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Nitrogen Substrate Utilization in
Three Rhizosphere Bacterial Strains
Investigated Using Proteomics
Richard P. Jacoby* , Antonella Succurro† and Stanislav Kopriva

Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany

Nitrogen metabolism in the rhizosphere microbiome plays an important role in mediating
plant nutrition, particularly under low inputs of mineral fertilizers. However, there is
relatively little mechanistic information about which genes and metabolic pathways are
induced by rhizosphere bacterial strains to utilize diverse nitrogen substrates. Here
we investigate nitrogen substrate utilization in three taxonomically diverse bacterial
strains previously isolated from Arabidopsis roots. The three strains represent taxa that
are consistently detected as core members of the plant microbiome: Pseudomonas,
Streptomyces, and Rhizobium. We use phenotype microarrays to determine the
nitrogen substrate preferences of these strains, and compare the experimental results
vs. computational simulations of genome-scale metabolic network models obtained with
EnsembleFBA. Results show that all three strains exhibit generalistic nitrogen substrate
preferences, with substrate utilization being well predicted by EnsembleFBA. Using
label-free quantitative proteomics, we document hundreds of proteins in each strain
that exhibit differential abundance values following cultivation on five different nitrogen
sources: ammonium, glutamate, lysine, serine, and urea. The proteomic response to
these nitrogen sources was strongly strain-dependent, with lysine nutrition eliciting
widespread protein-level changes in Pseudomonas sp. Root9, whereas Rhizobium
sp. Root491 showed relatively stable proteome composition across different nitrogen
sources. Our results give new protein-level information about the specific transporters
and enzymes induced by diverse rhizosphere bacterial strains to utilize organic
nitrogen substrates.

Keywords: nitrogen, bacteria, metabolism, amino acids, proteomics, rhizosphere microbiome, flux balance
analysis, phenotype microarray

INTRODUCTION

Improved nitrogen management in agricultural systems is crucial for environmental sustainability.
Large-scale application of mineral nitrogen fertilizers has extensive off-target effects, such as
greenhouse gas production and waterway eutrophication (Zhang et al., 2015). One potential
pathway to boost agricultural sustainability involves substituting mineral fertilizers with organic
nutrients derived from recycling various waste streams. For low-input agricultural systems to
provide sufficient bioavailable nitrogen to meet the demands of plant growth, future crop
management practices will need to better incorporate microbial pathways of nitrogen mobilization
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(Hirsch and Mauchline, 2015). One specific suggestion involves
engineering the rhizosphere microbiome to promote the
mineralization of organic nitrogen, coupled with engineering
of plant root metabolism to release rhizodeposits that recruit
beneficial microbial strains (Bender et al., 2016). However, the
ability to manipulate plant-microbe cooperation is limited by an
incomplete knowledge of the specific microbial traits involved in
root colonization and nutrient mobilization (Trivedi et al., 2017).

Nitrogen flows in the rhizosphere are complex, with plants
and microbes potentially cooperating but sometimes competing
for uptake of diverse nitrogen molecules (Bloom, 2015).
Legume-Rhizobia symbioses provide an example of cooperation,
whereby the majority of the plant’s nitrogen nutrition is
derived from bacterial fixation of atmospheric N2 (Peoples
et al., 2009). Outside of legumes, it is generally accepted
that plants obtain the majority of their nitrogen nutrition
from inorganic forms such as nitrate and ammonium, whereas
microbes are more adept at acquiring more recalcitrant organic
nitrogen forms such as proteins and amino acids (Kuzyakov
and Xu, 2013). Therefore, cooperative nutrient transfers can
occur when microbes take up soil-bound organic nitrogen,
which is subsequently transferred to plants in a mineralized
form following microbial lysis or protozoic predation (Harrison
et al., 2007). Conversely, competitive flows can occur when
microbes immobilize inorganic nitrogen, or when plants take up
organic nitrogen (Jones et al., 2013). Adding further complexity,
plant root exudates contain large amounts of organic nitrogen
molecules which can serve as carbon and nitrogen substrates
for bacterial growth. The rate of amino acid release from plant
roots increases under exposure to specific bacterial metabolites
(Phillips et al., 2004), but organic nitrogen molecules released
via root exudation can also be efficiently re-acquired by the root
system (Warren, 2015).

Investigations of how bacteria utilize diverse nitrogen
substrates have been documented since the beginning of
modern microbiology (Koser and Rettger, 1919). Ammonium
is the preferred nitrogen source for most bacteria, and
experimental designs usually include ammonium as a control
treatment, to compare against alternative nitrogen sources
or starvation treatments (Merrick and Edwards, 1995). Over
decades, such studies have provided detailed insight into
fundamental physiological mechanisms such as the molecular
pathways of bacterial nitrogen assimilation, the perception of
nitrogen status, and the response to nitrogen starvation in
E. coli (van Heeswijk et al., 2013). However, Gram positive
bacteria possess different mechanisms for regulating nitrogen
metabolism (Fisher, 1999; Amon et al., 2010), and soil bacteria
exhibit considerable extensive diversity regarding their nitrogen
substrate preferences and also the metabolic pathways used to
metabolize organic nitrogen sources (Geisseler et al., 2010; Moe,
2013). Therefore, novel insights into metabolic mechanisms of
nitrogen metabolism may be observed by studying nitrogen
substrate utilization in taxonomically diverse bacterial strains
isolated from the rhizosphere.

The rhizosphere microbiome has attracted increasing research
attention over the past 20 years. From the results of 16S
pyrosequencing studies, it has become increasingly apparent

that the rhizosphere hosts a taxonomically diverse bacterial
microbiota, which plays an important role in determining plant
growth and health (Muller et al., 2016). Recently, multiple
research groups have established large collections of bacterial
strains isolated from field-grown plants, which can be used to
dissect the functional traits carried out by individual strains,
or reassembled into synthetic communities that recapitulate
microbiome function (Bai et al., 2015; Levy et al., 2018b; Gomez-
Godinez et al., 2019). There is now an opportunity to study
these plant-associated microbial strains using high-throughput
omics techniques, to acquire new insights into the specific
molecular mechanisms that confer a selective advantage in the
plant-associated niche (Levy et al., 2018a).

Alongside experimental approaches, computational modeling
is becoming a widespread approach to investigate microbial
metabolism (Zomorrodi and Segre, 2016). One particularly
useful method is the construction of genome-scale metabolic
network models, which translate the information encoded in
the bacterial genome into a computational formalism that
can be analyzed with mathematical methods (Henry et al.,
2010). However, curated genome-scale metabolic models are
only available for a relatively small set of extensively studied
bacterial strains, and generally it is difficult to analyze newly
sequenced bacterial strains using computational modeling. This
limitation exists because reconstructing a curated genome-
scale metabolic network model is a painstaking process that
requires extensive manual curation as well as the acquisition
of extensive experimental data, particularly regarding biomass
composition. Although progress is being made toward automated
reconstruction of genome-scale metabolic network models, many
challenges still have to be addressed (Arkin et al., 2018).
Recently, a method named EnsembleFBA has been proposed
as a potential approach to approximate genome-scale metabolic
networks for diverse bacterial strains. Instead of relying on
the availability of a single manually curated genome-scale
model, EnsembleFBA uses the information derived from multiple
metabolic networks, which are reconstructed from the same
initial draft network and refined through the process of positive
and negative gapfilling on randomized sets of growth and
non-growth conditions. As a proof of concept, it was shown
that the EnsembleFBA method achieved greater precision in
predicting essential genes than an individual, highly curated
model (Biggs and Papin, 2017).

Here we investigate nitrogen metabolism in three
taxonomically diverse bacterial strains previously isolated
from Arabidopsis roots. We apply a combination of methods,
including quantitative proteomics, growth assays, phenotype
microarray, and EnsembleFBA. With the proteomic data,
we were particularly interested in determining the specific
proteins that are enriched according to different nitrogen
sources, to decipher the metabolic strategies used for nitrogen
acquisition across different rhizosphere bacterial strains. In
parallel, we applied the EnsembleFBA method to reconstruct
and analyze sets of genome-scale metabolic network models
for each strain, using the phenotype microarray data for
training and testing the model predictions of nitrogen
substrate utilization.

Frontiers in Microbiology | www.frontiersin.org 2 April 2020 | Volume 11 | Article 784

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00784 April 27, 2020 Time: 7:43 # 3

Jacoby et al. Proteomics of Nitrogen Metabolism in Rhizosphere Bacteria

MATERIALS AND METHODS

Bacterial Strains
Bacterial strains used in this study were Pseudomonas sp. Root9
(NCBI Taxonomy ID: 1736604), Streptomyces sp. Root66D1
(NCBI Taxonomy ID: 1736582) and Rhizobium sp. Root491
(NCBI Taxonomy ID: 1736548), all isolated from field-grown
Arabidopsis roots (Bai et al., 2015) and provided by Paul Schulze-
Lefert, MPIPZ Cologne.

Bacterial Pre-cultivation and Harvest
Bacterial strains were pre-cultivated by streaking glycerol stocks
onto TSA plates (0.5 × TSB, 1.2% Agar), and incubating at 28◦C
for 24 h. Single colonies were picked from plates and inoculated
into TSB medium (0.5 × TSB), and incubated for 24 h at 28◦C
with 200 rpm shaking. Next, cells were harvested by centrifuging
800 µL of culture at 5,000 × g for 2 min at RT. These cells were
then rinsed 3 × in sterile 10 mM MgCl2, and resuspended at a
final OD600 of 1.0 in sterile 10 mM MgCl2.

Phenotype Microarrays
For phenotype microarrays using PM3B (Biolog), 12 mL of
inoculant was prepared comprising 10 mL of 1.2 × IF-0 (Biolog),
1.2 mL of 500 mM glucose, 600 µL of bacterial suspension
(as prepared above), 120 µL of Redox Dye D (Biolog) and 80
µL of sterile water. Next, 100 µL of this inoculant (starting
OD600 of 0.05) was loaded into each well of the phenotype
microarray, which was transferred to a plate reader (Tecan
Infinite Pro 100) and incubated at 28◦C for 72 h with shaking
(30 s continuous orbital shaking followed by 9:30 min stationary,
shaking amplitude 3 mm). Tetrazolium reduction at A590 was
measured once per 10 min cycle, without correcting for path
length. Three biological replicates were conducted. Derived
curves were fitted to a logistic equation using the Growthcurver
program (Sprouffske and Wagner, 2016). For each well in every
assay, background was subtracted by subtracting the value of the
negative control (well A1) from each time point. In our hands,
guanosine (well F7) gave a very high background reading and
was excluded from the analysis. Wells were considered growth-
positive if the carrying capacity (k) of the logistic fit was greater
than A590 of 0.1 in at least two of the three independent biological
replicates. Next, area under the curve (AUC) values for all
growth-positive wells were z-score normalized within each strain,
and the average value of the three replicate assays was calculated.
These averaged z-score values were divided into quartiles, so the
presented data represents five possible growth intensities, ranging
from 0 (no growth) to 4 (highest AUC quartile).

Metabolic Models and Computational
Simulations
The EnsembleFBA workflow from Biggs and Papin (Biggs and
Papin, 2017) was adapted to analyze the three studied bacterial
strains. Scripts were implemented either in Matlab (Mathworks)
as the original code, or adapted for Python (Python Software
Foundation). Briefly, genomes were downloaded from NCBI
(Agarwala et al., 2018) and uploaded to KBase (Arkin et al., 2018)

where genome re-annotation and draft metabolic model
reconstruction was performed. Outputted draft networks were
downloaded and used as inputs for the EnsembleFBA workflow.
Also inputted to Ensemble FBA were the composition of the
Biolog media, and the experimentally derived growth matrices
obtained from PM3B phenotype microarray. Next, 50 metabolic
networks were generated for each strain, with each network being
trained on 26 nitrogen substrates that supported growth and
11 nitrogen substrates that didn’t support growth, in order to
perform positive and negative gapfilling. Compounds present
on the phenotype microarray but not found in the ModelSEED
database (Henry et al., 2010) were excluded, and a second set
of simulations excluding the five N-sources used for proteomics
experiments were also obtained for unbiased integration with
the proteomics datasets. To evaluate the performance of
EnsembleFBA for predicting growth on the different N-sources,
its accuracy, precision and recall were compared to randomly
generated predictions, after masking the conditions used to
gapfill the individual networks to avoid bias. Metabolic activity
on a given nitrogen source was estimated as the average growth
rate obtained with EnsembleFBA, and weighted according to
the fraction of networks in the ensemble that predicted growth.
Metabolic fluxes through specific reactions were estimated by
averaging the substrate flux for each reaction across all the
networks in the ensemble, and weighted according to the fraction
of networks where the reaction was occuring. To visualize up-
or down-regulated metabolic fluxes in metabolic pathway maps,
metabolic fluxes obtained by simulating growth on glutamate,
serine or lysine were compared vs. ammonium, and filtered for
reactions with log2 fold change >1.

Cultivation on Individual N-Sources for
Growth Assays and Proteomic Analysis
For growth assays on individual N-sources, media were based
on M9 formulation (CSHL, 2010) with nutrient concentrations
of: 50 mM glucose, 24 mM Na2HPO4, 11 mM KH2PO4, 4 mM
NaCl, 350 µM MgSO4, 100 µM CaCl2, 50 µM Fe-EDTA, 50
µM H3BO3, 10 µM MnCl2, 1.75 µM ZnCl2, 1 µM KI, 800
nM Na2MoO4, 500 nM CuCl2, 100 nM CoCl2. To this, one
nitrogen source was added at 5 mM elemental-N (i.e.,: 5 mM
of ammonium, glutamate and serine, or 2.5 mM of urea and
lysine). For growth assays, 20 µL of bacterial suspension (as
prepared above) was inoculated into 380 µL of growth medium
(starting OD600 of 0.05), in individual wells of a sterile 48-well
plate (Corning). These plates were then transferred to a plate
reader (Tecan Infinite Pro 100) and incubated at 28◦C for 48 h
with shaking (3 min continuous orbital shaking followed by
7 min stationary, shaking amplitude 3 mm). Culture density at
OD600 was measured once per 10 min cycle, without correcting
for path length. Four biological replicates were conducted. To
obtain quantitative growth metrics, a logistic equation was
fitted to measured growth curves using the Growthcurver
program (Sprouffske and Wagner, 2016). To collect samples
for proteomics, cultivation was identical, except that bacterial
cells were harvested during the exponential growth phase.
This was achieved by investigating the 48 h growth curves
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collected previously, and conducting each bacterial harvest at
a timepoint whereby culture turbidity was between 1/4 and
3/4 of the maximum OD600 value. Harvest involved pooling
of four replicate wells (total of 1.6 mL culture), followed by
centrifugation at 10,000 × g for 3 min at 4◦C. Supernatant was
discarded, and cell pellets were rinsed twice with 900 µL of 4◦C
PBS via centrifugation at 10,000 × g for 3 min at 4◦C. Rinsed cell
pellets were then flash-frozen and stored at −80◦C.

Proteomic Sample Preparation
Cellular protein was extracted using protocols modified from
Tanca et al. (2014) as well as Wessel and Flugge (1984). To frozen
cell pellets, 250 µL of lysis buffer (5% SDS, 100 mM DTT, 100 mM
Tris pH 7.5) was added, along with ∼100 µL of acid-washed
glass beads (1 mm diameter). Samples were then incubated for
10 min on an orbital mixer at 95◦C with 1,500 rpm shaking, then
at −80◦C for 10 min, then bead-beaten (Bead Ruptor 24, Omni
International) at 5 ms−1 for 10 min. Next, samples were again
incubated at −80◦C for 10 min, then incubated for 10 min on
an orbital mixer at 95◦C with 1,500 rpm shaking, then bead-
beaten at 5 ms−1 for 10 min. Finally, samples were centrifuged
at 20,000 × g for 10 min at RT, and 200 µL of supernatant
was transferred to a new tube. Protein was precipitated via the
addition of 800 µL MeOH, 500 µL H2O, and 200 µL chloroform
followed by centrifugation at 10,000 × g for 5 min at 4◦C.
The upper aqueous phase was removed and discarded, 700 µL
MeOH was added to the lower organic phase and samples were
centrifuged at 200,000 × g for 10 min at 4◦C. Protein pellets
were then rinsed twice with −20◦C acetone via centrifugation at
200,000 × g for 10 min at 4◦C, before being air-dried at RT for
15 min. Dried protein pellets were stored at −80◦C. To solubilize
protein pellets, 40 µL of solubilization buffer (8 M urea, 50 mM
TEAB, 5 mM DTT) was added, and samples were incubated on
an orbital mixer at 28◦C for 1 h with 350 rpm mixing. Next,
CAA was added to a final concentration of 30 mM, and samples
were incubated on an orbital mixer at 28◦C for 30 min with
350 rpm mixing in darkness. To quantify protein concentration,
an aliquot of the protein extract was taken and diluted 1:8 in
water, then a Bradford assay was performed on the diluted protein
samples using BSA as standard. Next, 40 µg of protein extract was
transferred to a new tube and incubated with 0.8 µg Lys-C for 2 h
at 37◦C with 350 rpm shaking. Samples were then diluted 1:8 in
TEAB, 0.8 µg of trypsin was added, and samples were incubated
overnight at 37◦C. Next day, samples were acidified by adding
formic acid to a final concentration of 1%. Peptides were then
cleaned up via SPE using SDB-RP stage tips. Following elution
from stage tips, peptides were dried down in a vacuum centrifuge
and stored at −80◦C.

Mass Spectrometry
Digested peptides were analyzed on a QExactive Plus mass
spectrometer (Thermo Scientific) coupled to an EASY nLC 1000
UPLC (Thermo Scientific). Dried peptides were resolubilized
in solvent A (0.1% formic acid), and loaded onto an in-house
packed C18 column [50 cm × 75 µm I.D., filled with 2.7
µm Poroshell 120 (Agilent)]. Following loading, samples were
eluted from the C18 column with solvent B (0.1% formic acid

in 80% acetonitrile) using a 2.5 h gradient, comprising: linear
increase from 4 to 27% B over 120 min, 27–50% B over
19 min, followed by column washing and equilibration. Flow
rate was at 250 nL/min. Data-dependent acquisition was used
to acquire MS/MS data, whereby the 10 most abundant ions
(charges 2–5) in the survey spectrum were subjected to HCD
fragmentation. MS scans were acquired from 300 to 1,750 m/z
at a resolution of 70,000, while MS/MS scans were acquired at
a resolution of 17,500. Following fragmentation, precursor ions
were dynamically excluded for 25 s.

Label-Free Protein Quantification
Label-free quantification of protein abundance was conducted
with MaxQuant v1.5.3.8 (Tyanova et al., 2016). Acquired MS/MS
spectra were searched against FASTA protein sequences for the
three studied bacterial strains, obtained from IMG (Chen et al.,
2017). Sequences of common contaminant proteins were also
included in the search database. Protein FDR and PSM FDR were
set to 0.01%. Minimum peptide length was seven amino acids,
cysteine carbamidomethylation was set as a fixed modification,
while methionine oxidation and protein N-terminal acetylation
were set as variable modifications.

Statistical Analysis of Proteomic Data
To determine proteins that exhibited significantly different
abundance between N-treatments, a statistical threshold was
imposed where the MaxQuant LFQ values must differ by log2FC
>1 and BH-p-value <0.05. To determine the abundance of Kegg
orthologs (KOs) across bacterial strains and N-treatments, KOs
annotated to proteins via IMG were matched across bacterial
strains. Data were filtered to contain only the 495 KOs that were
observed in at least three replicates across all five treatments
in all three strains. In instances where a single strain had
multiple proteins matching the same KO, the protein with the
highest average MaxQuant LFQ value across all samples was
taken as the representative KO for that strain. To determine the
KEGG pathways that were significantly modulated at the protein
abundance level between nitrogen treatments, KOs annotated
onto proteins via IMG were mapped against KEGG pathways
using KEGG-REST, and Fisher’s exact test was used to generate
a single p-value for each KEGG pathway by combining the
individual BH-p-values for all constituent proteins mapped to
that pathway. Pathways were only analyzed when at least three
representative proteins were detected for a single strain across
all five nitrogen treatments, and pathways associated with non-
bacterial processes were discarded.

RESULTS

We studied nitrogen metabolism in three taxonomically
diverse bacterial strains isolated from roots of field-grown
Arabidopsis: Pseudomonas sp. Root9, Streptomyces sp. Root66D1,
and Rhizobium sp. Root491. All three strains were previously
isolated in Bai et al. (2015). The strains were selected for
study based on two criteria: first that they were previously
shown to correspond to highly abundant taxa in the root
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microbiome of field-grown Arabidopsis plants (Table 1); and
second that they could be successfully cultivated on a set of
minimal media using different N-sources, based on a preliminary
experiment with a panel of 17 rhizosphere bacterial strains
(Supplementary Table S1).

Although the three strains studied here were newly isolated in
Bai et al. (2015) they exhibit genetic similarities to strains with
an extensive history of scientific study. To find well-characterized
relatives for each of these three strains, we searched for literature
information amongst similar strains that were grouped into
a neighboring taxonomic position via the phylogenetic tree
presented in Levy et al. (2018b). This showed that Pseudomonas
sp. Root9 was grouped into the same phylogenetic branch as both
Pseudomonas sp. WCS374 and Pseudomonas simiae WCS417,
which were originally isolated from the rhizosphere of crop
plants and repeatedly shown to exert plant-growth-promoting
effects (Berendsen et al., 2015). Streptomyces sp. Root66D1
is located in the same phylogenetic branch as Streptomyces
clavuligerus ATCC 27064, originally isolated from soil and well
documented to produce a wide repertoire of bioactive secondary
metabolites (Medema et al., 2010). Rhizobium sp. Root491 is
located in the same phylogenetic branch as Agrobacterium sp.
H13-3, originally isolated from Lupin rhizosphere and extensively
studied as a model system for investigating chemotaxis and
motility (Wibberg et al., 2011).

Measurement and Modeling of Growth
Phenotypes on Different Nitrogen
Sources
First, we investigated each strain’s ability to utilize 94 diverse
nitrogen sources using a phenotype microarray (BIOLOG PM3B)
(Supplementary Figure S1 and Supplementary Table S2). The
data reveal that all three strains can catabolize a relatively
high number of substrates, with the three strains exhibiting
positive growth phenotypes on 55–61 of the 94 substrates tested.
This indicates that all three strains have generalistic nitrogen
substrate preferences, which has been previously suggested to
be a selective advantage in the rhizosphere (Lopez-Guerrero
et al., 2013). In parallel, we used EnsembleFBA (Biggs and
Papin, 2017) to test how accurately nitrogen substrate utilization
can be computationally predicted across the three strains
(Supplementary Figure S1 and Supplementary Table S2).
When nitrogen substrate utilization is assessed in binary
terms (growth vs. no growth), there is a good concordance
between the experimental results and the computational
predictions, with Ensemble FBA showing an accuracy in
predicting growth in about 80% of cases for the three strains
(Supplementary Table S3). However, there is a relatively poor
correlation between the proxy values of metabolic activity
predicted by the models vs. the experimental measurements,
with a comparison of percentile rank between the datasets
yielding r2 values between 0.23 and 0.5 across the three
strains (Supplementary Figure S2). The accuracy of the model
prediction seems to vary across different molecular classes, with
good concordance for amino acids but poor concordance for
nitrogen bases (Figure 1). TA

B
LE

1
|L

ite
ra

tu
re

in
fo

rm
at

io
n

ab
ou

tt
he

ab
un

da
nc

e
of

th
es

e
th

re
e

st
ra

in
s

in
th

e
rh

iz
os

ph
er

e
of

fie
ld

-g
ro

w
n

A
ra

bi
do

ps
is

pl
an

ts
.

S
tr

ai
n

R
el

at
iv

e
ab

un
d

an
ce

o
f

co
rr

es
p

o
nd

in
g

ta
xo

no
m

ic
ca

te
g

o
ry

in
p

ub
lis

he
d

b
ac

te
ri

al
m

ic
ro

b
io

ta
su

rv
ey

s
fr

o
m

fi
el

d
-g

ro
w

n
A

ra
b

id
o

p
si

s
ro

o
ts

(L
ev

y
et

al
.,

20
18

b
)

A
b

un
d

an
ce

ra
nk

o
f

co
rr

es
p

o
nd

in
g

O
T

U
in

p
ub

lis
he

d
b

ac
te

ri
al

m
ic

ro
b

io
ta

su
rv

ey
s

fr
o

m
fi

el
d

-g
ro

w
n

A
ra

b
id

o
p

si
s

ro
o

ts
(B

ai
et

al
.,

20
15

)

N
um

b
er

o
f

p
hy

lo
g

en
et

ic
al

ly
si

m
ila

r
st

ra
in

s
(L

ev
y

et
al

.,
20

18
b

)

Ta
xo

no
m

ic
ca

te
g

o
ry

Lu
nd

b
er

g
et

al
.,

20
12

B
ul

g
ar

el
li

et
al

.,
20

12
B

ul
g

ar
el

li
et

al
.,

20
12

S
ch

la
ep

p
i

et
al

.,
20

14
B

ai
et

al
.,

20
15

N
um

b
er

o
f

st
ra

in
s

in
sa

m
e

b
ra

nc
h

o
f

p
hy

lo
g

en
et

ic
tr

ee
N

um
b

er
o

f
th

o
se

st
ra

in
s

th
at

ar
e

p
la

nt
-a

ss
o

ci
at

ed

P
se

ud
om

on
as

sp
.R

oo
t9

P
se

ud
om

on
as

(G
en

us
)

2%
2%

9
11

17
19

8

S
tr

ep
to

m
yc

es
sp

.R
oo

t6
6D

1
A

ct
in

ob
ac

te
ria

1
(P

hy
lu

m
)

16
%

13
%

1
3

2
12

3

R
hi

zo
bi

um
sp

.
R

oo
t4

91
A

lp
ha

pr
ot

eo
ba

ct
er

ia
(C

la
ss

)
5%

6%
8

19
34

16
13

(B
ul

ga
re

lli
et

al
.,

20
12

;L
un

db
er

g
et

al
.,

20
12

;S
ch

la
ep

pi
et

al
.,

20
14

;B
ai

et
al

.,
20

15
;L

ev
y

et
al

.,
20

18
b)

.

Frontiers in Microbiology | www.frontiersin.org 5 April 2020 | Volume 11 | Article 784

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00784 April 27, 2020 Time: 7:43 # 6

Jacoby et al. Proteomics of Nitrogen Metabolism in Rhizosphere Bacteria

FIGURE 1 | Nitrogen substrate preferences of three rhizosphere bacterial
strains assessed via Phenotype Microarray and EnsembleFBA. Displayed here
are results for 30 nitrogen substrates selected from the 94 tested. White
boxes indicate no metabolic activity, whereas boxes with darker shades
correspond to higher metabolic activity, either measured via Phenotype
Microarray (pink) or predicted via EnsembleFBA (green). Metabolic activity
values were z-score normalized within each strain.

FIGURE 2 | Growth curves on five nitrogen sources for three rhizosphere
bacterial strains. (A) Pseudomonas sp. Root9, (B) Streptomyces sp.
Root66D1, (C) Rhizobium sp. Root491. Cultures were grown in 48-well plates
on minimal medium containing a single nitrogen source. OD600 (uncorrected
for path length) was logged every 10 min using a plate reader.

Growth Curves in Batch Culture
We conducted growth curves in batch culture to further
investigate the growth phenotypes of these three strains
when cultivated on five selected nitrogen sources
(ammonium, glutamate, lysine, serine, and urea; Figure 2
and Supplementary Table S4). The rationale for selecting these
nitrogen sources is because ammonium serves as the inorganic
reference, the three chosen amino acids are abundant in soils
(Warren, 2014) and exhibit diverse charges (glutamate negative,
lysine positive, serine neutral), while urea is a widely applied
agricultural fertilizer. Nitrogen concentration in the media
corresponded to 5 mM of elemental-N, which was empirically
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determined to be a yield-limiting nitrogen concentration for
all three strains (Supplementary Figure S3), following the
recommendations of Egli (2015). In Pseudomonas sp. Root9,
we see that lysine nutrition elicits a long extension of the lag
phase (Figure 2A). In contrast, Rhizobium sp. Root491 exhibited
broadly similar growth curves across all five nitrogen sources,
indicative of growth homeostasis across different nutrient
sources. In Streptomyces sp. Root66D1, growth rates were
slower on lysine and serine compared to the other three tested
nitrogen sources.

Culture turbidity measurements do not represent the absolute
number of bacterial cells, particularly when comparing between
different strains that may have differences in cell size or opacity.
Therefore, we investigated the relationship between bacterial
count (CFU/mL) vs. turbidity (OD600) in these three strains
(Supplementary Figure S4). This showed that bacterial count
is linearly correlated to OD600 at the turbidity values studied in
Figure 2, and also that cultures of Rhizobium sp. Root491 contain
many more bacterial cells compared to the other two strains when
plated at the same OD600 value.

Proteome Remodeling in Response to
Different Nitrogen Sources
The main aim of this study was to define systems-level differences
in cellular proteome composition in three rhizosphere bacterial
strains cultivated on five different nitrogen sources. Therefore,
bacteria were cultivated on the same nitrogen sources shown
in Figure 2 (ammonium, glutamate, lysine, serine, and urea),
cells were harvested during the exponential growth phase,
and cellular protein composition analyzed using label-free
quantitative proteomics. A numerical summary of protein IDs is
shown in Table 2, a visual overview of the derived results is shown
in Figure 3, volcano plots for all 10 pairwise comparisons across
all three strains are shown in Supplementary Figures S5–S7, and
the MaxQuant abundance values for all detected proteins are
given in Supplementary Table S5.

The most noticeable observation in these quantitative
proteomic datasets is that the three different bacterial strains
exhibit widely divergent protein-level responses to the same
nitrogen source. This is best illustrated by the differential
responses to lysine nutrition, which elicited widespread
alterations to the proteome of Pseudomonas sp. Root9 but
relatively fewer protein-level changes in the other two studied
strains (Figure 3). By matching the specific enzymes that were
up-regulated by lysine nutrition onto metabolic pathways for
lysine degradation, the proteomic data indicate that lysine
degradation in Pseudomonas sp. Root9 proceeds via the
δ-aminovalerate pathway, whereas Rhizobium sp. Root491
utilizes the saccharopine pathway. Two other nitrogen sources
that elicit divergent proteomic responses between the strains are
serine and urea. Appraising how the different strains respond to
serine nutrition, the proteomic datasets show that Pseudomonas
sp. Root9 induced a very small set of proteins including serine
dehydratase, which yields ammonium in one enzymatic step as
well as pyruvate that can be quickly assimilated in the TCA cycle.
In contrast, the other two studied strains exhibited widespread

proteome changes between ammonium vs. serine nutrition, but
no upregulation of serine dehydratase, potentially indicating
that the assimilated serine must be distributed through multiple
elements of the metabolic network requiring a wider modulation
of protein expression. Regarding urea, both Streptomyces sp.
Root66D1 and Rhizobium sp. Root491 showed zero proteins
that were differentially expressed between ammonium vs. urea
treatment, whereas this comparison in Pseudomonas sp. Root9
elicited 126 differentially expressed proteins.

Orthologous Proteins and Metabolic
Pathways Modulated by Nitrogen
Nutrition
To enable inter-strain comparisons of the label-free quantitative
proteomic data acquired from the three taxonomically diverse
rhizosphere bacterial strains, we utilized cross-species gene
annotation via KEGG orthologs (Kanehisa et al., 2016). We
selected individual proteins that represent the 495 KEGG
orthologs which were detected in all five treatments across all
three strains, and visualize the abundance of these representative
orthologs using a heatmap and PCAs in Figure 4, with numerical
data provided in Supplementary Table S6. As can be seen in
Figures 4A,B, the samples group together according to the
three bacterial strains rather than the five nitrogen sources.
This indicates that the baseline differences in strain-specific
proteome composition are much greater than any treatment-
induced differences elicited by nitrogen nutrition. In Figure 4C
we plot a PCA of these 495 KEGG orthologs when protein
abundance in the four organic nitrogen sources is normalized vs.
the inorganic nitrogen source ammonium. This shows that lysine
nutrition in Pseudomonas sp. Root9 elicits a proteomic response
that is qualitatively different compared to the strain-medium
combinations profiled in this study.

Our next step was to analyze which specific KEGG pathways
were modulated according to nitrogen treatment in the three
strains. In Figure 5, we show the results of Fisher’s exact test
to determine whether the constituent proteins of 30 KEGG
pathways exhibited altered abundance profiles in the 10 pairwise
comparisons between different nitrogen sources. Numerical
data for all 126 tested pathways compared is provided in
Supplementary Table S7. Looking at the specific pathways
modulated by nitrogen nutrition across the three strains, it
seems that Rhizobium sp. Root491 undergoes fewer alterations
to KEGG pathways related to metabolism, but instead exhibits
extensive modulation to ABC transporters. This indicates that
Rhizobium sp. Root491 utilizes different transport mechanisms
to assimilate diverse nitrogen sources into a relatively stable
metabolic network. For Pseudomonas sp. Root9 and Streptomyces
sp. Root66D1, we see that many of the pairwise comparisons are
characterized by widespread modulation to all KEGG pathways,
indicating that extensive proteome remodeling has taken place
between the different nitrogen sources.

Next, we compared the metabolic flux distributions
outputted from EnsembleFBA vs. the differentially expressed
proteins identified in the quantitative proteomic datasets
(Supplementary Tables S8–S14). To visualize how nitrogen
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FIGURE 3 | Overview of proteome composition in three rhizosphere bacterial strains when cultivated on five nitrogen sources. (A) Principal component analysis
(PCA) of the five different nitrogen sources for each strain. (B) Heat maps of protein abundance for differentially expressed proteins (DEPs) for each of the three
strains. To define DEPs, protein abundance in one condition was compared to its abundance in the other four conditions. If in any of these 10 comparisons, a protein
has a log2FC >1 and a BH-p-value <0.05, then it is considered a DEP. Only DEPs that were detected in at least three replicates for all five nitrogen treatments are
included in the heatmaps. Rows were clustered using Pearson’s correlation coefficient.

TABLE 2 | Summary of label free quantitative proteomic data for three rhizosphere bacterial strains cultivated on five different nitrogen sources.

Pseudomonas sp.
Root9

Streptomyces sp.
Root66D1

Rhizobium sp.
Root491

Proteins encoded in genome 5,871 6,744 5,225

Proteins observed in any treatment (n ≥ 3) 3,117 2,552 3,358

Proteins observed in all five treatments (n ≥ 3), abundance significant between
any 2 (log2FC > 1, BH p-value < 0.05)

712 346 238

Proteins observed in ≥ 1 treatment (n ≥ 3), but undetected in ≥ 1 other
treatment (n = 0)

548 168 397

source affects protein abundance and computationally predicted
fluxes, we used the Interactive Pathway Explorer to map KEGG
orthologs and reactions onto the KEGG map “Metabolic
Pathways” (Darzi et al., 2018). Visualizations for each of the
three amino acid treatments (glutamate, lysine and serine) in
pairwise comparisons vs. ammonium were produced for both

the proteomic data (Supplementary Figure S8) and also the
computational modeling data (Supplementary Figure S9).
Overall, it is evident that a similar set of metabolic pathways
have been mapped in both the experimental and computational
approaches, with good coverage of glycolysis, TCA cycle, and
amino acid metabolism. However, there is relatively little
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FIGURE 4 | Comparison of protein abundance values for 495 KOs (Kegg orthologs) across three rhizosphere bacterial strains cultivated on five nitrogen sources.
(A) Heat map of KO abundance across the three rhizosphere bacterial strains cultivated under five nitrogen sources. (B) Principal component analysis (PCA) of KO
abundance across the three rhizosphere bacterial strains cultivated under five nitrogen sources. (C) Principal component analysis (PCA) of KO abundance across the
three rhizosphere bacterial strains for the four organic nitrogen sources, when KO abundance was normalized to ammonium (inorganic reference). The KOs
annotated to proteins via IMG were matched across the proteomic dataset for the three bacterial strains. Data was filtered to contain only the 495 KOs that were
observed in all four replicates across all five treatments in all three strains. MaxQuant LFQ abundance values were z-score normalized within each strain. Rows and
columns were clustered using Pearson’s correlation coefficient.

concordance between the differentially regulated metabolic steps
identified by the proteomics data vs. the differentially regulated
fluxes outputted by EnsembleFBA. For instance, EnsembleFBA
predicted that Rhizobium sp. Root491 will exhibit widespread
differences in metabolic flux distributions between ammonium
vs. amino acid nitrogen sources, but this contrasts against the
proteomic measurements that recorded a relatively small set of
metabolic proteins that showed significant changes in abundance
between these conditions. Furthermore, the proteomic data
show that lysine nutrition elicits significant modifications to
lipid metabolism in Pseudomonas sp. Root9, whereas many
of the reaction steps in lipid metabolism are absent from the
EnsembleFBA flux distributions.

Proteins Correlated to the PII Protein of
the Nitrogen Stress Response
Analyzing the quantitative proteomics data, we noticed that the
different nitrogen sources often elicited changes in the abundance
of proteins involved in the well-characterized nitrogen stress

response, such as GlnK (PII protein), amtB (ammonium
transporter), and GlnA (glutamine synthetase) (van Heeswijk
et al., 2013). Therefore, we postulated that our dataset may allow
us to discover new proteins that are regulatory targets of the
nitrogen stress response in less studied bacterial taxa. We first
analyzed the abundance of PII, a well characterized protein of
the nitrogen stress response that exhibited significantly different
abundance values between certain nitrogen treatments in all three
strains (Figure 6A). Next, we assessed which other proteins in the
dataset were correlated to PII in terms of protein abundance, by
plotting their correlation against PII on the x-axis and the slope
of this correlation on the y-axis (Figure 6B, numerical data in
Supplementary Table S15). These analyses show that Rhizobium
sp. Root491 shows the highest nitrogen stress response under
these nitrogen treatments, with all three amino acid treatments
leading to dramatic increases in the abundance of the PII protein,
and also with many more proteins positively correlated to PII
abundance in Rhizobium sp. Root491 compared to the other two
strains. Looking at the identity of proteins whose abundance was
correlated to PII in Rhizobium sp. Root491, we see that 10 proteins
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FIGURE 5 | Assessment of KEGG pathways that were modulated at the protein abundance level between different nitrogen treatments. Kegg orthologs annotated
to proteins via IMG were matched to KEGG pathways, and Fisher’s exact test was used to determine the statistical significance of pathway modulation between two
nitrogen treatments. Darker shades of pink represent lower p-values via Fisher’s exact test. Pathways with fewer than three identified proteins were excluded from
analysis. This figures shows the 30 pathways with the highest number of significantly differences between treatments (p < 0.01), data for all ∼100 pathways are in
Supplementary Table S7.

controlled by the exo operon that conduct the synthesis and
export of extracellular polysaccharides are positively correlated to
PII abundance (Supplementary Table S15). Analogous findings
have been reported via genetic manipulation of V. vulnificus
and S. meliloti, with knockout of nitrogen stress response
elements NtrC and NtrX resulting in reduced production of
extracellular polysaccharides (Kim et al., 2009; Wang et al., 2013).
In Pseudomonas sp. Root9, the data point that exhibits a strong
negative correlation to PII is an NADP-dependent glutamate
dehydrogenase (Supplementary Table S15), previously shown to
be a target of NtrC-driven transcriptional repression in P. putida
(Hervas et al., 2010).

DISCUSSION

Differential nitrogen treatments are a classical experimental
manipulation in microbiology, but the majority of molecular
knowledge about bacterial nitrogen metabolism has been
acquired in E. coli (van Heeswijk et al., 2013). To deepen
our knowledge of nitrogen metabolism in the rhizosphere
microbiome, this study analyzes nitrogen substrate utilization in
three taxonomically diverse bacterial strains previously isolated
from field-grown Arabidopsis roots (Bai et al., 2015). The three
strains represent taxa that are consistently detected as core
members of the plant microbiome: Pseudomonas, Streptomyces
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FIGURE 6 | Investigating proteins correlated to the abundance of nitrogen stress response component PII. (A) Abundance of the PII protein across five nitrogen
treatments in three rhizosphere bacterial strains. Different letters above data series indicate p < 0.05 following two-way ANOVA and Tukey’s HSD test. (B) Plots to
highlight proteins that are positively or negatively correlated to PII according to their abundance values across five nitrogen treatments. Y-displays the slope of the
linear fit (z-score normalized) between protein abundance vs. the abundance of PII protein, and X-axis displays correlation between protein abundance vs. PII
abundance. If a protein has a correlation higher than 0.75 and a slope higher than 2, it is deemed positively correlated, whereas if a protein has a correlation lower
than 0.75 and a slope lower than –2, it is deemed negatively correlated to PII.

and Rhizobium (Levy et al., 2018a). Using label-free quantitative
proteomics, we document hundreds of proteins in each strain that
exhibit differential abundance values between nitrogen sources.
These protein-level measurements provide new information
to the field of bacterial physiology, because other high-
throughput studies of bacterial nitrogen substrate utilization have
typically used transcriptomic techniques (Yurgel et al., 2013).
Furthermore, we integrate experimental data with computational
models, using the EnsembleFBA method to test how accurately
metabolic phenotypes can be computationally predicted from a
minimal set of experimental data. Our results show that the three
strains exhibit diverse metabolic responses to different nitrogen
nutrition regimes, with a summary of key results presented in
Supplementary Table S16).

There is a longstanding appreciation that amino acids play a
significant role in the nutrition of rhizosphere bacterial strains
(Lochhead and Thexton, 1947). Amino acids are an important

component of the soil nitrogen cycle, derived from diverse
sources such as depolymerization of soil bound protein and also
from plant rhizodeposition (Moe, 2013). Microbial metabolism
of amino acids in the rhizosphere is related to plant productivity,
because microbial mineralization of organic nitrogen can boost
plant nutrition (van der Heijden et al., 2008) while the microbial
uptake of amino acids is one mechanism used by plants to recruit
specific strains into the rhizosphere microbiome (Zhalnina
et al., 2018). The data presented here could potentially assist
future efforts to manipulate the rhizosphere microbiome for
altered metabolism of amino acids. For instance, our data
in Pseudomonas sp. Root9 implicate serine dehydratase as an
important protein for degradation of serine, and measurements
in Rhizobium sp. Root491 position saccharopine dehydrogenase
as important for degradation of lysine. Perhaps bacterial strains
with high activities of these two enzymes could be recruited to the
rhizosphere to promote faster rates of amino acid mineralization.
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In Streptomyces sp. Root66D1, amino acid nutrition results
in upregulation of dozens of proteins, but very few of these
are classically recognized as being involved in amino acid
degradation. Compared to other bacterial taxa, there is generally
less knowledge about nitrogen metabolism in Gram-positive
Streptomyces (Amon et al., 2010) so the uncharacterized proteins
shown to be differentially expressed under amino acid nutrition
in Streptomyces sp. Root66D1 could be targets for future
studies investigating their biochemical function. In Rhizobium
sp. Root491, we document that this strain grows quickly on
three chemically diverse amino acids, and also that dozens
of ABC transporter proteins exhibit altered abundance values
under amino acid nutrition. Previous work in E. coli has shown
amino acids such as glutamate and arginine serve as poor
sole nitrogen sources for enteric bacteria, with this phenotype
being underpinned by slow rates of amino acid transport and
catabolism (Wang et al., 2016). Perhaps the protein network that
undertakes amino acid transport and catabolism in Rhizobium
sp. Root491 could serve as a template for engineering other
bacterial strains to grow rapidly on amino acids as a sole nitrogen
source. Interesting candidate proteins include components of
the “peptide/nickel transport system,” because the Rhizobium
sp. Root491 genome encodes significantly more of these genes
compared to the other two strains, and the proteomics data
show that several of them are dramatically upregulated by
amino acid nutrition.

This study was largely descriptive, but the derived results
provide a useful basis for subsequent hypothesis-driven
experiments. For instance, the uncharacterized proteins
upregulated under distinct N-sources in all three strains are good
candidates for reverse genetic studies to elucidate their roles in
nitrogen metabolism. Also, future experiments could investigate
why lysine nutrition elicits a longer lag phase and dramatic
proteome remodeling in Pseudomonas sp. Root9, potentially
with the hypothesis that lysine exerts a signaling function
in this strain. Furthermore, all three strains show extensive
modulation to their membrane transport networks under certain
nitrogen regimes, which suggests that nitrogen source could
affect metabolite excretion profiles.

There is increasing interest in combining experimental and
computational approaches to analyze microbial metabolism, with
the long-term goal of quantitatively predicting the behavior
of microbial communities (Succurro et al., 2017). Metabolic
modeling is rapidly progressing as a powerful computational
tool to explore the metabolic capacities of bacteria. However,
the main limitation that prevents modeling approaches from
being applied to diverse bacterial strains is the need to
obtain a highly curated genome-scale metabolic model for
each strain of interest. This process of model curation still
requires a significant amount of manual inspection and relies
heavily on accurate genome annotation (Arkin et al., 2018).
In the present study, we used EnsembleFBA (Biggs and Papin,
2017) to produce metabolic models for three diverse bacterial
strains using a minimal set of experimental information.
We compared the derived models vs. experimental data by
assessing how accurately they can predict growth phenotypes
and proteome remodeling across different nitrogen sources. This

showed that EnsembleFBA gives relatively accurate predictions
of nitrogen substrate utilization, with binary phenotypes
(growth vs. no growth) correctly predicted in around 80%
of cases. However, there was only an intermediate correlation
between the proxy values of metabolic activity predicted by
the model vs. the experimentally acquired measurements (r2:
0.23–0.50), and a relatively poor concordance between the
differential fluxes predicted by the model vs. the differentially
expressed proteins identified via proteomics. We present two
potential interpretations for these inaccurate predictions. First,
there is no straightforward relationship between enzymatic
flux and protein abundance, because the catalysis rate of
many enzymes is not only regulated via abundance but also
by other factors including post-translational modifications,
allosteric regulators or the relative concentrations of substrates
and products (Gerosa and Sauer, 2011). Second, our models
used the same biomass definition that Biggs and Papin
used for their EnsembleFBA analyses of Pseudomonas and
Streptococcus (Biggs and Papin, 2017). Although efforts have
been made to define a general biomass composition for
bacteria (Xavier et al., 2017) inaccuracies of this definition can
decrease the predictive power of metabolic models. Therefore,
one potential pathway to improve model accuracy would
involve measuring the biomass composition for all genotypes
and treatments under study. Despite these limitations, our
work shows that EnsembleFBA shows potential for predicting
nitrogen substrate utilization across diverse bacterial strains,
using minimal experimental data and requiring no manual
curation of the model.

CONCLUSION

Methodologically, this study showcases the power of two
approaches for studying microbial N-metabolism. First, we show
that EnsembleFBA offers a streamlined pathway to predict
bacterial nitrogen substrate preferences, and second, we show
that label-free quantitative proteomics can be used to dissect
the metabolic pathways deployed by bacteria to utilize different
nitrogen sources. The major biological conclusion from our study
is that the three bacterial strains exhibit diverging proteomic
responses to a common set of five nitrogen sources. This
means that N utilization is a strain-by-strain event that needs
to be assessed individually, which adds further complexity to
the challenge of generating a predictive understanding of the
rhizosphere microbiome. Extrapolating our results to predict the
metabolic fate of nitrogen in a field setting, then it is plausible
to expect that some fraction of the nitrogen present in the
rhizosphere would be metabolized via the pathways described
here, because these strains correspond to taxa that are highly
abundant in the bacterial microbiome in field-grown Arabidopsis
roots. However, these bacterial strains only represent a small
fraction of the total pool of species competing for rhizosphere
N-nutrients, which also includes fungi, archaea, and the plant
itself. Therefore, other techniques would need to be applied
to enable the quantitative prediction of nitrogen fluxes in the
rhizosphere. For example, useful information could be acquired
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by tracking the fate of isotopically labeled nitrogen delivered
into the rhizosphere, coupled with metagenomics to identify
how nitrogen source affects microbiome composition, and
also metatransciptomics or metaproteomics to define metabolic
pathways that are upregulated by responsive members of the
rhizosphere microbial community.
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