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Aim: To identify differentially methylated probes (DMPs) and regions (DMRs) in 
relation to chronic obstructive pulmonary disease (COPD) and lung function traits. 
Methods: We performed an epigenome-wide association study of COPD and 
spirometric parameters, including forced expiratory volume in 1 s (FEV1), forced vital 
capacity (FVC) and FEV1/FVC, in blood DNA using the Infinium HumanMethylation450 
(n = 100, a Korean COPD cohort). Results: We found one significant DMP (cg03559389, 
DIP2C) and 104 significant DMRs after multiple-testing correction. Of these, 34 DMRs 
mapped to genes differential expressed with respect to the same trait. Five of the 
genes were associated with more than two traits: CTU2, USP36, ZNF516, KLK10 and 
CPT1B. Conclusion: We identified novel differential methylation loci related to COPD 
and lung function in blood DNA in Koreans and confirmed previous findings in non-
Asians. Epigenetic modification could contribute to the etiology of these phenotypes.
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Reduced lung function is not only an impor-
tant health indicator in respiratory illnesses, 
but also predicts mortality in the population 
as a whole [1]. Lung function traits, includ-
ing forced expiratory volume in 1 s (FEV1), 
forced vital capacity (FVC) and FEV1/FVC, 
are useful in the diagnosis or monitoring 
of lung diseases such as chronic obstructive 
pulmonary disease (COPD). COPD is one 
of the leading causes of mortality and mor-
bidity worldwide [2], is a risk factor for lung 
cancer [3] and impairs health-related quality 
of life [4].

Numerous genetic loci have been associated 
with COPD and/or lung function traits; how-
ever, a limited proportion of variance of the 
phenotypes can be explained by these loci [5,6]. 
This opens the possibility that epigenetic 
modifications may play a role [7]. DNA meth-
ylation is one of the epigenetic mechanisms 
that can regulate gene expression.

Five epigenome-wide association studies 
(EWASs) of COPD and/or lung function 
traits have been published [8–12]. Of these, 
two [9,12] measured methylation in blood 
DNA and only one [11] used the Illumina 
HumanMethylation450 (450k) array. There 
are few data on COPD or lung function 
reporting differentially methylated regions 
(DMRs), involving Asian populations, or 
connecting methylation alterations in blood 
to transcriptome data in lung tissue.

The earlier EWASs [8–12] have focused on 
identification of differentially methylated 
probes (DMPs) in relation to COPD or lung 
function metrics. In other words, these studies 
evaluated associations with methylation levels 
at individual CpG sites (CpGs). Analysis of 
DMRs can provide stronger evidence of cau-
sality than analysis of individual DMPs [13] 
and greater power to detect  associations with 
phenotypic traits [14].
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We conducted an EWAS of COPD and pulmonary 
traits in 100 individuals from a Korean COPD cohort 
using the 450k. Both individual CpGs and regions of 
differential methylation were examined. For genes to 
which differential methylation signals are annotated, 
we checked whether the related trait was associated 
with gene expression in lung tissue from a separate 
cohort (n = 188, Asan Biobank). In addition, previ-
ously identified probes in non-Asians were checked for 
differential methylation and gene expression in  relation 
to COPD and lung function.

Materials & methods
Study participants & lung function: the Korean 
COPD cohort
For methylation profiling, study participants (n = 100) 
were sampled from a Korean COPD cohort [15]. Partici-
pants in the cohort were recruited from a rural area in 
Korea. Among 190 participants (135 COPD cases and 
55 noncases) enrolled in 2012, 100 (60 COPD cases 
and 40 noncases) were chosen based on availability of 
clinical information, computed tomography (CT) data, 
blood/urine samples and survey questionnaire. We 
additionally applied approximate frequency matching 
on age in 10 years categories and smoking status. Survey 
questionnaires, spirometry measurements and blood/
urine samples obtained from each participant were used 
in further analyses. One trained nurse measured height 
(cm) and weight (kg) twice for each participant with the 
body composition analyzer IOI 353 (Aarna Systems., 
Udaipur, India), and the average of two measurements 
was used in analyses. We calculated BMI by dividing 
the weight (kg) by the square of the height (m2). Smok-
ing status (current, former and never smoking) was 
self-reported in the questionnaire. Urine cotinine levels 
(nmol/l) measured by immunoassay (Immulite 2000 
Xpi; Siemens Healthcare Diagnostics, NY, USA) were 
used to confirm the current nonsmoking status. For cur-
rent and former smokers, pack-years of smoking were 
calculated by multiplying the number of years smoked 
by the number of cigarette packs smoked per day.

In this study, we analyzed COPD status and spi-
rometric parameters: FEV1, FVC and FEV1/FVC. 
The FEV1 and FVC were measured in liters by using 
the EasyOne spirometer (ndd Medical Technolo-
gies, Inc., MA, USA). To assess post-bronchodilator 
FEV1, spirometry is performed 15 min after inhala-
tion of 400 mcg of salbutamol, through a metered-dose 
inhaler (MDI) with a spacer. We defined COPD cases 
based on post-bronchodilator FEV1/FVC < 0.7 [16]. 
We used questionnaires for COPD assessment test 
scores and the Modified Medical Research Council 
dyspnea grade. Emphysema index and wall area (%) 
were  generated based on CT data [17].

DNA methylation profiling
Blood DNA samples from participants’ baseline visits 
were used for methylation profiling. Bisulfite conver-
sion was done by using the EZ DNA methylation kit 
(Zymo Research, CA, USA). Genome-wide meth-
ylation profiles were obtained by using the Infinium 
HumanMethylation450 BeadChip (Illumina, Inc., 
CA, USA). The signal extraction and Beta Mixture 
Quantile dilation [18] normalization to correct for probe 
design bias was done and followed by ComBat [19] for 
batch effect corrections. We only included CpGs in 
autosomal chromosomes for our association analy-
ses. The 450k array provides single nucleotide resolu-
tions of methylation status on 473,864 probes across 
22 autosomes. Of these, as a quality control (QC) pro-
cedure, we excluded probes that were of low quality 
(having a detection p < 0.01 in any sample or having a 
bead-count <3 in 5% or more of samples), non-CpG, 
non-specific [20], or potentially influenced by nearby 
genetic variations such as single nucleotide polymor-
phisms (SNPs) [20]. From the signal extraction to QC 
procedures, we used the complete pipeline in ChAMP 
R package [21]. Additionally, we removed 31,831 non-
specific probes [22] not included in prior filtering steps. 
The remaining 402,508 CpGs were included in associ-
ation analyses. Probe filtering steps are summarized in 
Supplementary Table 1. To reduce potential influences 
of extreme values on association results, we trimmed 
methylation values at the outer fences [23], meaning 
outside of three-times the interquartile range from 
the first and third quartiles of each probe. This proce-
dure removed 75,549 (0.19%) β values across all par-
ticipants. The methylation value (β), the proportion of 
methylation at a given CpG site, was used for statistical 
analyses. The value ranges from 0 (unmethylated) to 1 
(methylated). Cell-type proportions were estimated by 
applying Houseman algorithm [24] using the Reinius 
reference panel [25].

Epigenome-wide association study
To identify DMPs in relation to COPD, a logistic 
regression model was used with the response variable 
of COPD status and the predictor variable of methyla-
tion values. To evaluate the association between meth-
ylation values and pulmonary traits (FEV1, FVC and 
FEV1/FVC), we used a robust linear regression model 
with each trait as the response variable and methyla-
tion values as the predictor variable. Covariates in the 
statistical models for FEV1, FEV1/FVC and COPD 
were age, sex, height, smoking status, pack-years and 
the estimated cell-type proportions. Weight was also 
included in models for FVC. For statistical signifi-
cance, we set a threshold of p < 1.2 × 10-7 after Bonfer-
roni correction (0.05/402,508 = 1.2 × 10-7) for signifi-
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Table 1. Characteristics of the study populations in our epigenome-wide association and transcriptome analysis.

Characteristics (mean ± 
standard deviation or n [%])

Epigenome-wide association analysis (n = 
100, the Korean COPD§ cohort)

Transcriptome analysis (n = 188, Asan 
Biobank)

 COPD cases (n = 60) Controls (n = 40) COPD cases (n = 97) Controls (n = 91) 

Age, years 73.5 ± 5.8 71.8 ± 6.9 67.4 ± 6.4 60.8 ± 9.5

Gender:     

– Male 42 (70.0) 24 (60.0) 97 (100.0) 91 (100.0)

– Female 18 (30.0) 16 (40.0) 0 0

Height, cm 157.1 ± 10.1 158.0 ± 9.0 NA§§ NA

Weight, kg 55.1 ± 9.2 59.6 ± 8.8 NA NA

BMI, kg/m2 22.3 ± 2.8 23.8 ± 2.8 NA NA

Smoking status:     

– Never 19 (31.7) 20 (50.0) 0 0

– Former 20 (33.3) 10 (25.5)
97 (100.0) 91 (100.0) 

– Current 21 (35.0) 10 (25.5)

Pack-year:     

– Former smokers 24.4 ± 13.7 37.0 ± 26.1
48.3 ± 21.6 35.2 ± 17.2

– Current smokers 37.8 ± 20.8 31.3 ± 15.2

Lung function     

Pre-bronchodilator:     

– FEV1†, l 1.52 ± 0.47 2.05 ± 0.53 2.16 ± 0.47 2.99 ± 0.59

– FVC‡, l 2.51 ± 0.74 2.76 ± 0.66 3.81 ± 0.66 4.00 ± 0.73

– FEV1/FVC 0.61 ± 0.08 0.74 ± 0.05 0.57 ± 0.08 0.75 ± 0.04

– FEV1 percent predicted 0.71 ± 0.19 0.94 ± 0.22 0.72 ± 0.14 0.91 ± 0.12

– FVC percent predicted 0.85 ± 0.18 0.93 ± 0.20 0.90 ± 0.13 0.90 ± 0.13

– FEV1 percent predicted /FVC 
percent predicted

0.83 ± 0.11 1.01 ± 0.06 0.80 ± 0.12 1.01 ± 0.08

Post-bronchodilator:    

– FEV1†, l 1.61 ± 0.48 2.1 ± 0.54 2.32 ± 0.46 3.10 ± 0.46

– FVC‡, l 2.76 ± 0.73 2.8 ± 0.72 3.90 ± 0.60 4.03 ± 0.60

– FEV1/FVC 57.85 ± 6.47 75.26 ± 3.84 0.59 ± 0.07 0.77 ± 0.07

– FEV1 percent predicted 0.75 ± 0.18 0.97 ± 0.22 0.76 ± 0.13 0.94 ± 0.13

– FVC percent predicted 0.94 ± 0.17 0.94 ± 0.20 0.91 ± 0.12 0.91 ± 0.12

– FEV1 percent predicted /FVC 
   percent predicted

0.79 ± 0.09 1.03 ± 0.06 0.84 ± 0.11 1.04 ± 0.11

MMRC scale¶ (0/1/2/3/4) 13/ 23 / 6 / 12/ 5 NA NA NA

CAT# 17.95 ± 9.42 NA NA NA

CT measurement:     

– Emphysema index†† 9.27 ± 8.02 3.03 ± 3.77 NA NA

– Wall area (%)‡‡ 70.45 ± 4.26 69.60 ± 4.88 NA NA
†Forced expiratory volume in one second.
‡Forced vital capacity.
§Chronic obstructive pulmonary disease.
¶Modified Medical Research Council dyspnea scale.
#COPD assessment test.
††Emphysema index (lung volume fraction (%) of the lung below -950 HU).
‡‡Wall area percent (wall area/[wall area + lumen area] × 100).
§§Not available.
CAT: COPD assessment test; COPD: Chronic obstructive pulmonary disease; FEV1: Forced expiratory volume in 1 second; FVC: Forced vital capacity; MMRC: Modified 
Medical Research Council.



974 Epigenomics (2017) 9(7)

Fi
g

u
re

 1
. W

o
rk

fl
o

w
 o

f 
o

u
r 

st
u

d
y.

G
en

o
m

e-
w

id
e 

m
et

h
yl

at
io

n
 p

ro
fi

lin
g

(I
llu

m
in

a 
45

0k
, n

 =
 1

00
, b

lo
od

)

E
p

ig
en

o
m

e-
w

id
e 

as
so

ci
at

io
n

 s
tu

d
y 

o
f 

ch
ro

n
ic

 o
b

st
ru

ct
iv

e 
p

u
lm

o
n

ar
y 

d
is

ea
se

 a
n

d
 lu

n
g

 f
u

n
ct

io
n

 in
 K

o
re

an
s

A
 K

o
re

an
 C

O
P

D
 c

o
h

o
rt

A
fte

r 
C

pG
 p

ro
be

 fi
lte

rin
g,

 4
02

,5
08

 C
pG

s 
re

ad
y 

fo
r 

as
so

ci
at

io
n 

an
al

ys
es

 (
S

T
ab

le
 S

1)

O
f t

he
 1

11
 g

en
es

, 8
6 

av
ai

la
bl

e
in

 tr
an

sc
rip

to
m

e 
da

ta

A
sa

n
 B

io
b

an
k

D
if

fe
re

n
ti

al
 g

en
e 

ex
p

re
ss

io
n

 a
n

al
ys

es
(R

N
A

-s
eq

, n
 =

 1
88

, l
un

g 
tis

su
e)

O
f t

he
 8

6 
ge

ne
s,

 3
1 

di
ffe

re
nt

ia
l e

xp
re

ss
ed

(p
 <

 0
.0

5)
: T

ab
le

 4

D
if

fe
re

n
ti

al
 m

et
h

yl
at

io
n

 s
ig

n
al

s
O

ne
 s

ig
ni

fic
an

t D
M

P
, 1

5 
su

gg
es

tiv
e 

D
M

P
s,

 a
nd

 1
04

 s
ig

ni
fic

an
t 

D
M

R
s 

m
ap

pe
d 

to
 1

11
 g

en
es

N
et

w
o

rk
 a

n
al

ys
es

: d
ev

el
op

m
en

ta
l n

et
w

or
k:

 S
T

ab
le

 S
4

D
is

ea
se

 m
ap

p
in

g
: i

m
m

un
e 

re
sp

on
se

: S
T

ab
le

 S
5

E
n

ri
ch

m
en

t 
an

al
ys

es
: e

nr
ic

hm
en

t (
D

H
S

s,
 C

pG
 is

la
nd

an
d 

sh
or

e)
, d

ep
le

tio
n 

(e
nh

an
ce

r 
an

d 
C

pG
 is

la
nd

 s
he

lf)

L
o

o
k-

u
p

 o
f 

D
M

P
s 

in
 p

re
vi

o
u

s 
th

re
e 

E
W

A
S

s
(I

llu
m

in
a 

27
k,

 b
lo

o
d

 a
n

d
 4

50
k,

 lu
n

g
 t

is
su

e)
O

f 8
49

 p
re

vi
ou

sl
y 

re
po

rt
ed

 C
pG

s,
 1

64
 d

iff
er

en
tia

lly
m

et
hy

la
te

d 
in

 o
ur

 s
tu

dy
 (

p 
<

 0
.0

5)
: S

T
ab

le
 S

6-
7

E
p

ig
en

o
m

e-
w

id
e 

as
so

ci
at

io
n

 a
n

al
ys

es
: 

D
M

P
O

ne
 s

ig
ni

fic
an

t (
B

on
fe

rr
on

i c
or

re
ct

ed
 p

 <
 0

.0
5)

 
an

d 
15

 s
ug

ge
st

iv
e 

(p
 <

 1
.0

E
-0

5)
 D

M
P

s:
 T

ab
le

 2

E
p

ig
en

o
m

e-
w

id
e 

as
so

ci
at

io
n

 a
n

al
ys

es
: 

D
M

R
10

4 
si

gn
ifi

ca
nt

 D
M

R
s 

(c
or

re
ct

ed
 p

 <
 0

.0
1 

fr
om

D
M

R
ca

te
 a

nd
 c

om
b-

p)
: T

ab
le

 3

future science group

Research Article    Lee, Hong, Kim, Kim & London



www.futuremedicine.com 975future science group

DNA methylation related to COPD & lung function    Research Article

cant DMPs and p < 1.0 × 10-5, an arbitrary threshold, 
for suggestive DMPs.

To detect regional differential methylation signals, 
we used two DMR methods: DMRcate [26] and comb-
p [27]. These methods identify DMRs using different 
algorithms. DMRcate identifies DMRs from tun-
able kernel smoothing process of association signals, 
whereas comb-p identifies DMRs by regional cluster-
ing of low p-values from irregularly spaced p-values. 
The dmrcate function in the DMRcate R package 
was used. Input files for both DMR analyses were the 
epigenome-wide association results: regression coef-
ficients, standard deviations, uncorrected p-values for 
DMRcate and uncorrected p-values and chromosomal 
locations for comb-p.

Significant DMRs were defined based on three crite-
ria. First, a DMR should contain more than one probe. 
Second, regional information can be combined from 
probes within 1000 basepairs (bp). Third, the region 
showed multiple-testing corrected p < 0.01 in both 
methods (false-discovery rate [FDR] [28] for DMRcate 
and Sidak [29] for comb-p). The minimum number of 
CpGs in a region and the minimum length of a dis-
tance were the defaults in DMRcate [30], so the same 
values were used for comb-p to harmonize results from 
two approaches. Parameters used for the DMR calling 
can be found in Supplementary Table 2. A significant 
DMR can be detected even if there is no genome-wide 
significant DMP in the region.

Enrichment & functional network analysis 
& visualization
We performed an enrichment analysis to evaluate over- 
or under-representation of genomic features in our dif-
ferential methylation signals compared with all probes 
in the 450k array. The differential methylation signals 
contain significant (Bonferroni corrected p < 0.05) and 
suggestive (uncorrected p < 0.05) DMPs and nomi-
nally significant CpGs (uncorrected p < 0.05) within 
significant DMRs. To assess enrichment or depletion 
for genomic features, we used the hypergeometric test 
(two-sided doubling mid-p).

For biological insights of loci from our EWAS, we 
conducted a functional network analysis and disease 
mapping with genes to which our significant (corrected 
p < 0.05) and suggestive DMPs (p < 1.0 × 10-5) and sig-
nificant DMRs (corrected p < 0.01 from both DMR 
methods) were annotated. A list of mapped genes was 
input to the network analysis and disease mapping in 
‘core analysis’ of Ingenuity Pathway Analysis (IPA; 
Ingenuity Systems, CA, USA).

For graphical display, we used the University of Cal-
ifornia, Santa Cruz (UCSC) Genome Browser [31,32] 
and coMET [33]. To check for presence of regula-

tory elements in loci containing significant DMPs or 
DMRs, we used the UCSC Genome Browser. The 
regulatory elements included DNaseI hypersensitivity 
sites (DHSs), transcription factor binding sites, chro-
matin state segmentation and histone modification. 
We added SNPs in publications containing a keyword 
‘lung’ and gene expression in lung tissue. We con-
nected three databases to the Genome Browser [31,32]: 
‘Roadmap Epigenomics Data Complete Collection at 
Wash U VizHub (Assembly hg19)’ [34], ‘ENCODE 
Analysis Hub (Assembly hg19)’ [35] and ‘Genotype-
Tissue Expression (GTEx) RNA-seq Signal Hub 
(Assembly hg19)’ [36]. For top two DMRs (based on 
FDR from DMRcate), we used coMET to show sta-
tistical significance of association, comethylation pat-
terns, functional annotations and regulation tracks. 
The functional annotations include genes/transcripts 
and regulation tracks from Ensembl and CpG islands, 
Broad Chromatin State Segmentation by hidden Mar-
kov model (ChromHMM) domains, Digital DNaseI 
Hypersensitivity Clusters (DNaseI clusters) and SNPs 
from the UCSC database.

We used the manufacturer’s annotation file [37] for 
gene annotations in tables and for an enrichment and a 
functional network analysis.

Replication look-up
We checked differential methylation at DMPs in 
relation to COPD and lung function in three previ-
ous EWASs that used the Illumina 450k in lung tis-
sue from African-Americans [11] or the Illumina 27k 
in blood from Caucasians [9] or African-Americans [12]. 
Of 535 CpGs from the 450k [11], 523 were ready for 
association after probe QC steps in our data. Of 349 
CpGs from the 27k [9], 332 probes were available in 
the 450k, 315 of which were available for association 
after probe filtering in our data. Of 12 CpGs from the 
27k [12], 11 were available for association in our data. 
For replicated CpGs, we examined whether the anno-
tated genes were differentially expressed in relation to 
the same trait. The cutoff for statistical significance 
was set to uncorrected p < 0.05 in replication analy-
ses of differential methylation and gene expression 
 analyses.

Transcriptome analysis: Asan Biobank
Transcriptome profiles were from lung tissue of Korean 
male smokers (97 COPD cases and 91 noncases, Asan 
Biobank). Details of the RNA-seq (HiSeq 2000 sys-
tem, Illumina Inc., CA, USA) transcriptome data can 
be found elsewhere [38]. We included expression data 
of the genes to which significant (Bonferroni corrected 
p < 0.05) or suggestive (uncorrected p < 1.0 × 10-5) 
DMPs or significant DMRs (corrected p < 0.01 from 
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Table 2. CpGs with differential methylation (p < 1.0 × 10-5) in relation to lung function in a Korean chronic obstructive 
pulmonary disease cohort, ordered by chromosomal location.

Chr† Gene (distance to 
gene‡)

Trait Probe Position§ Coef¶ SE# p-value††

1 LDLRAD1 Ratio cg09175620 54484536 -1.6 0.3 3.4 × 10-6 

 AK5 FVC‡‡ cg05347985 77751443 -14.0 3.0 8.9 × 10-6

 TTC24 Ratio cg03760759 156549533 -1.7 0.4 8.2 × 10-6

 DUSP5P FEV1§§ cg10107958¶¶,## 228783383 -13.3 2.8 8.4 × 10-6

3 CCDC13 Ratio cg02828993¶¶ 42775696 -2.8 0.6 8.2 × 10-6

 SRPRB (40) FEV1 cg20276088 133502917 9.7 2.1 8.7 × 10-6

7 SNX10 Ratio cg06280210##,††† 26331247 -7.1 1.5 7.7 × 10-6

8 CSMD3 Ratio cg20564273 114446439 -5.0 1.0 7.3 × 10-6

9 NXNL2 (43179) Ratio cg14210862¶¶,## 91193195 -3.5 0.7 7.8 × 10-6

10 DIP2C Ratio cg03559389 679322 -6.9 1.2 8.1 × 10-8

 SMNDC1 Ratio cg26944434## 112064524 -7.3 1.5 5.1 × 10-6

11 FAR1 Ratio cg24412501## 13690194 -6.1 1.3 9.8 × 10-6

 PATL1 (35101) Ratio cg06022671 59439293 -2.6 0.5 3.7 × 10-6

12 NT5DC3 FEV1 cg15977278## 104234975 -31.1 6.6 9.6 × 10-6

14 SERPINA12 FVC cg19904425 94984530 -3.7 0.8 7.1 × 10-6

19 C19orf18 FEV1 cg09440215 58480646 -19.8 4.2 7.7 × 10-6

†Chromosome.
‡Distance to transcription start site of the mapped gene (basepair, bp).
§Physical position (bp, National Center for Biotechnology Information human reference genome assembly Build 37.3).
¶Regression coefficient from statistical models. Covariates age, sex, height, smoking status, pack-years and estimated cell-type proportions were included in the 
models for FEV1, FEV1/FVC and COPD. Additionally, weight was included in the model for FVC. FEV1 and FVC were in liters and methylation (β) was ranged between 
0 and 1 in the analyses.
#Standard error of regression coefficient.
††Uncorrected p-value.
‡‡Forced vital capacity.
§§Forced expiratory volume in 1 s.
¶¶Enhancer.
##Promoter associated.
†††DNaseI hypersensitivity site.
COPD: Chronic obstructive pulmonary disease; FEV1: Forced expiratory volume in 1 second; FVC: Forced vital capacity.

two DMR methods) annotated. Extreme values, out-
side of three-times the interquartile range away from 
the first and third quartiles of each gene transcript, 
were removed to limit their potential impact on asso-
ciation results [23]. This removed 35,607 (1.1%) gene 
expression values across all participants.

We lacked information on height and weight for the 
participants, so we analyzed FEV1 percent predicted 
and FVC percent predicted instead of FEV1 and FVC, 
respectively. We multiplied the number of cigarette 
smoked (packs per day) by the number of years smoked 
for pack-years.

To check differential gene expression in relation to 
COPD or lung function, a logistic regression model 
was used for COPD status and robust linear regres-
sion models were used for FEV1 percent predicted, 
FVC percent predicted and FEV1 percent predicted/
FVC percent predicted. The gene expression values for 
each gene transcript were the predictor variables and 

COPD or the pulmonary traits were the response vari-
ables. Covariates were age and pack-years. The thresh-
old of statistical significance was set to  uncorrected 
p < 0.05.

All the methylation data processing, statistical 
analyses and visualizations were conducted in R (ver-
sion 3.0.2) [39] except for comb-p, IPA and the UCSC 
Genome Browser.

Results
Of 100 participants in our EWAS, 60 were COPD 
cases and 40 were noncases. The average age was 72.8 
years. There were 39 never, 30 former and 31 current 
smokers. Age and height were not significantly dif-
ferent between COPD cases and noncases, whereas 
weight and BMI were lower in COPD cases than non-
cases (p = 0.02 and 0.008, respectively). Characteris-
tics of study participants can be found in Table 1. We 
provide a workflow of our study in Figure 1.
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Table 3. Differentially methylated regions in relation to more than one lung function trait or chronic obstructive 
pulmonary disease (multiple-testing corrected p < 0.01 from both DMRcate and comb-p) in a Korean chronic 
obstructive pulmonary disease cohort, ordered by chromosomal location.

Chr† Gene 
(distance 
to gene‡) 

Trait DMRcate comb-p

  Start (bp§) End (bp) # CpGs¶ FDR# Minimum 
P††

Start (bp) End (bp) Sidak P‡‡

3 SRPRB 
(−337)

FEV1§§ 133502540 133503437 7 (6) 4.7 × 10-9 8.7 × 10-6   3.4 × 10-8

  FVC¶¶   7 (6) 1.3 × 10-10 1.0 × 10 -4   3.8 × 10-8

5 BHMT COPD## 78406928 78407683 9 (6) 0.002 0.004   0.01

  FEV1  78408253 11 (6) 2.0 × 10-4 3.7 × 10-4  78408347 0.002

  FVC  78408347 12 (6) 1.0 × 10-6 1.4 × 10-4 78407153  1.2 × 10-6

6 HLA-C 
(38622)

FEV1 31275148 31276187 13 (8) 6.8 × 10-5 0.003   2.1 × 10-5

  COPD  31276667 16 (7) 5.0 × 10-7 4.7 × 10-4  31276797 2.7 × 10-5

8 ZC3H3 
(-700)

FEV1 144519125 144519203 3 (3) 3.1 × 10-4 1.2 × 10-4   6.5 × 10-4

  FVC   3 (3) 0.002 3.1 × 10-4   0.005

10 FAM196A COPD 128994297 128995192 9 (3) 0.008 0.001 128993810  8.2 × 10-4

  Ratio 128994702  3 (2) 0.004 0.003   0.009

16 CTU2 COPD 88772396 88772985 6 (4) 0.005 4.2 × 10-4   0.003

  Ratio   6 (5) 0.002 8.3 × 10-4   0.009

17 CD300A COPD 72462164 72463080 8 (6) 1.9 × 10-5 6.9 × 10-4   1.2 × 10-5

  FEV1   8 (7) 2.8 × 10-8 2.5 × 10-4   1.2 × 10-8

  Ratio   8 (5) 3.2 × 10-5 7.4 × 10-4   9.9 × 10-6

 USP36 COPD 76797750 76798776 6 (4) 0.008 0.001   0.003

  Ratio   6 (3) 0.002 0.002   0.002

19 KLK10 FEV1 51520093 51520658 6 (3) 1.5 × 10-4 9.7 × 10-5   0.004

  Ratio   6 (4) 3.0 × 10-4 3.3 × 10-5   0.008

22 CPT1B COPD 51016501 51017432 15 (9) 5.3 × 10-5 0.010   4.7 × 10-4

  FEV1  51017723 16 (12) 1.0 × 10-14 6.8 × 10-4   2.5 × 10-10

  FVC   16 (13) 5.4 × 10-24 8.2 × 10-5   1.5 × 10-13

†Chromosome.
‡Minimum distance to transcription start site of the mapped gene (basepair, bp).
§Physical position (bp, National Center for Biotechnology Information human reference genome assembly Build 37.3).
¶Number of CpGs in a region (number of CpGs with unadjusted p < 0.05).
#False discovery rate.
††Minimum P in a region.
‡‡P of Sidak multiple-testing correction.
§§Forced expiratory volume in one second.
¶¶Forced vital capacity.
##Chronic obstructive pulmonary disease.
Blank cells in ‘Start(bp)’ and ‘End(bp)’ for comb-p represent the same information from DMRcate. Inputs of two packages were results from epigenome-wide 
association analyses adjusted for age, sex, height, weight (only for FVC), smoking status, pack-years, and estimated cell-type proportions.
COPD: Chronic obstructive pulmonary disease; FDR: False discovery rate; FEV: Forced expiratory volume in 1 second; FVC: Forced vital capacity.

From our DMP analyses, we found a significant asso-
ciation between cg03559389 (DIP2C) and FEV1/FVC 
after Bonferroni correction (p = 8.1 × 10-8) (Table 2). 
There was no significant DMP for FEV1, FVC nor 
COPD after multiple-testing correction. We found 
suggestive associations (p < 1. × 10-5) at 15 CpGs: four 

CpGs for FEV1, two for FVC and nine for FEV1/FVC. 
The top CpG for FEV1 was cg09440215 (C19orf18) 
and the top for FVC was cg19904425 (SERPINA12). 
There was no systematic inflation in our association 
results based on genomic inflation factor (λ) values: 
1.00 for FEV1, 0.93 for FVC, 1.16 for FEV1/FVC 



978 Epigenomics (2017) 9(7) future science group

Research Article    Lee, Hong, Kim, Kim & London
Ta

b
le

 4
. A

ss
o

ci
at

io
n

s 
w

it
h

 g
en

e 
ex

p
re

ss
io

n
 (

u
n

ad
ju

st
ed

 p
 <

 0
.0

5
) 

in
 t

h
e 

A
sa

n
 B

io
b

an
k 

fo
r 

g
en

es
 t

o
 w

h
ic

h
 d

if
fe

re
n

ti
al

ly
 m

et
h

yl
at

ed
 p

ro
b

es
 o

r 
g

en
es

 
an

n
o

ta
te

d
, o

rd
er

ed
 b

y 
ch

ro
m

o
so

m
al

 lo
ca

ti
o

n
.

D
if

fe
re

n
ti

al
ly

 m
et

h
yl

at
ed

 p
ro

b
es

 in
 r

el
at

io
n

 t
o

 lu
n

g
 f

u
n

ct
io

n
 (

th
e 

K
o

re
an

 C
O

PD
 

co
h

o
rt

)
G

en
e

D
if

fe
re

n
ti

al
ly

 e
xp

re
ss

ed
 g

en
es

 in
 r

el
at

io
n

 t
o

 
lu

n
g

 f
u

n
ct

io
n

 in
 lu

n
g

 t
is

su
e 

(A
sa

n
 B

io
b

an
k)

 
 

D
if

fe
re

n
ti

al
ly

 m
et

h
yl

at
ed

 p
ro

b
e 

 

 C
h

r†
 T

ra
it

Pr
o

b
e 

o
r 

re
g

io
n

‡
C

o
ef

 
p

-v
al

u
e

§
G

en
o

m
ic

 f
ea

tu
re

 
 

Tr
an

sc
ri

p
t 

C
o

ef
 

p
-v

al
u

e 

10
R

at
io

cg
03

55
93

89
-6

.9
8

.1
 ×

 1
0

-8
 

B
o

d
y

D
IP

2C
N

M
_0

14
97

4
-0

.0
29

6.
5 

×
 1

0
-5

11
 

cg
0

60
22

67
1

-2
.6

3.
7 

×
 1

0
-6

 
PA

TL
1

N
M

_1
52

71
6

-0
.0

15
1.

3 
×

 1
0

-6

 
 

D
if

fe
re

n
ti

al
ly

 m
et

h
yl

at
ed

 r
eg

io
n

 
 

 
 

 
 

St
ar

t–
en

d
 (

b
p

)
#

C
p

G
s

FD
R

¶
 

 
 

 
 

1
R

at
io

55
35

31
49

-5
53

53
70

6
5 

(4
)

0.
0

02
T

SS
15

0
0

; p
ro

m
o

te
r

D
H

C
R

24
N

M
_0

14
76

2
-3

.9
 ×

 1
0

-4
0.

0
05

 
C

O
PD

#
11

07
52

95
2-

11
07

5
42

57
10

 (
6

)
1.

9 
×

 1
0

-4
T

SS
15

0
0

; T
SS

20
0

; 1
st

E
xo

n
; p

ro
m

o
te

r
K

C
N

C
4

N
M

_0
01

03
95

74
-0

.4
24

0.
03

6

2
C

O
PD

74
3

47
21

5
-7

43
47

77
6

4 
(3

)
0.

01
0

 
B

O
LA

3 
(-

15
31

3
)

N
M

_0
01

03
55

05
0.

11
0

5.
3 

×
 1

0
-5

 
R

at
io

10
23

13
6

4
4

-1
02

31
47

57
8 

(2
)

0.
0

0
4

T
SS

15
0

0
; T

SS
20

0
; 1

st
E

xo
n

; b
o

d
y;

 
p

ro
m

o
te

r 
(c

el
l t

yp
e 

sp
ec

ifi
c)

M
A

P4
K

4
N

M
_1

45
6

8
6

-0
.0

0
6

7.
5 

×
 1

0
-5

 
R

at
io

11
39

92
76

2-
11

39
93

31
3

8 
(8

)
1.

8 
×

 1
0

-5
B

o
d

y;
 p

ro
m

o
te

r 
(c

el
l t

yp
e 

sp
ec

ifi
c)

; 
D

H
S

PA
X

8
N

M
_0

13
95

2
0.

0
4

8
1.

7 
×

 1
0

-4

 
C

O
PD

22
0

0
83

30
6

-2
20

0
83

95
1

10
 (

5
)

0.
0

0
6

1s
tE

xo
n

; 5
′U

TR
; T

SS
20

0
; T

SS
15

0
0

; 
p

ro
m

o
te

r
A

B
C

B
6

N
M

_0
05

6
89

0.
57

8
8

.9
 ×

 1
0

-4

3
C

O
PD

16
74

52
4

8
4

-1
67

45
35

18
13

 (
3

)
5.

4 
×

 1
0

-5
5′

U
TR

; T
SS

20
0

; T
SS

15
0

0
; p

ro
m

o
te

r;
 

D
H

S
PD

C
D

10
N

M
_0

07
21

7
-0

.0
97

0.
0

02

4
C

O
PD

20
25

31
30

-2
02

5
45

19
8 

(7
)

1.
9 

×
 1

0
-4

T
SS

15
0

0
SL

IT
2

N
M

_0
0

47
87

-0
.0

87
5.

0 
×

 1
0

-5

5
C

O
PD

14
0

8
0

03
9

8
-1

4
0

8
0

09
29

8 
(4

)
8

.6
 ×

 1
0

-4
B

o
d

y;
 D

H
S

P
C

D
H

G
A

4
N

M
_0

32
05

3
-2

.0
93

1.
6 

×
 1

0
-4

7
C

O
PD

27
18

26
37

-2
71

85
51

2
4

8 
(2

6
)

3.
5 

×
 1

0
-1

4
B

o
d

y;
 1

st
E

xo
n

; 5
′U

TR
; T

SS
20

0
; 

T
SS

15
0

0
; 3

′U
TR

; b
o

d
y;

 D
H

S
H

O
X

A
5

N
M

_0
19

10
2

0.
0

49
0.

02
1

8
R

at
io

9
8

61
05

07
-9

8
61

0
8

8
8

3 
(3

)
0.

0
07

 
M

TD
H

 
(-

45
9

0
0

)
N

M
_1

78
81

2
-0

.0
0

6
0.

0
02

 
R

at
io

99
9

60
8

43
-9

99
61

76
8

6 
(4

)
0.

0
05

5′
U

TR
; b

o
d

y;
 e

n
h

an
ce

r
O

SR
2

N
M

_0
53

0
01

-0
.0

12
0.

03
6

 
C

O
PD

14
43

58
0

43
-1

4
43

59
31

6
5 

(5
)

3.
1 

×
 1

0
-4

B
o

d
y;

 3
′U

TR
; p

ro
m

o
te

r
G

LI
4 

(9
70

9
)

N
M

_1
3

8
4

65
0.

76
1

1.
2 

×
 1

0
-5

 
C

O
PD

14
4

65
9

62
7-

14
4

66
10

51
11

 (
8

)
0.

0
03

B
o

d
y;

 T
SS

20
0

; T
SS

15
0

0
; p

ro
m

o
te

r
N

A
PR

T1
N

M
_1

45
20

1
0.

13
5

0.
0

05

10
C

O
PD

10
52

12
23

6
-1

05
21

33
09

11
 (

5
)

1.
5 

×
 1

0
-4

T
SS

20
0

; T
SS

15
0

0
; 3

′U
TR

; e
n

h
an

ce
r;

 
Pr

o
m

o
te

r
C

A
LH

M
2

N
M

_0
15

91
6

0.
17

3
0.

0
03

11
R

at
io

9
42

77
82

6
-9

42
79

0
6

8
11

 (
5

)
0.

0
02

1s
tE

xo
n

; e
n

h
an

ce
r;

 P
ro

m
o

te
r 

(c
el

l 
ty

p
e 

sp
ec

ifi
c)

FU
T4

N
M

_0
02

03
3

-0
.0

43
0.

0
0

4

 
C

O
PD

10
8

4
0

89
07

-1
0

8
4

09
82

5
7 

(5
)

5.
8 

×
 1

0
-4

B
o

d
y;

 T
SS

15
0

0
E

X
PH

5
N

M
_0

15
0

65
-0

.3
85

0.
0

02



www.futuremedicine.com 979future science group

DNA methylation related to COPD & lung function    Research Article

D
if

fe
re

n
ti

al
ly

 m
et

h
yl

at
ed

 p
ro

b
es

 in
 r

el
at

io
n

 t
o

 lu
n

g
 f

u
n

ct
io

n
 (

th
e 

K
o

re
an

 C
O

PD
 

co
h

o
rt

)
G

en
e

D
if

fe
re

n
ti

al
ly

 e
xp

re
ss

ed
 g

en
es

 in
 r

el
at

io
n

 t
o

 
lu

n
g

 f
u

n
ct

io
n

 in
 lu

n
g

 t
is

su
e 

(A
sa

n
 B

io
b

an
k)

 
 

D
if

fe
re

n
ti

al
ly

 m
et

h
yl

at
ed

 p
ro

b
e 

 

 C
h

r†
 T

ra
it

Pr
o

b
e 

o
r 

re
g

io
n

‡
C

o
ef

 
p

-v
al

u
e

§
G

en
o

m
ic

 f
ea

tu
re

 
 

Tr
an

sc
ri

p
t 

C
o

ef
 

p
-v

al
u

e 

12
C

O
PD

29
43

9
02

-2
9

4
4

49
3

6 
(6

)
2.

9 
×

 1
0

-4
1s

tE
xo

n
; 5

′U
TR

; T
SS

20
0

; T
SS

15
0

0
; 

En
h

an
ce

r;
 D

H
S

N
R

IP
2

N
M

_0
31

47
4

-0
.8

4
0

0.
0

0
4

16
C

O
PD

67
23

29
21

-6
72

33
9

83
6 

(4
)

2.
2 

×
 1

0
-4

T
SS

20
0

; 1
st

E
xo

n
; b

o
d

y;
 e

n
h

an
ce

r;
 

D
H

S
EL

M
O

3
N

M
_0

24
71

2
0.

53
5

2.
1 

×
 1

0
-6

 
C

O
PD

8
87

72
39

6
-8

87
72

9
85

6 
(4

)
0.

0
05

T
SS

15
0

0
; 1

st
E

xo
n

; p
ro

m
o

te
r

C
TU

2
N

M
_0

01
01

27
59

0.
87

7
1.

8 
×

 1
0

-5

 
R

at
io

 
6 

(5
)

0.
0

02
 

 
 

0.
02

6
5.

2 
×

 1
0

-5

17
C

O
PD

33
75

9
4

8
4

-3
37

60
52

7
12

 (
10

)
3.

1 
×

 1
0

-4
1s

tE
xo

n
; T

SS
20

0
; T

SS
15

0
0

; D
H

S
SL

FN
12

N
M

_0
18

0
42

-0
.5

39
1.

6 
×

 1
0

-4

 
C

O
PD

73
82

43
5

4
-7

3
82

52
27

6 
(4

)
0.

0
03

B
o

d
y;

 e
n

h
an

ce
r;

 p
ro

m
o

te
r

U
N

C
13

D
N

M
_1

99
24

2
0.

07
2

0.
01

0

 
C

O
PD

76
79

77
50

-7
67

9
87

76
6 

(4
)

0.
0

0
8

B
o

d
y

U
SP

36
N

M
_0

25
09

0
-0

.2
62

3.
5 

×
 1

0
-5

 
R

at
io

 
6 

(3
)

0.
0

02
 

 
 

-0
.0

0
6

8
.7

 ×
 1

0
-4

18
R

at
io

74
11

45
70

-7
41

14
72

8
3 

(3
)

4
.8

 ×
 1

0
-4

B
o

d
y

ZN
F5

16
N

M
_0

14
6

43
-0

.0
42

2.
7 

×
 1

0
-7

 
C

O
PD

 
3 

(3
)

0.
0

03
 

 
 

-1
.2

76
1.

1 
×

 1
0

-6

19
C

O
PD

11
51

70
79

-1
15

17
43

6
4 

(4
)

0.
0

03
B

o
d

y
R

G
L3

N
M

_0
01

16
16

16
0.

0
8

4
0.

0
03

 
R

at
io

37
95

83
4

6
-3

79
59

10
4

8 
(4

)
7.

2 
×

 1
0

-4
T

SS
20

0
; T

SS
15

0
0

; p
ro

m
o

te
r

ZN
F5

70
N

M
_1

4
4

69
4

-0
.0

32
0.

0
0

8

 
FE

V
1††

51
52

0
09

3
-5

15
20

65
8

6 
(3

)
1.

5 
×

 1
0

-4
B

o
d

y;
 D

H
S

K
LK

10
N

M
_0

02
77

6
1.

3
81

0.
01

0

 
R

at
io

 
6 

(4
)

3.
0 

×
 1

0
-4

 
 

 
0.

0
0

8
0.

01
5

21
C

O
PD

3
83

62
23

0
-3

83
63

16
0

8 
(6

)
0.

0
03

5′
U

TR
; T

SS
20

0
; T

SS
15

0
0

; p
ro

m
o

te
r

H
LC

S
N

M
_0

01
24

27
85

-1
.2

6
8

6.
7 

×
 1

0
-7

22
C

O
PD

51
01

65
01

-5
10

17
43

2
15

 (
9

)
5.

3 
×

 1
0

-5
5′

U
TR

; T
SS

20
0

; 1
st

E
xo

n
; T

SS
15

0
0

; 
En

h
an

ce
r;

 D
H

S
C

P
T1

B
N

M
_0

01
14

51
35

0.
19

7
0.

0
01

 
FE

V
1

51
01

65
01

-5
10

17
72

3
16

 (
12

)
1.

0 
×

 1
0

-1
4

 
 

 
0.

82
0

0.
02

7
†
C
hr
o
m
o
so
m
e.

‡
St
ar
t-
en
d 
p
o
si
ti
o
n 
of
 e
ac
h 
re
g
io
n 
(b
p
).

§
St
at
is
ti
ca
l s
ig
ni
fi
ca
n
ce
 f
ro
m
 s
ta
ti
st
ic
al
 m
o
d
el
.

¶
Fa
ls
e 
d
is
co
ve
ry
 r
at
e 
fr
o
m
 D
M
R
ca
te
.

#
C
hr
o
ni
c 
o
b
st
ru
ct
iv
e 
p
u
lm
o
na
ry
 d
is
ea
se
.

†
†
Fo
rc
ed
 e
xp
ir
at
o
ry
 v
o
lu
m
e 
in
 o
n
e 
se
co
n
d.

G
en
o
m
ic
 f
ea
tu
re
s 
w
er
e 
b
as
ed
 o
n 
Ill
u
m
in
a’
s 
A
nn
ot
at
io
n 
fi
le
 a
n
d 
th
o
se
 f
o
r 
D
M
R
s 
w
er
e 
b
as
ed
 o
n 
C
p
G
s 
at
 s
ta
rt
 a
n
d 
en
d 
p
o
si
ti
o
n 
of
 e
ac
h 
re
g
io
n.
 C
at
eg
o
ri
es
 f
o
r 
th
e 
fe
at
u
re
s 
in
cl
u
d
es
 (1
) b
o
d
y,
 g
en
e 
b
o
d
y;
 (
2
) 5

′U
TR
, 

5 
p
ri
m
e 
u
nt
ra
ns
la
te
d 
re
g
io
n
; (
3
) 3

′U
TR
, 3
 p
ri
m
e 
u
nt
ra
ns
la
te
d 
re
g
io
n
; (
4
) T
SS
20
0,
 2
0
0 
b
as
ep
ai
r 
w
it
hi
n 
tr
an
sc
ri
pt
io
n 
st
ar
t 
si
te
; (
5
) T
SS
15
0
0,
 1
5
0
0 
b
as
ep
ai
r 
w
it
hi
n 
tr
an
sc
ri
pt
io
n 
st
ar
t 
si
te
; a
n
d 
(6
) D
H
S,
 D
N
as
e 
I 

hy
p
er
se
ns
it
iv
it
y 
si
te
.

D
if
fe
re
nt
ia
lly
 m
et
hy
la
te
d 
p
ro
b
es
 o
r 
re
g
io
ns
 in
 t
hi
s 
Ta
b
le
 w
er
e 
lo
ca
te
d 
in
si
d
e 
ea
ch
 m
ap
p
ed
 g
en
e.

C
O
PD
: C
hr
o
ni
c 
o
b
st
ru
ct
iv
e 
p
u
lm
o
na
ry
 d
is
ea
se
; D
H
S:
 D
N
as
eI
 h
yp
er
se
ns
it
iv
it
y 
si
te
; F
EV
: F
o
rc
ed
 e
xp
ir
at
o
ry
 v
o
lu
m
e 
in
 1
 s
ec
o
n
d
; F
V
C
: F
o
rc
ed
 v
it
al
 c
ap
ac
it
y.

Ta
b

le
 4

. A
ss

o
ci

at
io

n
s 

w
it

h
 g

en
e 

ex
p

re
ss

io
n

 (
u

n
ad

ju
st

ed
 p

 <
 0

.0
5

) 
in

 t
h

e 
A

sa
n

 B
io

b
an

k 
fo

r 
g

en
es

 t
o

 w
h

ic
h

 d
if

fe
re

n
ti

al
ly

 m
et

h
yl

at
ed

 p
ro

b
es

 o
r 

g
en

es
 

an
n

o
ta

te
d

, o
rd

er
ed

 b
y 

ch
ro

m
o

so
m

al
 lo

ca
ti

o
n

 (
co

n
t.

).



980 Epigenomics (2017) 9(7) future science group

Research Article    Lee, Hong, Kim, Kim & London

and 1.37 for COPD. We provide Manhattan plots 
(Supplementary Figure 1) and  quantile– quantile (qq) 
plots (Supplementary Figure 2).

From our DMR analyses, we identified 104 regions 
of significant differential methylation (corrected p < 
0.01) in relation to either the COPD or spirometric 
measures (Supplementary Table 3). Of the 104, ten 
(SRPRB, ZC3H3, HLA-C, KLK10, FAM196A, CTU2, 
USP36, BHMT, CPT1B and CD300A) were associated 
with more than one trait (Table 3).

For the enrichment analysis, we included one sig-
nificant and 15 suggestive DMPs and among the 845 
CpGs within 104 DMRs we examined 505 nominally 
significant ones. After taking two overlapping CpGs 
into account we analyzed 519 CpGs. We found enrich-
ment for CpG islands (50 vs 31% overall from the 
array; p = 7.0 × 10-21), CpG island shores (29 vs 23% 
overall; p = 0.0004) and DHSs (25 vs 12% overall;  
p = 1.2 × 10-14) in Supplementary Table 8.

Our functional network analysis highlighted embry-
onic/organ development, cell death/survival and gene 
expression (Supplementary Table 4). Inflammatory 
response was highlighted from the disease mapping 
(Supplementary Table 5).

We visualized regulatory elements at 11 loci con-
taining the genome-wide significant DMP (Supple-

mentary Figure 3) and the ten significant DMRs asso-
ciated with more than one trait (Supplementary Figure 

4). Regulatory elements appear to be well-represented 
in the 11 loci (Supplementary Table 10). For example, 
a locus ± 10 kb around a DMR ‘chr22:51016501–
51017432’ (Suppl ementary Figure 4J) contains poten-
tial functional elements including DHSs, open chro-
matin, active promoter, active transcription start sites, 
enhancers and histone modification. Of the ten DMRs, 
we visualized top two loci (CPT1B and SRPRB) based 
on the FDR values from DMRcate to show regional 
association results and functional  annotation tracks 
(Supplement ary Figure 5).

For 111 genes to which the 16 DMPs or 104 DMRs 
mapped, we had expression data at 86 genes from the 
Asan Biobank. Of these 86, we identified differential 
gene expression in relation to the same trait (uncor-
rected p < 0.05) at 31 genes (Table 4). Of the 31 genes, 
five (CTU2, USP36, ZNF516, KLK10 and CPT1B) 
were associated with more than one trait. Of the 31 
genes, 21 showed differential gene expression in rela-
tion to COPD. Of these 21, four (CTU2, USP36, 
ZNF516 and CPT1B) were associated with FEV1 or 
FEV1/FVC, as well as COPD.

From a look-up of differential methylation at 315 
probes from an EWAS in blood DNA [9] and 523 
probes from an EWAS in lung tissue [11], 77 and 87 
showed differential methylation in relation to COPD 

or lung function (uncorrected p < 0.05) in our data, 
respectively. Of the 77 replicated probes from the 
EWAS [9] in blood, 72 probes mapped to 71 genes 
for which we had gene expression values in our data. 
Of the 71 genes, differential gene expression in rela-
tion to the same trait of methylation differences was 
observed at 29 genes (Supplementary Table 6). Of the 
87 replicated probes from the EWAS [11] in lung tissue, 
65 probes mapped to 62 genes with gene expression in 
our data. Of the 62 genes, 31 genes were differentially 
expressed (Supplementary Table 7). No CpG of the 11 
from an EWAS in blood DNA [12] was replicated in 
our study.

Discussion
Our study identified novel differential methylation sig-
nals associated with COPD and lung function traits 
in blood DNA and linked the methylation alterations 
to differential gene expression in lung tissue. Previ-
ous studies of COPD or lung function used DNA 
methylation in blood from smokers using the Infin-
ium HumanMethylation27 BeadChip (27k) [9,12], in 
small airways epithelia from former smokers using the 
27k [10], in lung tissue using the Nimblegen array [8], or 
in lung tissue from former smokers using the 450k [11]. 
This is the first study to use the Illumina 450k in blood 
DNA.

We found one genome-wide significant CpG and 
15 suggestive CpGs in relation to lung function traits. 
These DMPs are novel, meaning never reported in 
the previous EWASs of COPD or lung function. 
Cg03559389 (DIP2C) showed a significant asso-
ciation with FEV1/FVC after Bonferroni correction. 
DIP2C has a DMAP1 binding domain. Mutations 
in DIP2C have been identified in lung cancer sam-
ples [40]. Among the 15 suggestive DMPs, cg19904425 
(SERPINA12) is 127kb away from SERPINA1, an 
important gene for COPD [41] and lung function [42]. 
A recent exome-wide association analysis [43] reported 
a rare variant (rs140198372) in SERPINA12 30kb 
away from cg19904425 was associated with airflow 
 limitation.

Several loci from our DMR study overlap loci 
associated with COPD or pulmonary function in 
previous genome-wide association studies (GWASs), 
candidate gene studies or gene expression analyses. 
Four loci have been reported in GWASs: NCR3 [44], 
AGER-PPT2 [45], CCL18 [46] and UPK3A [47]. Three 
overlap loci from candidate gene studies: IL1RN [48], 
F2R [49] and MMP9 [50]. Two were reported in gene 
expression studies: PSORS1C1 [51] and USP36 [52]. 
Two DMRs in our study were near HLA-DQB1/HLA-
DQA2, a locus from a SNP-by-smoking interaction 
study of lung function [53]. This is notable because we 
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excluded 28,652 CpGs at which methylation can be 
influenced by neighboring SNPs [20]. We found dif-
ferential methylation in a locus previously associated 
with a putative biomarker of COPD, surfactant pro-
tein D. A GWAS [54] of surfactant protein D reported 
five genome-wide significant SNPs in/near PSORS1C1. 
Our DMR resides between the SNPs. This may sug-
gest an epigenetic contribution modulating the asso-
ciation between the genetic variants and pulmonary 
traits or COPD.

Of interest, the highlighted fundamental pathways 
in our study support the emerging hypothesis of the 
importance of fundamental developmental processes 
in COPD pathogenesis [55,56]. This study supports 
a possible role for epigenetic modifications in this 
 process.

The enrichment for CpG shores (regions within 
2kb from a CpG island) in differentially methyla-
tion signals related to lung function is consistent with 
the findings from a previous EWAS of COPD [11]. To 
assess enrichment for gene ontology terms in the 111 
genes to which significant and suggestive DMPs and 
significant DMRs mapped, we used WEB-based Gene 
SeT AnaLysis Toolkit (WebGestalt) [57] with databases 
for biological process, cellular process and molecular 
function. No gene ontology terms were significantly 
enriched.

Among epigenetic modifications, we examined 
methylation alterations in relation to COPD and lung 
function in this study. The well-represented regula-
tory elements including DNase Hypersensitivity sites/
clusters, histone modification and chromatin state seg-
mentation in our significant loci suggest that these loci 
may play functional roles in control of COPD or lung 
function.

From our replication look-up, we confirmed dif-
ferential methylation in relation to COPD and lung 
function previously identified in non-Asian popula-
tions (Caucasians [9,11] and African Americans [11]). Of 
interest, differential methylation from an EWAS [11] in 
lung tissue was also replicated in our study in blood, 
supporting the possibility of blood DNA methylation 
biomarkers for lung function.

In our data, there were 19 mild and 41 moderate to 
severe COPD cases [16]. To check whether there were 
CpGs associated with moderate to severe COPD, we 
performed an EWAS of COPD using 41 moderate to 
severe cases and 40 noncases. There were no significant 
DMPs in relation to moderate to severe COPD after 
multiple-testing correction. In our study, there was no 
genome-wide significant DMP in relation to COPD. 
However, all 14 DMPs related to FEV1 or FEV1/FVC 
(unadjusted p < 1 × 10-5) were also related to COPD 
(p < 0.05) as shown in Supplementary Table 9.

Our study has limitations. First, the data were cross-
sectional for this analysis that hampers the causal infer-
ence between methylation alterations and COPD status 
or lung function levels. We cannot ascertain if these 
might have predated the COPD or are the result of the 
COPD. Second, we did not have an available population 
for replication to decrease the chance of reporting false 
positives at the lower significance threshold used for the 
DMP analysis. As strengths, we explored regional dif-
ferential methylation alterations by using two different 
methods (DMRcate and comb-p) in addition to exam-
ining individual probes. Further, the gene expression 
profiles in lung tissue strengthen the biologic evidence 
that the DNA methylation alterations observed in blood 
are related to lung function and thus provide a type of 
functional replication. Finally, our study was conducted 
in Asian populations; there are few methylation and 
transcriptome data on these populations.

Although GWASs of COPD and lung function have 
identified numerous loci, these findings only explain 
the small proportion of variance in these traits [5,6]. 
Epigenetics may explain some of the remaining vari-
ance [58]. Several EWASs reported candidate loci in 
relation to these phenotypes [8–12]. Studies in blood 
or lung tissue involving Asians, Caucasians or Afri-
can Americans could help understand underlying 
mechanisms of COPD and lung function, and provide 
 candidate target genes for clinical purposes.

Conclusion
We report novel differential methylation alterations 
associated with COPD or pulmonary traits in blood 
DNA, and link methylation alterations to differential 
gene expression related to lung function in lung tissue. 
Our finding of differential methylation near reported 
loci from genetic studies of COPD and pulmonary 
traits supports a possible epigenetic role in control of 
lung function.

Future perspective
The methylation alterations in blood related to COPD 
and lung function traits could play a role in devel-
opment of biomarkers of COPD and lung function. 
Future studies would be necessary to confirm these 
findings and understand their mechanistic basis.
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Summary points

•	 This is the first epigenome-wide association study of chronic obstructive pulmonary disease and lung function 
traits in an Asian population.

•	 Differentially methylated probes from earlier epigenome-wide association studies in non-Asian populations 
were differentially methylated in our study.

•	 Our study revealed differentially methylated probes and differentially methylated regions in relation to 
chronic obstructive pulmonary disease and lung function traits in blood DNA. Candidate loci includes DIP2C, 
SRPRB, ZC3H3, HLA-C, KLK10, FAM196A, CTU2, USP36, BHMT, CPT1B and CD300A.

•	 Genes including CTU2, USP36, ZNF516, KLK10 and CPT1B to which the differential methylation alterations 
mapped were also differentially expressed in lung tissue with respect to the same traits.
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