and hypertension (59.8% versus 23.4%) in those with cardiac injury [13]. Moreover, once infected
by SARS-CoV-2, patients with CVD comorbidities usually had a worse cardiac reserve and
poorer tolerance to hypoxia, and were more likely to develop cardiac insufficiency (e.g., heart fail-
ure, malignant arrhythmia, or shock).

AMI
Respiratory viruses, such as SARS and influenza, are associated with AMI by increasing the risk
of coronary plaque rupture [14,15]. The incidence ratio of AMI in patients during the first week
after influenza diagnosis, compared with 1 year after influenza diagnosis, is 6.05 (95% CI
3.86–9.50) [16]. AMI can occur in COVID-19 patients, but the incidence of such events is un-
known. Newly diagnosed AMI was reported in 5.3% of cases in an electrocardiographic study
of COVID-19 [17], and in 2.9 % in another echocardiography study [18]. ST-elevation myocardial
infarction (STEMI) can present as the initial clinical manifestation of COVID-19 [19], and
33.3–39.3% of patients with COVID-19 who had STEMI were diagnosed with non-obstructive
coronary artery disease [19,20]. This phenomenon indicated that COVID-19 itself may be con-
nected to endothelial dysfunction as well as to the hypercoagulable state.

COVID-19 has also profoundly reshaped the pathway of patients with AMI. The hospitalization
rates for AMI fell in the early phase of COVID-19, and mildly recovered after 5 weeks with in-
creased in-hospital mortality in the USA [21]. Many patients with AMI, perhaps owing to fear of
contracting SARS-CoV-2, avoided hospitalization at the time of the COVID-19 pandemic, leading
to delay and aggravation of AMI. Further studies will be necessary to elucidate the impact of
COVID-19 on AMI.

Myocarditis
Myocarditis is defined as myocardial damages caused by direct viral attack on the heart. In the early
period of COVID-19, five (7%) of 68 patients with myocardial damages died of circulatory failure [22],
and a patient who presentedwith third degree atrioventricular blockwas reported asmyocarditis [17].
A fewCOVID-19-relatedmyocarditis cases have been confirmed by cardiacmagnetic resonance im-
aging (MRI) [23–26]. However, there is only limited evidence for viral entry into cardiomyocytes. Al-
though endomyocardial biopsy found evidence of lymphocytic inflammatory infiltrates in the
myocardium, SARS-CoV-2 particles were found only in interstitial cells of the myocardium [27]. An-
other COVID-19 case demonstrated lymphocytic myocarditis without SARS-CoV-2 in the myocar-
dium [28]. Thus, immune-mediated hyperinflammation may play a more significant role than viral
replication or toxicity in the pathophysiology of acute myocarditis associated with COVID-19. Pericar-
dial involvement with cardiac tamponade has also been reported [29,30].

Arrhythmia
Arrhythmias were reported in 16.7% of 138 hospitalized COVID-19 patients, with a greater pro-
portion in ICU patients than in non-ICU patients (44.4% versus 6.9%, P = <0.001) [9]. COVID-19
presenting with various arrhythmias has a strong association with the severity of the disease. For
example, compared with patients in the non-ICU group, the proportion of abnormal Q waves in
electroencephalography (ECG) traces from the patients in the ICU group was significantly ele-
vated (33.3% versus 3.9%, P = 0.006) [17]. Ventricular arrhythmias are higher among patients
with acute cardiac injury than in patients without acute cardiac injury (17.3% versus 1.5%, P =
<0.001) [12]. Atrial arrhythmias were more common among patients who required mechanical
ventilation than among those who did not (17.7% versus 1.9%) [31]. Prolonged corrected QT
(>500 ms) was found in 6% of 4250 patients with COVID-19 in a New York cohort and should
Trends in Endocrinology & Metabolism, December 2020, Vol. 31, No. 12 895
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not be ignored [23]. In 136 COVID-19 patients who experienced in-hospital cardiac arrest,
asystole was the most common initial rhythm in 89.7% of cases, whereas shockable rhythms
were found in only 5.9% of patients [32]. Sudden cardiac death has been reported in COVID-
19 patients who initially had only mild symptoms but who were later discovered dead at home
[33]. In contrast to the decline of patients with AMI in the early COVID-19 pandemic, out-of-
hospital cardiac arrest reported an increase of 58% during the first 40 days of the COVID-19 out-
break compared with the same period in 2019. COVID-19 or other untreated diseases such as
AMI combined with patient unwillingness to attend for treatment may have contributed to the
phenomenon [34]. Arrhythmias in the population with COVID-19 developed secondary to hypox-
emia, metabolic dysregulation, electrolyte disorder, systemic inflammation, electrical instability
with adrenergic stress, AMI or myocarditis, and treatment with QT prolonging drugs.

Heart Failure
Heart failure was observed in 23% of patients with COVID-19, and the proportion of heart failure
was higher in non-survivors than in survivors (52% versus 12%, P = <0.001) [10,35]. In accor-
dance with cardiac markers such as troponin, the rise of BNP/NT-proBNP is related to poor
prognosis among individuals with COVID-19 [22]. In seriously ill patients with COVID-19,
7–33% had biventricular failure [22,36]. Studies have also reported isolated right ventricular failure
with or without PE [37,38]. A few case reports have revealed a novel connection between stress
cardiomyopathy (Takotsubo syndrome) and COVID-19 [39–41]. The incidence of stress cardio-
myopathy (7.8%) increased significantly during the COVID-19 outbreak compared with pre-
pandemic periods (1.5–1.8%) [42]. COVID-19 produced financial, social, and mental pressure
that may have provoked stress cardiomyopathy. Microvascular disorder, cytokine storm, and
sympathetic stress may participate in the pathophysiology of stress cardiomyopathy.

As an end-stage manifestation of CVD, heart failure may be the long-term consequence of cardiac
infection by SARS-CoV-2. In a recent cohort study on 100 patients recovered from COVID-19, car-
diac involvement in 78 patients and continuous myocardial inflammation in 60 patients were recog-
nized by cardiac MRI, regardless of pre-existing CVD or the severity of the illness [43].

Shock
Cardiogenic, septic, or mixed shock is one of the criteria of critical illness in COVID-19. Shock de-
veloped in 8.7% of 138 patients with COVID-19, and was more frequent in ICU patients com-
pared with non-ICU counterparts (30.6% versus 1.0%, P = <0.001) [8]. It is crucial to diagnose
whether there is a concomitant cardiogenic factor to assist clinical decision-making, particularly
when mechanical respiratory and circulatory assistance with extracorporeal membranous oxy-
genation (ECMO) are required because this may influence device selection (venovenous versus
venoarterial) [44].

In the later phase of the COVID-19 pandemic, healthy children displaying atypical Kawasaki dis-
ease (KD) have been given much attention in the USA and Europe [45,46]. This syndrome was
named pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2
(PIMS-TS). It manifested as consistent fever, evidence of inflammation (neutrophilia, raised
CRP, and lymphopenia), and single or multiorgan dysfunction (shock, cardiac, respiratory, kid-
ney, gastrointestinal, or neurological disorder) in conjunction with existing or previous infection
with SARS-CoV-2. Comparison of PIMS-TS with KD or KD shock syndrome showed older age
and greater elevation of inflammatory markers such as CRP [47]. Untreated KD can lead to cor-
onary aneurysms in 25% of patients. SARS-CoV-2-induced immune dysregulation may lead to
PIMS-TS onset because the majority of children with PIMS-TS were positive for antibodies
against SARS-CoV-2 but negative for nucleic acids [48].
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VTE and PE
COVID-19 has been associated with proinflammatory and prothrombotic conditions that can re-
sult in thromboembolic events [49,50]. In fact, higher markers of thrombosis have been associ-
ated with worse clinical outcomes. In a Chinese multicenter study, elevated D-dimer levels (>1
g/l) were independent predictors of in-hospital death [10]. Furthermore, 71.4% of patients who
died were diagnosed with disseminated intravascular coagulation [51]. A study reported a high
incidence of VTE (69%) in ICU patients [52]. However, other centers have reported lower VTE
rates (22.2%) [53]. Despite prophylactic anticoagulation, 31% of patients with COVID-19 still de-
veloped VTE [54], and 16.7% of patients were diagnosed with PE [55]. PE was more likely to
occur in acute respiratory distress syndrome (ARDS) patients with COVID-19 compared with
non-ARDS individuals (11.7 versus 2.1%, P = <0.008) [55]. Another study reported a cumulative
incidence of PE of 20.4% (95% CI 13.1–28.7%) in critical COVID-19 patients, markedly higher
than for patients in the same ICU during the same period in 2019 [56].

Mechanisms of Cardiac Manifestations in COVID-19
The pathology of COVID-19 results from both direct and indirect injuries. Direct injuries are
caused by infection of target cells by the virus. Indirect injuries mainly result from immune re-
sponse, inflammation reaction, circulatory dysfunction, and hypoxia. The major pathological find-
ings of cardiac tissues and vasculature from autopsy are summarized in Table 2. The various
possible mechanisms that may contribute to the pathogenesis of cardiovascular complications
of COVID-19 the gross, cellular, and molecular levels are illustrated in Figure 1.

ACE2-Mediated Viral Toxicity
Angiotensin-converting enzyme 2 (ACE2) is expressed in the vascular system (endothelial cells, vas-
cular smooth muscle cells, and migratory angiogenic cells) and the heart (cardiofibroblasts,
cardiomyocytes, endothelial cells, pericytes, and epicardial adipose cells) [57]. ACE2 functions as a
virus entry receptor by binding to the spike (S) protein of SARS-CoV and SARS-CoV-2. In addition,
completion of cell entry requires priming of the S subunit by the cellular serine protease TMPRSS2
(transmembrane protease serine 2) or other proteases (cathepsin L, cathepsin B, factor X, trypsin,
elastase, and furin) [58]. The increased transmissibility of SARS-CoV-2 could be interpreted by the
greater binding affinity of SARS-CoV-2 for ACE2 than of SARS-CoV [59]. Furthermore, patients
with previous CVD were associated with more severe COVID-19 disease, possibly because they
had higher plasma levels of ACE2 [60]. Nevertheless, compared with the lung, the human heart
has higher expression of ACE2 and with much lower content of TMPRSS2. The susceptibility of
the heart in SARS-CoV-2 infection was diminished to some extent by a lower proportion of ACE2+/
TMPRSS2+ cells. Other S protein priming proteases that are prominently expressed in the human
heart, cathepsin L and furin, may increase heart vulnerability to SARS-CoV-2 [61].

Dysregulation of RAAS
ACE2 converts angiotensin II (Ang II) to Ang-(1–7), and the ACE2/Ang-(1–7)/Mas axis combats the
adverse impacts of RAAS, which is essential for preserving the physiological and pathophysiological
equilibrium of the body. Entry of SARS-CoV-2 into cells is assisted by the interaction between S pro-
tein and ACE2 extracellular domains, leading to downregulation of surface ACE2 expression. Ang-II/
angiotensin 1 receptor (AT1R) activity is then increased at the expense of the ACE2/Ang 1–7/Mas
axis, leading to comprehensive negative consequences, including aldosterone secretin, fibrosis,
proinflammation, hypertrophy, vasoconstriction, enhanced reactive oxygen species and vascular per-
meability, cardiac remolding, gut dysbiosis, and multiple organ dysfunction syndrome (MODS) in
COVID-19 [57,62]. ACE2 exerts multiple protective effects in numerous organs and various diseases,
and genetic ACE2 deficiency is associatedwith adverse results.Ace2 knockoutmice displaymyocar-
dial hypertrophy and interstitial fibrosis, and aggravated heart dysfunction [63]. ACE2 deficiency
Trends in Endocrinology & Metabolism, December 2020, Vol. 31, No. 12 897



Table 2. Pathological Findings in the Cardiovascular System in Deaths from COVID-19a

First author
(Refs)

Study
area

Sample size
(age range
in years)

Cardiac pathology Vascular pathology

Yao [113] China 3 (63–79) Manifestation of myocardial hypertrophy, multifocal
necrosis and interstitial inflammatory infiltration
Negative RT-PCR test of SARS-CoV-2

Manifestation of diffused hyaline thrombosis in
microcirculation in multiple organs

Xu [114] China 1 (50) A few interstitial inflammatory infiltrations NA

Tian [115] China 4 (59–81) Various degrees of focal edema, interstitial fibrosis, and
myocardial hypertrophy
No inflammatory infiltration
Positive RT-PCR test for SARS-CoV-2 in one case (two
cases with elevated troponin)

Fibrinoid necrosis of the small vessels of lung in one case

Ackermann [69] USA 7 (66–96) NA Severe endothelial injury associated with intracellular
virus and disrupted cell membranes in the lungs
Widespread thrombosis with microangiopathy in
pulmonary vessels
Alveolar capillary microthrombi were ninefold more prevalent
in patients with COVID-19 than in patients with influenza
The amount of new vessel growth was 2.7-fold higher than
in the lungs of patients with influenza

Barton [116] USA 2 (42–77) No evidence of myocarditis
One case with coronary artery disease showing
microscopic evidence of acute ischemic injury

NA

Bradley [117] USA 14 (42–84) Lymphocytic myocarditis with viral RNA detection in one
case

Five cases with focal pulmonary microthrombi

Buja [118] USA 3 (34–62) Lymphocytic pericarditis
Multifocal acute injury of cardiomyocytes without
inflammatory cellular infiltrates

One case with fibrin-rich thrombi in renal capillaries and
small vessels

Craver [119] USA 1 (17) Enlarged flabby heart with eosinophilic myocarditis NA

Fox [120] USA 4 (44–76) Cardiomegaly with right ventricular dilation
Scattered individual myocyte necrosis without
lymphocytic myocarditis

Thrombosis and microangiopathy in the small vessels
and capillaries of the lungs, with associated hemorrhage

Fox [121] USA 22 (44–79) Nine cases with severe right ventricular dilation
Scattered individual myocyte necrosis
No typical lymphocytic myocarditis
No SARS-CoV-2 virus in cardiac myocytes

Scattered CD4 and CD8 lymphocytes near vascular
structures
SARS-CoV-2 virus in the myocardial endothelial
compartment and in renal tubular epithelium

Stone [122] USA 1 (76) Increased infiltration of the myocardium by macrophages
Focal infiltration of the myocardium by lymphocytes
No association with myocyte injury

NA

Varga [70] USA 3 (58–71) No sign of lymphocytic myocarditis Lymphocytic endotheliitis in lung, heart, kidney, liver, and
small intestine
Viral inclusion structures in endothelial cells of the kidney

Edler [123] Germany 80 (52–96) One case with small lymphocytic infiltrate in the right
ventricle

32 (40%) cases with VTE
25 (31.2%) cases with PE

Lindner [124] Germany 39 (78–89) 24 (61.5%) cases with virus in interstitial cells of cardiac
tissue
Increased proinflammatory response (TNF-α, IFN-γ,
CCL5, IL-6, IL-8, IL-18) in cardiac tissue with higher virus
load
No association between virus presence and increased
infiltration of mononuclear cells in the myocardium
No myocarditis

NA

Nicolai [125] Germany 10 (69–91) NA Inflammatory microvascular thrombi in lung, kidney, and
heart, containing NETs with platelets and fibrin

Puelles [126] Germany 27 (52–93) Lower levels of SARS-CoV-2 copies in the heart SARS-CoV-2 protein in the glomerular epithelial, endothelial,
and tubular cells in kidney by immunofluorescence

(continued on next page)
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Table 2. (continued)

First author
(Refs)

Study
area

Sample size
(age range
in years)

Cardiac pathology Vascular pathology

Schaller [127] Germany 12 (64–90) Four cases with mild lymphocytic myocarditis
Two cases with signs of epicarditis

NA

Wichmann [128] Germany 12 (52–87) One case with mononuclear infiltrations consisting of
lymphocytes in the myocardium of the right ventricle

Seven (58%) cases with VTE
Microthrombi systematically observed in small lung arteries

Nunes [129] Brazil 10 (33–83) Two cases with mild lymphomononuclear myocarditis Two cases with endothelial changes in small vessels (cell
tumefaction, vessel wall edema, and fibrinoid alteration)
Two cases with fibrin microthrombi in the heart

Aiolfi [130] Italy 2 (56–70) NA Diffuse peripheral vessel endothelial hyperplasia and in
toto muscular wall thickening in the lungs
Intravascular hemorrhagic thrombosis in the lungs

Sala [28] Italy 1 (43) Diffuse T lymphocytic inflammatory infiltrates with
huge interstitial edema and limited foci of necrosis
Absence of SARS-CoV-2 genome in the myocardium

NA

Tavazzi [27] Italy 1 (69) Viral particles in macrophages, but not in
cardiomyocytes or other specific cardiac cell types

NA

aAbbreviations: CCL5, chemokine 5; IFN-γ, interferon γ; IL, Interleukin; NA, not available; NETs, neutrophil extracellular traps; PE, pulmonary embolism; RT-PCR, reverse
transcription-PCR; TNF, tumor necrosis factor; VTE, venous thromboembolism.
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substantially worsened the pathogenesis in influenza virus H5N1-infected mice, and AT1R suppres-
sion relieved the severity of lung damage [64]. ACE2 can also stimulate insulin secretion and lower in-
sulin resistance [65]. Downregulation of ACE2 expression was seen in myocardial cells in both SARS-
CoV-infected mice and humans [66]. There is also a positive correlation between elevated circulating
Ang II levels in COVID-19 patients and lung injury and/or viral load. In short, a direct link between tissue
ACE2 downregulation and upregulation of Ang II is partially responsible for the development of cardio-
vascular complications or multiorgan failure following SARS-CoV-2 infection [67,68].

Endothelial Cell Damage and Thromboinflammation
Direct invasion of endothelial cells by SARS-CoV-2 infection and indirect generation of inflamma-
tion and prothrombotic conditions in vasculopathy both contribute to the pathophysiological
mechanisms of COVID-19 [69–71]. Both venous and arterial endothelia are reported to express
ACE2 [69]. Furthermore, histopathological studies have providedmicroscopic evidence of SARS-
CoV-2 viral particles in endothelial cells of the kidney, as well as obvious endotheliitis character-
ized by activated neutrophils and macrophages in numerous organs including the lung, intestine,
and heart [70]. Von Willebrand factor (VWF), a circulating blood coagulation glycoprotein associ-
ated with endothelial dysfunction, is significantly elevated in COVID-19 patients compared with
normal individuals [72]. VWF, a carrier of coagulation factor VIII, can trigger platelet aggregation
and blood coagulation [73]. Subsequent platelet–neutrophil interaction and macrophage activa-
tion can further promote proinflammatory responses including cytokine storm and the formation
of neutrophil extracellular traps (NETs) [74]. NETs damage the endothelium and stimulate both
extrinsic and intrinsic coagulation pathways, resulting in microthrombus formation and microvas-
cular dysfunction. High levels of NETs were reported in hospitalized patients with COVID-19, and
these correlated positively with disease severity [75]. Inhibiting NETs may be a therapeutic target
to reduce NET-mediated thrombotic tissue damage associated with COVID-19 [76].

Immune Dysregulation-Induced Cytokine Storm
Dysregulated immune response and subsequent cytokine storm characterize the presentation of
severe COVID-19. Previous studies with human coronaviruses have reported that rapid viral
Trends in Endocrinology & Metabolism, December 2020, Vol. 31, No. 12 899
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replication, interference with interferon signaling, and recruitment of inflammatory cells (neutro-
phils and monocyte/macrophages) are mediators of hyperinflammation [77]. Immunity measure-
ments such as white blood cells, neutrophils, lymphocyte subtypes, and inflammation
parameters (CRP and procalcitonin) were independently related to acute cardiac injury in patients
with COVID-19 [78]. Subsequent cytokine storm, characterized by a sharp rise in the level of mul-
tiple proinflammatory cytokines triggered by infection, has been observed following infection with
H1N1 [79], SARS [77,80], or MERS [77,80] and is an important cause of death (Table 3). A com-
prehensive evaluation of the transcriptional response to SARS-CoV-2 uncovered an atypical in-
flammatory reaction characterized by decreased levels of type I and III interferons, increased
chemokines, and high levels of interleukin (IL)-6. Reduced innate antiviral defenses and raised
proinflammatory responses contribute to COVID-19 pathology [81]. Zhou and colleagues re-
ported that, after SARS-CoV-2 infection, pathogenic T helper 1 cells and inflammatory
CD14+CD16+monocytes induced high levels of granulocyte macrophage colony-stimulating fac-
tor (GM-CSF) and IL-6 expression [82]. Higher levels of IL-6 in the serum have also been linked to
worse prognosis [10,22,83,84] and were found to correlate with fibrinogen levels in patients with
COVID-19 [85]. IL-6 can activate coagulation, induce thrombosis [86], inhibit heart function [87],
and cause endothelial dysfunction, leading to vascular leakage, tissue ischemia and hypoxia, and
thus to a drop in blood pressure, disseminated intravascular coagulation (DIC), and MODS [88].

Mismatch between Oxygen Supply and Demand
Hypoxemia is the main manifestation of COVID-19, and results in an insufficiency of oxygen sup-
ply to organs with a high demand for oxygen and energy, particularly the heart [89]. The imbal-
ance of oxygen supply and demand caused by cytokine storm as well as by endothelial
dysfunction, without acute atherothrombotic plaque disruption, similar to the pathophysiology
of type 2 myocardial infarction, is thought to lead to cardiac injury in COVID-19 patients
[90,91]. Type 2 MI is a potential cause of cardiac damage in acute infection [90]. On the one
hand, cytokine storm causes the release of IL-6 and catecholamines that increase core body
temperature, heart rate, and cardiac oxygen consumption. On the other hand, endothelial dys-
function and cytokine storm affect the cardiac microenvironment, causing pathological changes
such as coronary artery spasm and thrombosis, all of which lead to decreased blood supply via
the coronary artery. The reflex elevation in heart rate will further decrease myocardial perfusion
owing to decreased filling time. Severe hypoxemia, hypotension, and anemia in critically ill pa-
tients with COVID-19 further aggravate insufficient oxygen supply. The combination of these fac-
tors causes mismatch between oxygen supply and demand, leading to acute cardiac damage.

Indeed, compared with type 1 MI caused by plaque rupture and thrombus formation, patients
with type 2 MI have higher mortality rates, and this may in part reflect a higher burden of acute
and chronic multimorbidity conditions in the population with type 2 MI [92]. Given the age and
comorbidity of hospitalized patients with severe COVID-19, it is reasonable to speculate that
Table 3. Mechanisms of Cytokine Storm in Respiratory Viral Infectionsa

Viral respiratory infection Cytokine storm Refs

H1N1 IL-6, IL-8, IL-9, IL-17, TNF-α, IL-15, and IL-12p70 [79]

MERS IFN-γ, TNF-α, IL-15, and IL-17 [77,80]

SARS IL-1β, IL-6, IL-12, IFN-γ, IP-10, and MCP-1 [77,80]

COVID-19 GM-CSF, IL-2, IL-6, IL-7, IL-10, IP-10, MCP-1, MIP-1A, and TNF-α [8,131]

aAbbreviations: GM-CSF, human granulocyte-macrophage colony stimulating factor; IFN, interferon; IL, interleukin; IP, in-
terferon-inducible protein; MCP,monocyte chemoattractant protein;MIP-1A,macrophage inflammatory protein-1α; TNF, tu-
mor necrosis factor.
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type 2 MI in these patients is likely to be an indicator of more severe COVID-19 disease and
worse prognosis [13].

Concluding Remarks
The COVID-19 pandemic represents the most significant public health crisis of the century. Be-
cause of the association with increased mortality, CVD is an obvious and important comorbidity
of COVID-19 and other respiratory viruses, and it is among the leading cause of mortality among
COVID-19 patients [93]. The mechanisms underlying the cardiovascular manifestations of
COVID-19 have not been completely elucidated and are probably multifactorial. There is currently
only limited evidence for direct cardiac viral toxicity, and both indirect and direct mechanism are
likely to synergistically contribute to cardiovascular damage.

Because of quarantine restrictions, the COVID-19 pandemic has been a severe challenge for
both population well-being and healthcare services, particularly in the main epidemic areas of
COVID-19 and low-income and middle-income countries (e.g., Brazil, India, and South Africa).
This may delay medical treatment of acute cardiovascular emergencies such as stroke or AMI
[94]. Therefore, it is necessary to heighten awareness and self-protection measures to reduce
morbidity and mortality in individuals with CVD and related conditions. In addition, telemedicine
affords a further potential means to access healthcare in rural communities and allow routine
follow-up for individuals with CVD [95].

At the moment, therapeutic treatments for COVID-19 are limited to steroids and remedesivir
(and maybe convalescent plasma) with unsatisfactory effects in prevention, treatment and re-
ducing complications of COVID-19. The clinical cardiovascular presentations associated with
SARS-CoV-2 infection should be closely monitored and treated to prevent mortality from car-
diovascular complications. Meanwhile, vigorous efforts should be made towards vaccine de-
velopment for COVID-19. Influenza vaccine can reduce the risk of cardiovascular events by
26–35% and all-cause mortality by 43% in the general adult population [96,97]. For high-risk
patients with a history of recent AMI, influenza vaccination was of significant benefit because
it reduced the risk of cardiovascular events by 55% [96]. Therefore, vaccination against
COVID-19, if limited, should be prioritized in patients with CVD as an important secondary pre-
vention strategy, especially in those with cardiometabolic disorders, to reduce the risk of car-
diovascular events.
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