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Background: Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths, and 
improving the prognosis of CRC patients is an urgent concern. The aim of this study was to explore new 
immunotherapy targets to improve survival in CRC patients.
Methods: We analyzed CRC-related single-cell data GSE201348 from the Gene Expression Omnibus 
(GEO) database, and identified differentially expressed genes (DEGs). Subsequently, we performed 
differential analysis on the rectum adenocarcinoma (READ) and colon adenocarcinoma (COAD) 
transcriptome sequencing data [The Cancer Genome Atlas (TCGA)-CRC queue] and clinical data 
downloaded from TCGA database. Subgroup analysis was performed using CIBERSORTx and cluster 
analysis. Finally, biomarkers were identified by one-way cox regression as well as least absolute shrinkage and 
selection operator (LASSO) analysis.
Results: In this study, we analyzed CRC-related single-cell data GSE201348, and identified 5,210 DEGs. 
Subsequently, we performed differential analysis on the TCGA-CRC queue database, and obtained 4,408 
DEGs. Then, we categorized the cancer samples in the sequencing data into three groups (k1, k2, and k3), 
with significant differences observed between the k1 and k2 groups via survival analysis. Further differential 
analysis on the samples in the k1 and k2 groups identified 1,899 DEGs. A total of 77 DEGs were selected 
among those DEGs obtained from three differential analyses. Through subsequent Cox univariate analysis 
and LASSO analysis, seven biomarkers (RETNLB, CLCA4, UGT2A3, SULT1B1, CCL24, BMP5, and 
ATOH1) were identified and selected to establish a risk score (RS). 
Conclusions: To sum up, this study demonstrates the potential of the seven-gene prognostic risk model as 
instrumental variables for predicting the prognosis of CRC.
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Introduction

According to the 2022 report from the National Cancer 
Center (NCC), colorectal cancer (CRC) ranks second in 
China in terms of morbidity and fourth in terms of mortality 
among all cancer types, with CRC patients comprising 
approximately 10% of the total cancer population (1). CRC 
is a common malignant tumor in the gastrointestinal tract. 
Initially, it often presents with mild symptoms. However, as 
the disease progresses, individuals may experience changes 
in bowel habits, bloody stools, diarrhea, alternating diarrhea 
and constipation, and localized abdominal pain. In the 
later stages, systemic symptoms such as anemia and weight 
loss may occur. CRC is primarily a genetic disorder that 
develops from precursor colonic lesions/polyps through 
various tumorigenic pathways (2), and its occurrence is 
closely related to factors such as smoking (3), high salt 
intake (4,5), lack of physical exercise (6,7), obesity (8), and 
family history of the disease. As reported, although the 
incidence of CRC has slightly decreased in individuals aged 
over 50 years old, there is an upward trend in the incidence 
among those under 50, indicating a trend towards younger 
onset (9). At present, surgical resection, chemotherapy, 
and drug-assisted therapy are commonly used treatment 
methods for CRC in clinical practice. Radical surgical 
resection can reduce the mortality rate for early CRC 
patients (10,11), and adjuvant systemic therapy after surgical 
resection can reduce the risk of recurrence and significantly 
improve the overall survival rate of them (12). Early 
screening can effectively curb the development of CRC, but 
a large number of patients in China are still diagnosed with 
advanced CRC. Immune checkpoint blockade (ICB) shows 

promise in treating advanced CRC (13), but drug resistance 
remains a challenge (14), contributing to a high mortality 
rate. Therefore, developing new immunotherapy targets to 
improve the survival rate of CRC patients is currently the 
top priority.

Over the past 5 years, there have been 109,684 
publications in the field of bioinformatics analysis, with 
35,202 specifically focused on cancer research. With the 
development of technology, various tools and techniques 
have emerged to help researchers in exploring the 
underlying factors contributing to disease occurrence, 
such as single-cell sequencing, gene chips, etc. At present, 
bioinformatics analysis is predominantly applied for 
identifying disease-related key genes (15), constructing 
risk models related to care indicators (16), and discovering 
potential drug targets (17). Moreover, researchers worldwide 
also upload relevant sequencing data to public databases, 
such as Gene Expression Omnibus (GEO), The Cancer 
Genome Atlas (TCGA), ArrayExpress databases, etc., which 
facilitates data sharing and further propels the progress of 
bioinformatics analysis. At present, the integration of data 
from multiple datasets or databases is a common approach in 
bioinformatics analysis to extract disease-related data (18-20).

In this study, CRC-related single-cell, transcription 
and clinical data were downloaded from publicly available 
databases, namely GEO and TCGA. Through a series of 
analyses including differential analysis, CIBERSORTx 
analysis, least absolute shrinkage and selection operator 
(LASSO) analysis, Cox univariate analysis and survival 
analysis, we identified key genes that could serve as 
prognostic indicators for the prognosis of CRC. Risk score 
(RS) was established to develop a prognostic risk model. 
The model was also validated in the validation set, and 
the correlation between RS and immune-related clinical 
information was analyzed. Our aim in conducting this 
analysis is to construct a new prognostic risk model that 
can effectively evaluate the prognosis of CRC patients, so 
as to provide early interventional treatment for high-risk 
populations and ultimately improve the survival rate of 
CRC patients. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-2281/rc).

Methods

Data acquisition and processing

The CRC-related single-cell RNA sequencing (scRNA-
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seq) data were obtained from the GSE201348 dataset in the 
GEO database (https://www.ncbi.nlm.nih.gov/geo/). Two 
cancer samples (GSM6061645 and GSM6061686) and two 
normal samples (GSM6061709 and GSM6061713) were 
selected for subsequent analysis. The “TCGAbiolinks” R 
package (v 2.25.3) was used to download and process the 
mRNA data of colon adenocarcinoma (COAD) and rectum 
adenocarcinoma (READ) from the TCGA database, and 
consequently the corresponding transcripts per million 
(TPM) data were obtained and standardized (622 cancer 
samples, 51 normal samples). Additionally, the GSE12945, 
GSE29623, and GSE38832 datasets were downloaded 
from the GEO database using the “GEOquery” R package 
for validation. Gene IDs in these datasets were converted 
to gene symbols using GPL96 annotation, and duplicated 
genes were averaged. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013).

Single-cell analysis

We performed single-cell analysis on four samples selected 
from the GSE201348 dataset using the “Seurat” R package 
(v 4.3.0). Quality control of cells was conducted based on 
the following criteria: (I) selection of genes detected in 
cells between 200 and 6,000; (II) inclusion of cells with 
a mitochondrial ratio below 5%. Cell subset annotation 
was performed using the PanglaoDB database (https://
panglaodb.se/).

Cell-cell communication

We used the “CellChat” package (v 1.6.1) to analyze cell-
cell communication, and the selected database information 
was “Secreted Signaling”.

CIBERSORTx analysis

Cibersort analysis was conducted on the cancer samples (622 
samples) from the READ and COAD datasets (TCGA-CRC 
queue) on the CIBERSORTx website (https://cibersortx.
stanford.edu/). K-means clustering of the cancer samples 
was performed using the “factoextra” R package (v 1.0.7). 
The expression of cibersortx isoforms in 22 immune cells 
was analyzed using the “ggpubr” R package (v 0.6.0).

Screening of differentially expressed genes (DEGs) and 
functional analysis

Differential analysis was conducted using the “edgeR” 
R package. A Wayne diagram was generated using the 
“VennDiagram” package. Functional enrichment analysis 
was performed on the metascape website (https://metascape.
org/).

Screening of prognostic genes for CRC

Cox univariate analysis was performed on DEGs using 
the “survival” R package (v 3.5.5). A forest map was 
plotted using the “forestplot” R package (v 3.1.1). LASSO 
regression analysis was performed using the “glmnet” 
package (v 4.1.7). Survival analysis was carried out using 
the “survival” R package. Receiver operating characteristic 
(ROC) analysis was conducted using the “survivalROC” 
R package (v 1.0.3.1). The results of the aforementioned 
analysis were visualized using the “ggsci” R package (v 3.0.0). 
Finally, a nomogram was created using the “rms” package (v 
6.7.1).

Single-sample gene set enrichment analysis (ssGSEA)

s sGSEA was  per formed  on  the  genes  us ing  the 
“clusterProfiler” package (v 4.8.1) to reveal the top-ranked 
pathways.

Correlation analysis

Correlation analysis was performed using the “cor.test” 
function, “ggplot2”, or “ggpubr” built-in in R language. A 
correlation heatmap was generated using the “pheatmap” R 
package (v 1.0.12).

Statistics

The data were statistically analyzed and plotted using 
the R language, presented as mean ± standard deviation 
(x ± s). Pairwise comparison (intra-group comparison) 
of differences between groups was conducted using the 
rank sum test and chi-square test, while the whole group 
comparison was conducted using the Kruskal-Wallis test. 
Kruskal-Wallis analysis was performed using the “ggpubr” 
R package (v 0.6.0). The “ggstatsplot” R package (v 0.11.0) 

https://cibersortx.stanford.edu/
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Figure 1 Single-cell analysis. (A) Cell clustering; (B) cell annotation; (C) the distribution of cells in different samples; (D) the expression of 
the top ten DEGs in different cell types in both the cancer and normal samples. DEGs, differentially expressed genes.
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was used for chi-square test. P<0.05 was considered for 
determining a significant difference.

Results

Single-cell analysis

Four samples selected from the bulk RNA-seq GSE201348 
were subjected to scRNA-seq analysis. After quality control, 
a total of 10,619 cells (total 22,830 genes) were included 
in subsequent analysis. These cells were clustered into 
22 clusters (Figure 1A), and 12 cell types were obtained 
when these clusters were annotated using the PanglaoDB 
database, namely: cholangiocytes, goblet, epithelial, smooth 
muscle, macrophages, transit amplifying, fibroblasts, T, 
endothelial, plasma, dendritic and enteric glia (Figure 1B).  
The distribution of these 12 cell types in the cancer and 
normal samples is depicted in Figure 1C, revealing a larger 

number of epithelial, goblet, and smooth muscle in the 
normal samples compared to that in the cancer samples. 
Additionally, differential analysis was conducted on 
GSE201348, after which 5,210 DEGs were screened out 
based on P<0.05. Figure 1D shows the expression of the 
top ten DEGs in different cell types in the two groups of 
samples, with DST showing significant differences in most 
cell types.

Cell-cell communication

Cell-cell communication analysis revealed that smooth 
muscle, epithelial, and cholangiocytes were the top 
three cell types with the highest number and intensity of 
interactions (Figure 2A), suggesting that they may play 
significant roles in CRC development. When cells acted 
as signalers, they were clustered into four categories based 
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Figure 2 Cell-cell communication. (A) Number and intensity of cell-cell interactions; (B) cluster diagram of cells and pathways when 
cells act as signalers; (C) the correlation between the cell and the pathway when the cell acts as a signaler; (D) cluster diagram of cells and 
pathways when cells act as signal recipients; (E) the correlation between the cell and the pathway when the cell acts as signal recipients; (F) 
chord diagram of the PARs signaling pathway. PARs, proteinase-activated receptors.
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on different interaction patterns between cells. Notably, 
cholangiocytes, goblet, and epithelial were clustered 
into pattern 1, and pattern 1 showed a strong correlation 
with proteinase-activated receptors (PARs), GUCA and 
GAS pathways (Figure 2B). Correlation analysis further 
highlighted a strong correlation between cholangiocytes and 
the GAS pathways (Figure 2C). When cells acted as signal 
recipients, they were also clustered into four categories 
according to distinct interaction patterns between cells. In 
this case, cholangiocytes, goblet, epithelial, smooth muscle, 
and transit amplifying were clustered into pattern 1, which 
exhibited a strong correlation with PARs, VISFATIN, BMP, 
and GUCA pathways (Figure 2D). Correlation analysis 
showed that epithelial had a strong correlation with GUCA 
(Figure 2E). Obviously, the PARs signaling pathway ranked 
first in terms of the overall cellular communication intensity 
(the sum of reception and output), signifying its crucial role 
whether cells act as a signal sender or receiver (Figure 2F).

CIBERSORTx analysis

We conducted a cibersort analysis using the TCGA-CRC 
queue (Figure 3A). K-means clustering of the samples 
revealed the highest slope change when k=3. When the 
samples were clustered into three categories, the grouping 
differences were found to be significant (Figure 3B,3C). 
Based on the k-means clustering results, we classified the 
samples and conducted survival analysis, and the results 
showed significant differences (P=0.03) (Figure 3D). 
Furthermore, we analyzed the expression of k1, k2, and k3 
in the 22 types of immune cells (Figure 3E). The analysis 
revealed non-significant differences in B cells memory and 
neutrophils, while significant differences were observed in 
the remaining 20 immune cells. Therefore, we divided the 
samples into three categories: k1, k2, and k3 for subsequent 
bioinformatics analysis, representing three different 
subtypes of cancer.

Screening of key genes and functional analysis

Differential analysis was conducted on the TCGA-CRC 
queue based on the standard of P<0.05 and |log2fold change 
(FC)| >1, and 4,408 DEGs were selected accordingly  
(Figure 4A). Given the significant differences observed 
in survival analysis between k1 and k2, we conducted 
differential analysis specifically on the samples from k1 
and k2 based on P<0.05 as the standard, and ultimately 
identified 1,899 DEGs (Figure 4B). The intersection of 

DEGs was selected from the scRNA-seq, TCGA-CRC 
queue, and two subtypes of cancer, and 77 key genes were 
identified (Figure 4C). Functional enrichment analysis 
was conducted on these genes (Figure 4D), and a network 
diagram was plotted (Figure 4E). The results showed that 
the 77 key genes were mainly involved in steroid metabolic 
process, completion activation, and classical pathway, etc.

Establishment of RS

Cox univariate analysis was performed on the key genes 
(Figure 5A), and 14 genes were identified with significant 
relation to survival. Subsequently, LASSO regression 
analysis was performed on these 14 genes (Figure 5B,5C), 
and 7 biomarkers were screened out along with their 
corresponding coefficients (Figure 5D). We calculated the 
RS of cancer samples in the TCGA-CRC database based 
on RS = ∑ (coefficienti × expressioni) to predict prognosis 
[RS = (−0.092) × expression level of ATOH1 + (−0.089) × 
expression level of BMP5 + (−0.41) × expression level of 
CCL24 + (−0.23) × expression level of CLCA4 + (−0.0049) 
× expression level of RETNLB + (−0.031) × expression level 
of SULT1B1 + (−0.029) × expression level of UGT2A3]. We 
conducted survival analysis based on the RS and divided 
the samples into high and low evaluation groups based on 
the optimal cutoff value (cutoff =−0.6133481). The results 
demonstrated a significant difference (P<0.001) between the 
high and low evaluation groups (Figure 5E). Additionally, 
ROC analysis was conducted on the cancer samples in the 
TCGA-CRC database using the survival time of 1, 3, and 
6 years as cutoff points (Figure 5F), revealing that the RS 
could effectively predict the survival of cancer patients. 
Figure 5G illustrates the RS, survival information, and 
expressions of the seven biomarkers for the cancer samples 
in the TCGA-CRC database.

RS validation

We validated the prognostic value of the risk model using 
GSE12945, GSE29623, and GSE38832 datasets. According 
to survival analysis, these datasets were divided into high/
low survival groups based on the optimal cutoff values 
(−2.403191, −2.271374, and −2.098198, respectively). 
The results demonstrated that the high survival group 
had significantly lower overall survival rates compared to 
the low survival group, with P values of 0.02, 0.05, and 
0.03, respectively (Figure 6A-6C). The 1-, 3- and 6-year 
area under curve (AUC) values of the ROC curve of the 
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Figure 3 CIBERSORTx analysis. (A) Cibersort heatmap of the cancer samples; (B) the elbow rule determines the optimal value of k; (C) cluster 
analysis diagram of k1, k2 and k3 samples; (D) survival curves of k1, k2, and k3 samples; (E) scatter plot of the expression of 22 immune cells in 
k1, k2, and k3. ns, P>0.05; *, P<0.05; **, P<0.01; ***, P<0.001. ajcc, American Joint Committee on Cancer; NK, natural killer. 
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risk model in the GSE12945 dataset were 0.821, 0.632 
and 0.661, respectively (Figure 6D). Correspondingly, the 
AUC values were 0.685, 0.572, and 0.509 in the GSE29623 
dataset (Figure 6E), and 0.651, 0.549, and 0.526 in the 
GSE38832 dataset, respectively (Figure 6F). Additionally, 
we presented the RS, survival information, and biomarker 

expression of each sample in each dataset (Figure 6G-6I).  
These data indicate that the constructed prognostic risk 
model can accurately evaluate the prognosis of CRC 
patients. Furthermore, the prediction model based on these 
seven biomarkers is capable of predicting the survival rate 
of CRC patients (Figure 7A-7C).
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Figure 4 Screening of key genes and functional analysis. (A) Volcano map showing the DEGs in the TCGA-CRC queue; (B) volcano map 
showing the DEGs between k1 and k2 subtypes of cancer; (C) Venn diagram of the DEGs screened by scRNA-seq, TCGA-CRC cohort, 
and two cancer subtypes; (D) functional enrichment analysis of the key genes; (E) functional network diagram of the key genes. FC, fold 
change; TCGA, The Cancer Genome Atlas; CRC, colorectal cancer; scRNA, single-cell RNA; DEGs, differentially expressed genes.
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ssGSEA

Based on the TCGA dataset, we performed ssGSEA on the 
seven biomarkers that constitute the RS. The results showed 
that RETNLB was associated with the hippo signaling 
pathway-multiple species (Figure 8A); SULT1B1 was 
associated with the peroxisome (Figure 8B); UGT2A3 was 
involved in endocytosis (Figure 8C); CLCA4 was implicated 
in the salmonella infection (Figure 8D); CCL24 was linked 
to the coronavirus disease 2019 (COVID-19) (Figure 8E);  
BMP5  was implicated in endocytosis  (Figure 8F) ;  

and ATOH1 played a role in the cAMP signaling pathway 
(Figure 8G).

Immunological correlation analysis

A correlation analysis was conducted on the 22 immune cells 
with RS and its constituent genes (Figure 9A), revealing that 
RS was significantly negatively correlated with plasma cells, 
activated CD4+ memory T cells, macrophages M2, resting 
dendritic cells, resting mast cells, and eosinophils, but 
positively correlated with T cells follicular helper, resting 
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Figure 5 Establishment of RS. (A) Cox univariate analysis of the key genes; (B) calculation of the regression coefficient; (C) the best 
prognostic model; (D) coefficients for the seven biomarkers; (E) survival curve between the high and low evaluation groups; (F) ROC 
analysis of the cancer samples in the TCGA-CRC database; (G) the RS, survival information, and expression of biomarkers for the cancer 
samples in the TCGA-CRC database. HR, hazard ratio; CI, confidence interval; FP, false positive; TP, true positive; AUC, area under the 
curve; RFS, recurrence free survival; RS, risk score; ROC, receiver operating characteristic; TCGA, The Cancer Genome Atlas; CRC, 
colorectal cancer.

	0.0	 0.2	 0.4	 0.6	 0.8	 1.0
FP

	 −0.075	 −0.050	 −0.025	 0.000
Coefficients

	 −8	 −7	 −6	 −5	 −4	 −3
Log (λ)

	 14	 14	14	14	 13	13	 13	13	13	11	10	 9	 8	 7	 8	 7	 6	 4	 2	 0

Genes 
ATOH1 
ITLN1 
HEPACAM2 
CLCA1 
SULT1B1 
B3GNT6 
BMP5 
RETNLB 
CCL24 
CLCA4 
UGT2A3 
FCGBP 
NXPE1 
NXPE2

HR (95% CI) 
0.85 (0.776–0.932) 
0.91 (0.859–0.965) 
0.863 (0.786–0.948) 
0.922 (0.872–0.974) 
0.845 (0.751–0.952) 
0.876 (0.798–0.962) 
0.713 (0.559–0.911) 
0.892 (0.818–0.973) 
0.881 (0.796–0.975) 
0.898 (0.823–0.98) 
0.886 (0.801–0.981) 
0.928 (0.868–0.991) 
0.886 (0.797–0.986) 
0.843 (0.718–0.99)

0.5	 1.0	 1.5
Hazard ratio

P
<0.001 
0.002 
0.002 
0.004 
0.006 
0.006 
0.007 
0.01 
0.01 
0.02 
0.02 
0.03 
0.03 
0.04

	 −8	 −7	 −6	 −5	 −4	 −3
Log lambda

	 14	 13	 13	 9	 7	 2

RETNLB 
ATOH1 
CCL24 

UGT2A3 
SULT1B1 

BMP5 
CLCA4

12.5
10.0
7.5
5.0
2.5
0.0

−0.5

−1.0

−1.5

R
FS

, y
ea

rs
R

is
k 

sc
or

e

Risk score

Status

Genes 
expression

2
1
0
−1
−2

High 
Low

Alive 
Dead

AUC of 1-year =0.603 
AUC of 3-year =0.622 
AUC of 6-year =0.642

1.0

0.8

0.6

0.4

0.2

0.0

RETNLB 

CLCA4 

UGT2A3 

SULT1B1 

CCL24 

BMP5 

ATOH1

12.4

12.3

12.2

12.1

12.0

11.9

11.8

0.05

0.00

−0.05

−0.10

−0.15

−0.20

TP

G
en

es

P
ar

tia
l l

ik
el

ih
oo

d 
de

vi
an

ce

C
oe

ffi
ci

en
ts

	 0	 3	 6	 9	 12
Time, years

P<0.001

Strata	 class=high	 class=low

1.00 

0.75

0.50 

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

B

D

A

C

E F G

natural killer (NK) cells, activated NK cells, macrophages 
M0, macrophages M1 and activated mast cells. Through 
literature review, four immune indicators (APM, CYT, TIS, 
and TILS) and eight immune checkpoints (CD274, CTLA4, 
HAVCR2, LAG3, PDCD1, PDCA1LG2, SIGLEC15, 
and TIGIT) were retrieved, and their correlation with RS 
and its constituent genes were analyzed (Figure 9B). The 
results demonstrated significant negative correlations of 
RS with CYT and TILs, and notable positive correlation 

between RS and SIGLEC15. According to the RS, the 
cancer samples in the TCGA-CRC database were divided 
into high/low evaluation sample groups, and the scores of 
these groups in the 22 types of immune cells were plotted 
(Figure 9C). Significant differences were observed between 
the high and low evaluation groups in B cells memory, 
plasma cells, resting T cells CD4 memory, resting NK cells, 
activated NK cells, and resting dendritic cells. Figure 9D-9K 
further illustrates that the RS displayed significant negative 
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Figure 6 RS verification. (A) Survival curves of the RS in the GSE12945 dataset; (B) survival curves of the RS in the GSE29623 dataset; (C) 
survival curves of the RS in the GSE38832 dataset; (D) ROC curve of the risk model in the GSE12945 dataset; (E) ROC curve of the risk 
model in the GSE29623 dataset; (F) ROC curve of the risk model in the GSE38832 dataset; (G) RS, survival information and expression 
of biomarkers for each sample in the GSE12945 dataset; (H) RS, survival information and expression biomarkers for each sample in the 
GSE29623 dataset; (I) RS, survival information and expression of biomarkers for each sample in the GSE38832 dataset. ROC, receiver 
operating characteristic; FP, false positive; TP, true positive; AUC, area under the curve; RFS, recurrence free survival; RS, risk score.
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correlations with plasma cells, resting T cells CD4 memory, 
monocytes, and eosinophils, while exhibiting significant 
positive correlations with T cells follicular helper, resting 
NK cells, macrophages M0, and activated mast cells. In 
conclusion, the seven biomarkers selected in the risk model 
play an important role in regulating the tumor immune 
microenvironment of CRC patients.

Correlation between RS and the clinical information from 
TCGA

The correlation between the risk model and the clinical 
pathological characteristics of CRC patients was assessed. 
The Kruskal-Wallis test was used to compare differences 
in risk models across tumor node metastasis (TNM) stages 
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Figure 7 Predictive models. (A) Calibration curves; (B) decision curves; (C) nomogram. OS, overall survival.

	0.74	 0.76	 0.78	 0.80	 0.82	 0.84	 0.86	 0.88
Nomogram-predicted probability of 3-year OS

Points 

ATOH1 

BMP5 

CCL24 

CLCA4 

RETNLB 

SULT1B1 

UGT2A3 

Total points 

1-year survival 

2-year survival 

3-year survival

0.0	 0.2	 0.4	 0.6	 0.8	 1.0
High risk threshold

Nomogram model 
All
None

S
ta

nd
ar

di
ze

d 
ne

t b
en

ef
it

1.0

0.8

0.6

0.4

0.2

0.0

1:100	 1:4	 2:3	 3:2	 4:1	 100:1
Cost:benefit ratio

0	 10	 20	 30	 40	 50	 60	 70	 80	 90	 100

700	 600	 500	 400	 300	 200	 100	 0

22	 20	 18	 16	 14	 12	 10	 8	 6	 4	 2	 0

2800	 2000	 1200	 400

0	 200	 400	 600	 800	 1200	 1600	 2000	 2400	 2800

600	 550	500	 450	 400	 350	 300	 250	 200	 150	 100	 50	 0

0	 50	 100	 150	 200	 250	 300	 350

0.99	 0.9	 08	0.7

0.99	 0.9	 08	0.7	0.5

0.99	 0.9	 08	0.7	0.5	0.3

200	 140	 80	 20

0	 700

0.95

0.90

0.85

0.80

0.75

0.70

0.65

A
ct

ua
l 3

-y
ea

r 
O

S
 (p

ro
po

rt
io

n)

BA

C

and RS across stages. Figure 10A shows no significant 
difference in RS among pathological T stages (P=0.24); 
Figure 10B demonstrates a significant difference in RS 
among pathological N stages (P<0.001), specifically between 
N0 and N1, N0 and N2, and N1 and N2; Figure 10C 
reveals a significant difference in RS among pathological 
M stages (P=0.002), with a significant difference between 
M0 and M1; Figure 10D presents a significant difference 
in RS among tumor stages (P=0.003), specifically between 
I and III, I and IV, II and III, and II and IV. Based on the 
above results, RS is associated with pathological N-stage, 
pathological M-stage, and tumor stage, but not with 
pathological T-stage.

Discussion

CRC is a common malignant tumor in the digestive 
tract, usually occurring in the colon and rectum. It can 
be divided into colon cancer and rectal cancer based on 
its location of onset. These two types of tumors share 
common histological characteristics and pathogenesis, 
hence collectively referred to as CRC for research. CRC 
can be broadly classified into ulcerative, protruding, 
and infiltrative types, while its histological classification 
includes adenocarcinoma, adenosquamous carcinoma and 
undifferentiated carcinoma (21,22). This study addresses 
the need for effective and reliable predictive biomarkers 
for monitoring the progression of advanced CRC. The 
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Figure 8 ssGSEA. (A) RETNLB; (B) SULT1B1; (C) UGT2A3; (D) CLCA4; (E) CCL24; (F) BMP5; (G) ATOH1. ssGSEA, single-sample gene 
set enrichment analysis. 
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objective is to construct a new prognostic risk model 
through bioinformatics analysis, with the aim of assessing 
the prognosis of CRC patients and identifying potential 
targets to enhance the outcomes of immunotherapy.

We obtained single-cell sequencing data related to 
CRC from the GEO database for cell annotation and 
differential analysis. Meanwhile, READ and COAD data 
were downloaded from the TCGA database for differential 
analysis. Immune infiltration analysis and k-means clustering 
were performed on the cancer samples from the READ and 

COAD data, and the cancer samples were reclassified into 
three categories (k1, k2, and k3). Subsequently, differential 
analysis was conducted on the k1 and k2 groups of samples 
based on the results of survival analysis. Finally, by taking 
intersection of the differential analysis results, we identified 
77 key genes. Functional analysis revealed enrichment of 
these genes in the steroid metabolic process, complement 
activation, and classical pathway, etc. Brain metastasis is 
believed to occur through the entry of circulating tumor 
cells into brain microvessels. The development of brain 
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Figure 9 Immunological correlation analysis. (A) Correlation analysis of the 22 immune cells with RS and its constituent genes; (B) 
correlation analysis of immune indicators and immune checkpoints with RS and its constituent genes; (C) the scores of the high and low 
evaluation groups from the TCGA-CRC database in the 22 types immune cells; (D) correlation analysis of RS with plasma cells; (E) 
correlation analysis of RS with resting T cells CD4 memory; (F) correlation analysis of RS with T cells follicular helper; (G) correlation 
analysis of RS with resting NK cells; (H) correlation analysis of RS with monocytes; (I) correlation analysis of RS with macrophages M0; 
(J) correlation analysis of RS with eosinophils; (K) correlation analysis of RS with activated mast cells. ns, P>0.05; *, P<0.05; **, P<0.01; ***, 
P<0.001. NK, natural killer; R, Pearson correlation coefficient; RS, risk score; TCGA, The Cancer Genome Atlas; CRC, colorectal cancer.
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Figure 10 Correlation between RS and the clinical information from TCGA. (A) The differences of RS in each pathological T stage; (B) 
the differences of RS in each pathological N stage; (C) the differences of RS in each pathological M stage; (D) the differences of RS in each 
tumor stage. ns, P>0.05; *, P<0.05; **, P<0.01; ***, P<0.001. AJCC, American Joint Committee on Cancer; T, tumor; N, node; M, metastasis; 
NA, not applicable; RS, risk score; TCGA, The Cancer Genome Atlas.
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metastasis is an important factor for the poor prognosis of 
patients with advanced cancer. Notably, patients with CRC 
are particularly prone to developing brain metastasis (23). 
In animal experiments, hypothalamic oxytocin-producing 
neurons were found to regulate the progression of colitis-
associated cancer (CAC) in mice (24). Inhibition of the 
renin-angiotensin system pathway has shown efficacy in 
reducing tumor growth and metastasis, and inhibitors 
targeting this pathway have demonstrated promising 
results in in clinical practice (25). Moreover, the (pro) renin 
receptor has been reported in promoting CRC progression 
by inhibiting NEDD4L-mediated Wnt3 ubiquitination and 
regulating intestinal microbiota (26). It is also considered 
as a potential therapeutic target for pancreatic cancer, 
CRC, brain cancer and other cancers (27). Elevated levels 
of intestinal bile acid are a risk factor for CRC (28), as 
bile acids can be converted by gut microbiota in the small 

intestine into tumor-promoting secondary bile acids that 
can promote CRC (29). Bile acids have also been reported 
as both tumor inducers and promoters in esophageal 
cancer, CRC and hepatocellular carcinoma, while 
exhibiting inhibitory effects on breast cancer at specific  
concentrations (30). Researchers found that loss of 
intracellular complement C5a/C5aR1 can destabilize 
β-catenin and significantly block the development of 
CRC (31), indicating the regulatory role of C5aR1 in the 
occurrence of CRC through immune regulation (32).

In order to screen out hub genes related to CRC 
prognosis among the key genes, we conducted Cox 
univariate analysis on the key genes and identified 14 genes 
related to CRC prognosis. Subsequently, we conducted 
LASSO analysis and ultimately selected seven biomarkers 
(RETNLB, CLCA4, UGT2A3, SULT1B1, CCL24, BMP5, 
and ATOH1) for constructing a prognostic risk model. 
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According to existing literature reports, RETNLB is a 
tumor promoter in oral squamous cell carcinoma and 
is significantly correlated with poor prognosis in CRC  
patients (33); CLCA4 can reduce the proliferation, 
migration, and invasion of CRC cells by inhibiting the 
PI3K/AKT pathway (34-36); CLCA4 serves as a tumor 
suppressor in esophageal cancer (37), but promotes tumor 
development in head and neck squamous cell carcinoma (38);  
UGT2A3 inhibits the proliferation and metastasis of CRC 
cells (39); similarly, SULT1B1 is a distinct biomarker for 
CRC (40); CCL24 promotes the occurrence of various 
cancers, including CRC, non-small cell carcinoma, and 
nasopharyngeal carcinoma, through M2 macrophage 
polarization, angiogenesis, invasion and migration, and 
eosinophil recruitment (41); BMP5 induces a reduction 
in migration and invasion of breast cancer cells (42), and 
BMP5 gene deletion delays the occurrence of prostate 
cancer and skin cancer in mice (43); ATOH1 has been less 
studied in the mechanism of cancer, but its association with 
intestinal health has been identified.

The RS has demonstrated a good predictive ability for 
the prognosis of CRC patients. Clinical correlation analysis 
has confirmed that RS is associated with pathological N 
stage, pathological M stage, and tumor staging, but not 
with pathological T stage. Immunotherapy has emerged 
as a promising approach in cancer treatment which helps 
improve the prognosis of cancer patients (44). Infiltration 
of immune regulatory cells such as regulatory T cells, 
regulatory macrophages, and myeloid suppressor cells 
into the tumor tissue can lead to an anti-tumor immune 
response, thus having a negative impact on the prognosis 
of cancer patients (45). These immunomodulatory cells are 
characterized by high expression levels of their immune 
checkpoints. ICB enhances immune responses or relieves 
immune suppression by targeting immune checkpoints, 
which are ligand receptor pairs (46) that inhibits or 
stimulates immune responses. Immune checkpoints related 
to tumor cells mediate immune evasion and contribute to 
maintaining various malignant behaviors, including self-
renewal, epithelial mesenchymal transition, metastasis, drug 
resistance, anti-apoptosis, angiogenesis, and enhancement 
of energy metabolism (47,48). Remarkable progress has 
been made in the clinical application of ICB therapy for 
advanced malignant tumors, with anti PD-1/PD-L1 drugs 
receiving approval as second-line treatment for metastatic 
CRC (mCRC) (49). Immune correlation analysis confirmed 
that RS was negatively correlated with plasma cells, 
activated T cell CD4 memory, macrophage M2, resting 

dendritic cells, resting mast cells, eosinophils, CYT, and 
TILs. RS was positively correlated with T cells follicular 
helper, resting NK cells, activated NK cells, macrophages 
M0, macrophages M1, activated mast cells and SIGLEC15. 
These findings suggest that RS may play an important role 
in immunotherapy, and these identified biomarkers may 
serve as targets for improving immunotherapy.

This study also has certain limitations. The analysis of 
CRC patient data relied on data downloaded from public 
databases, and the lack of access to individual clinical 
samples and information restricts the validation in an  
in vitro setting. 

Conclusions

In this study, CRC-related single-cell, transcriptome and 
clinical data were obtained from publicly available GEO 
and TCGA databases. Key genes associated with CRC 
prognosis were identified through differential analysis, 
CIBERSORTx analysis, LASSO analysis, Cox univariate 
analysis and survival analysis, leading to the development 
of a prognostic risk model encompassing seven genes and 
the establishment of an RS. The correlation of RS with 
tumor immune microenvironment, pathological N stage, 
pathological M stage and tumor staging was investigated. 
We hope that through this analysis, a new prognostic risk 
model is constructed for evaluating the prognosis of CRC 
patients, and potential targets are identified for improving 
immunotherapy.
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