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Abstract

Background: Health coaching is an emerging intervention that has been shown to improve clinical and patient-relevant outcomes
for type 2 diabetes. Advances in artificial intelligence may provide an avenue for developing a more personalized, adaptive, and
cost-effective approach to diabetes health coaching.

Objective: We aim to apply Q-learning, a widely used reinforcement learning algorithm, to a diabetes health-coaching data set
to develop a model for recommending an optimal coaching intervention at each decision point that is tailored to a patient’s
accumulated history.

Methods: In this pilot study, we fit a two-stage reinforcement learning model on 177 patients from the intervention arm of a
community-based randomized controlled trial conducted in Canada. The policy produced by the reinforcement learning model
can recommend a coaching intervention at each decision point that is tailored to a patient’s accumulated history and is expected
to maximize the composite clinical outcome of hemoglobin A1c reduction and quality of life improvement (normalized to [ 0, 1
], with a higher score being better). Our data, models, and source code are publicly available.

Results: Among the 177 patients, the coaching intervention recommended by our policy mirrored the observed diabetes health
coach’s interventions in 17.5% (n=31) of the patients in stage 1 and 14.1% (n=25) of the patients in stage 2. Where there was
agreement in both stages, the average cumulative composite outcome (0.839, 95% CI 0.460-1.220) was better than those for
whom the optimal policy agreed with the diabetes health coach in only one stage (0.791, 95% CI 0.747-0.836) or differed in both
stages (0.755, 95% CI 0.728-0.781). Additionally, the average cumulative composite outcome predicted for the policy’s
recommendations was significantly better than that of the observed diabetes health coach’s recommendations (tn-1=10.040;
P<.001).

Conclusions: Applying reinforcement learning to diabetes health coaching could allow for both the automation of health coaching
and an improvement in health outcomes produced by this type of intervention.

(JMIR Form Res 2022;6(9):e37838) doi: 10.2196/37838
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Introduction

Chronic diseases are a major health care challenge globally and
domestically, being the leading cause of death and disability
worldwide as of 2021 [1,2] and accounting for 89% of all deaths
in Canada [3]. As of 2011, type 2 diabetes (T2D) affects more
than 2.5 million people in Canada specifically and costs the
health care system over CAD $6.7 billion (US $5.1 billion) to
treat annually [4].

Health coaching is quickly emerging as a new approach to
partner with patients to optimize their self-management through
lifestyle changes [5]. Diabetes health coaching has both
educational and behavioral components, which include
goal-setting, self-care knowledge, and frequent follow-up
appointments [6]. Coaching has been shown to improve health
outcomes [7-9] and treatment adherence [10,11]. However, the
widespread adoption of diabetes health coaching may be limited
by constraints on health human resources. Artificial intelligence
incorporated into a digital health platform could automate some
routine health-coaching tasks to improve the scalability of
coaching interventions. Moreover, artificial intelligence may
be able to leverage data from a patient’s history that is not
routinely used in clinical practice to optimize coaching
recommendations.

Recent work in artificial intelligence and medicine [12] suggests
that individual patient data can be leveraged to assist the
decision-making process of diabetes health coaching and
suggests incremental adjustments of interventions tailored to
the patient’s changing needs and health status. Reinforcement
learning is commonly used for estimating an optimal set of
actions (called a “policy”) for this type of sequential
decision-making problem [13,14]. Reinforcement learning works
by iteratively choosing actions and, then in turn, is rewarded
based on the outcomes of those actions. This is done for every

set of patient characteristics at every time step in a data set. The
algorithm “learns” the best action to take at every time step by
maximizing the value of the rewards over all time steps for each
patient (Figure 1).

Several studies have applied reinforcement learning for diabetes
management, with most focused on controlling blood glucose
levels [15,16]. Vrabie et al [17] used reinforcement learning to
obtain optimal adaptive control algorithms for dynamical
systems using mathematical models. Ngo et al [18,19] applied
reinforcement learning for the optimal control of blood glucose
in patients with type 1 diabetes and proposed a reinforcement
learning algorithm for automatically calculating the basal and
bolus insulin doses for patients with diabetes using a simulation
on a blood glucose model.

Relatively few studies have used reinforcement learning for
diabetes health coaching [20-22]. Yom-Tov et al [20] developed
a reinforcement learning–powered system that used personalized
messages to improve T2D patients’ compliance with their
physical activity regimens. Lauffenburger et al [22] have
developed a reinforcement learning–powered system to
personalize SMS text messages to promote medication
adherence. This existing reinforcement learning research for
diabetes health coaching focuses on improving coaching within
a single domain (only physical activities or only medication
adherence). Our study is the first to use reinforcement learning
to recommend comprehensive coaching strategies that can
include all domains of coaching (physical activity, medication
adherence, diet modification, etc) that are tailored based on
patients’ changing clinical status and ongoing performance.

In this study, we applied Q-learning (Multimedia Appendix 1),
a widely used reinforcement learning algorithm, to a diabetes
health-coaching data set to develop a model for recommending
an optimal coaching intervention at each decision point that is
tailored to a patient’s accumulated history.
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Figure 1. Diabetes health-coaching optimization as a sequential decision-making problem. A1c: Hemoglobin A1c; ED5D: EuroQol five-dimension
scale questionnaire; T: time step.

Methods

Data Overview
The data set used in this study was collected in a
community-based randomized controlled trial conducted in
Ontario, Canada [23]. Patients in the trial were 18 years or older,
diagnosed with T2D (any duration), and had a hemoglobin A1c

(HbA1c) level >7.5% within 6 months prior to randomization.
All patients were able to read and write in English, and had
access to a telephone. Those excluded were pregnant women,
had debilitating coexisting conditions (ie, mental illness or
impaired cognition), or had underlying medical conditions that
may have provided misleading HbA1c levels. A total of 365
patients were randomized using a 1:1 ratio into the intervention
(diabetes health coaching) or control (usual care) groups. All
patients in the intervention arm of the trial were included in the
current analysis.

Patients in the intervention arm received both standard care and
an additional diabetes health-coaching intervention. Standard
care included receiving access to usual diabetes education
(individual or group) provided by nurses or dietitians, typically
every 3 to 6 months, along with community resources. In
addition, the intervention group received diabetes health
coaching delivered by a registered nurse or certified diabetes
educator that emphasized small positive habits customized to
one’s environment, ability, and motivation. The topic or agenda
of each telephone call was determined by the participant or was
agreed upon in the previous coaching session. All patients in
the intervention arm had access to diabetes health coaching for
1 year.

For each patient, the data set contained demographic data,
including age, gender, ethnicity, diabetes duration, and
comorbidities; clinical characteristics, including BMI, weight,
and most recent HbA1c; health care resource use information,
including hospital admissions, emergency room visits, specialist
visits, and other health care visits (eg, nurse visits); and quality

of life (QoL) measures. Demographic data and health care
resource use were collected using self-reported questionnaires,
and clinical characteristics were assessed at study visits or
through medical records. QoL was measured using three scales,
including the Audit of Diabetes-Dependent Quality of Life
(ADDQoL) scale [24], the Diabetes Self-Care Activities (DSCA)
scale [25], and the EQ-5D scale [26]. All the measures were
collected at baseline and at the 6-month and 12-month
follow-ups. A coaching intervention use form was used to
document the diabetes health coaching received by each patient
over the course of the trial. A patient could visit the diabetes
health coach multiple times during the trial and could receive
one or multiple coaching recommendations at each visit: dietary
modification, exercise modification, behavioral modification,
medication adherence, medication adjustment, glucose
monitoring, psychological support or counseling, case
management/monitoring, and system navigation.

We have made the data set used in this study publicly available
[27].

Ethical Approval
The trial from which our data set was derived was approved by
the Hamilton Integrated Research Ethics Board (approval/file
number: 14-416). Written informed consent was obtained from
all participants (inability to provide informed consent was an
exclusion criteria for the trial) and included permission for a
secondary analysis without additional consent. The trial was
registered at ClinicalTrials.gov (NCT02128815) [28]. All data
for the trial was deidentified. Participants were provided a small
honorarium of CAD $20 (US $15.25) per visit for over three
visits (thus, a total of CAD $60 [US $45.75]) for participation
in the trial.

Problem Formulation for the Reinforcement Learning
Model
Reinforcement learning is an approach to machine learning
inspired by how animals and humans can learn new tasks
through receiving rewards for desirable behavior. For example,
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dogs are often taught to perform tricks by giving them treats
after performing well. In reinforcement learning, an algorithm
(referred to as an “agent”) learns an optimal policy through trial
and error within a simulated environment. During the learning
process, the agent will make decisions based on inputs from the
environment and then will receive rewards if those decisions
resulted in a desirable outcome. Over many iterations, the agent
eventually learns an optimal strategy (referred to as a “policy”)
that allows it to consistently maximize rewards.

In this study, our goal was to use reinforcement learning to learn
an optimal policy for recommending diabetes coaching
interventions at each clinical decision point, using a patient’s
accumulated history as inputs. We rewarded the agent based on
a composite outcome of HbA1c reduction and QoL improvement
(measured using the EQ-5D summary index, which was chosen
based on expert clinical input). We set both weights to 0.5 to
reflect equal importance and additionally scaled both HbA1c

reduction and QoL improvements to the range of [0, 1] before
calculating the weighted average. For example, 1 patient had
an HbA1c of 7.0 and an EQ-5D summary index of 0.457 at
baseline, and then at the 6-month follow-up, their HbA1c

decreased to 6.8 and their EQ-5D summary index increased to
0.533. We calculated their reduction in HbA1c as 0.835 (2.86%
reduction before min-max scaling) and their increase in QoL
as 0.504 (16.5% improvement before min-max scaling). The
weighted average was calculated as 0.5 * 0.835 + 0.5 * 0.504,
which is 0.670. The reinforcement learning agent was rewarded
based on the cumulative composite outcome, which we
calculated by adding together the composite outcome as
recorded at both the 6-month and 12-month follow-ups.

To prepare the simulated environment necessary for
reinforcement learning, we first identified the patient
characteristics, decision points, and intervention options from
the data set. Patient characteristics included demographic data,
clinical characteristics, health care resource use information,

and self-reported QoL measured by the ADDQoL and DSCA
scales. Since we had access to patient characteristics and the
outcome of interest measured at baseline, the 6 month follow-up,
and the 12-month follow-up, we formalized the sequence of
data as a 2-stage estimation problem, with the 2 decision points
being the initial visit and the 6-month follow-up.

In reinforcement learning, the available options for interventions
are called the “action space.” Action spaces that are too complex
can cause challenges with the learning process, so it is standard
practice in reinforcement learning to “shape” the action space
by constraining the available options in some way—often by
combining very similar actions [29]. For our study, we grouped
9 distinct diabetes coaching recommendations into 3 categories
based on expert clinical input. Specifically, dietary modification,
exercise modification, and behavioral modification were grouped
into the category of behavior modification and education;
medication adherence, medication adjustment, glucose
monitoring, case management/monitoring, and system
navigation were grouped into the category of case management
and monitoring; and psychological support and counseling were
combined into the category of psychological support. To be
classified as one of these 3 categories, a patient needed to have
at least twice as many recommendations in 1 category compared
to the others—otherwise they were classified as a fourth
category: general coaching.

In addition to shaping the action space based on the focus of
the interventions, we also categorized interventions based on
intensity. We categorized intensity by calculating the total
number of coaching recommendations received by each patient
in a stage to obtain the median of the total number of coaching
recommendations among all patients. High-intensity coaching
was categorized as being greater than the median number of
coaching recommendations during a time interval, and
low-intensity coaching was categorized as fewer than the
median. The dimensions of focus and intensity resulted in an
action space with 8 possible actions (Figure 2).

Figure 2. An example of a single patient in the data set.
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Optimal Policy Estimation and Validation
Following problem formulation, we fit a reinforcement learning
model to “learn” which interventions tend to produce the best
outcome for each set of patient characteristics. The Q-learning
algorithm formulates this as a prediction problem, with patient
characteristics and coaching actions as model inputs used to
predict the cumulative composite outcome, which we use as the
reward function. This prediction model is then used to select
the optimal action for a given set of patient characteristics by
estimating the rewards for all possible actions from the action
space and selecting the one estimated to produce the greatest
reward. While any regression modeling technique can be used
for this type of prediction problem, we selected histogram-based
gradient boosting classification trees [30], as they are better
suited to modeling large numbers of patient characteristics with
complex interactions than techniques like linear regression.

Given the relatively small sample size available for this pilot,
we were able to use a leave-one-out cross-validation (LOOCV)
approach [31] for model development and validation. This
approach trains a model on all available patients but 1, then
uses the remaining patient for model validation. This process
is then repeated for every possible split of the data, resulting in
177 iterations of train/test for our data set. This hypothesis was
tested using a paired t test.

The potential clinical effectiveness of our model was evaluated
using two approaches. The first approach compared the model
predicted cumulative composite outcome with the actual
observed outcome (the observed result of the interventions
provided by the diabetes health coaches). We hypothesized that
our model’s predicted outcome would be higher than the
observed outcome.

The second approach assessed the relationship between the
cumulative composite outcome and the proportion of agreement
between our model and the diabetes health coach. We
hypothesized that higher levels of agreement between our model
and coach recommendations would be associated with better
observed outcomes and that lower levels of agreement would
be associated with worse outcomes.

The level of agreement between the reinforcement learning
model and the observed diabetes health coach’s interventions
was not used to evaluate the performance of our model. This is
because reinforcement learning assumes that there is room for
improvement over observed behavior. Thus the goal is to learn
a different better policy than what was observed, rather than
simply mirroring what was done by the coaches.

We have made the source code and trained models developed
for this study publicly available [27].

Results

A total of 177 patients in the intervention arm of the
community-based randomized controlled trial were included in
the analysis. Distributions of the patient characteristics used as
model inputs at baseline and the 6-month and 12-month
follow-ups are summarized in Table 1. P values are reported to
illustrate the degree of change for each characteristic between
time points.

The median of the total number of coaching recommendations
received in stage 1 and stage 2 was 8. Following the prespecified
criteria for defining intervention options, we obtained the
following intervention options (Table 2).

Among the 177 patients, LOOCV results showed that the
average cumulative composite outcome expected by the
reinforcement learning model (0.811) was significantly higher
than the observed outcome (0.767; tn-1=10.040; P<.001).

LOOCV results also showed that our model mirrored the
observed diabetes health coach’s interventions in 17.5% (n=31)
of the patients in stage 1 and in 14.1% (n=25) of the patients in
stage 2. Among the patients for whom our model agreed with
the diabetes health coach in both stages, the average cumulative
composite outcome (0.839, 95% CI 0.460-1.220) was better
than those for whom our model agreed with the diabetes health
coach in only one stage (0.791, 95% CI 0.747-0.836) or differed
in both stages (0.755, 95% CI 0.728-0.781).
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Table 1. Patient characteristics used as model inputs with SDs and percentages at baseline, the 6-month follow-up, and the 12-month follow-up (N=177).

P value12-month follow-up6-month follow-upBaselinePatient characteristics

N/Aa57.4 (11.3)57.4 (11.3)57.4 (11.3)Age (years), mean (SD)

N/AGender, n (%)

94 (53.1)94 (53.1)94 (53.1)Female

83 (46.9)83 (46.9)83 (46.9)Male

N/AEthnicity, n (%)

141 (79.7)141 (79.7)141 (79.7)Caucasian

10 (5.6)10 (5.6)10 (5.6)Latin American

10 (5.6)10 (5.6)10 (5.6)South Asian

3 (1.7)3 (1.7)3 (1.7)Aboriginal

3 (1.7)3 (1.7)3 (1.7)Filipino

2 (1.1)2 (1.1)2 (1.1)Black

2 (1.1)2 (1.1)2 (1.1)Southeast Asian

1 (0.6)1 (0.6)1 (0.6)Arab

1 (0.6)1 (0.6)1 (0.6)Chinese

1 (0.6)1 (0.6)1 (0.6)West Asian

3 (1.7)3 (1.7)3 (1.7)Unknown

.5133.6 (6.9)34.1 (7.2)34.5 (6.9)BMI, mean (SD)

.6010.4 (9.1)9.9 (9.1)9.4 (9.1)Duration of diabetes (years), mean (SD)

<.0017.3 (1.1)7.6 (1.2)9.1 (1.7)Hemoglobin A1c, mean (SD)

.0032.2 (1.9)2.4 (2.3)3.0 (2.9)Family physician visits, mean (SD)

.111.4 (0.9)1.6 (1.6)1.7 (1.6)Family physician visits related to diabetes, mean (SD)

<.00180 (45.2)55 (31.1)45 (25.4)Visits with health professional, n (%)

<.001116 (65.5)160 (90.4)156 (88.1)Emergency room and hospital admissions, n (%)

<.001126 (71.2)173 (97.7)164 (92.7)Chronic disease management program, n (%)

<.001Behavioral stage, n (%)

104 (58.8)128 (72.3)103 (58.2)Action

3 (1.7)6 (3.4)15 (8.5)Contemplation

0 (0.0)1 (0.6)2 (1.1)I am not sure

52 (29.4)24 (13.6)0 (0.0)Maintenance

0 (0.0)0 (0.0)7 (4.0)Precontemplation

18 (10.2)18 (10.2)50 (28.2)Preparation

Diabetes treatment, n (%)

<.00143 (24.3)70 (39.5)85 (48.0)Diet

.82165 (93.2)166 (93.8)163 (92.1)Oral therapy

.7276 (42.9)77 (43.5)70 (39.5)Insulin

.240 (0.0)2 (1.1)3 (1.7)Other

.060.8 (0.1)0.8 (0.1)0.8 (0.2)EQ-5D summary index, mean (SD)

.10–1.3 (0.7)–1.4 (1.1)–1.5 (1.3)ADDQoLb summary score, mean (SD)

Diabetes Self-Care Activities scale

<.0016.1 (1.9)5.6 (2.3)4.5 (2.8)General diet, mean (SD)

.0035.6 (1.1)5.4 (1.3)5.1 (1.6)Specific diet, mean (SD)
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P value12-month follow-up6-month follow-upBaselinePatient characteristics

<.0015.6 (2.3)5.3 (2.4)4.1 (2.6)Exercise, mean (SD)

.135.5 (2.2)5.8 (2.0)5.3 (2.4)Blood glucose testing, mean (SD)

<.0012.9 (1.7)3.5 (1.3)2.9 (1.9)Foot care, mean (SD)

.6223 (13.0)24 (13.6)29 (16.4)Current smoker, n (%)

.622.0 (6.8)2.3 (7.2)2.8 (7.2)Cigarettes smoked per day, mean (SD)

<.0015.3 (2.9)4.9 (3.1)3.7 (3.2)Additional dietc, mean (SD)

.186.9 (0.9)6.9 (0.9)6.7 (1.4)Additional medication, mean (SD)

<.0016.5 (0.8)6.4 (1.1)5.9 (1.4)Additional foot care, mean (SD)

.031 (0.6)0 (0.0)5 (2.8)Stroke, n (%)

<.0010 (0.0)1 (0.6)17 (9.6)Transient ischemic attack, n (%)

<.0010 (0.0)0 (0.0)17 (9.6)Evidence of coronary artery disease, n (%)

.020 (0.0)0 (0.0)4 (2.3)Myocardial infarction, n (%)

.371 (0.6)0 (0.0)0 (0.0)Heart failure, n (%)

<.0010 (0.0)1 (0.6)10 (5.6)Kidney disease, n (%)

<.0013 (1.7)3 (1.7)19 (10.7)Chronic obstructive pulmonary disease, n (%)

<.0010 (0.0)6 (3.4)94 (53.1)Hyperlipidemia, n (%)

<.0010 (0.0)9 (5.1)108 (61.0)Hypertension, n (%)

.240 (0.0)2 (1.1)3 (1.7)Peripheral arterial disease, n (%)

<.00129 (16.4)45 (25.4)5 (2.8)Prescribed medications, n (%)

aN/A: not applicable.
bADDQoL: Audit of Diabetes-Dependent Quality of Life.
cAdditional items for the expanded version of the summary of Diabetes Self-Care Activities.

Table 2. Intervention options.

Coaching recommendations (stage 2), nCoaching recommendations (stage 1), nIntervention

1845High-intensity general coaching

1834High-intensity coaching on case management and
monitoring

1029High-intensity coaching on behavior modification
and education

6423Low-intensity general coaching

4230Low-intensity coaching on case management and
monitoring

2516Low-intensity coaching on behavior modification
and education

Discussion

The study took a novel approach of developing artificial
intelligence using diabetes health-coaching data to better fit the
needs of diabetes management and to achieve better health
outcomes. Using historical observational data from a
community-based randomized controlled trial, we developed a
reinforcement learning model that can automate the task of
personalized adaptive diabetes health coaching and demonstrates
the potential to outperform human diabetes health coaches in
maximizing a composite outcome of HbA1c reduction and QoL

improvement. Our approach is also able to leverage data that is
often overlooked, such as self-reported behavioral data, which
allows us to generate personalized adaptive interventions for
each patient using comprehensive health data.

The model-based decision-making process is fully automated,
which requires less involvement from health care professional
resources. In practice, our model could be integrated into
existing diabetes health-coaching programs to dynamically
suggest personalized adaptive coaching interventions, either as
a decision-making support tool for the diabetes health coaches
or combined with a patient-facing mobile app to directly support
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patients with diabetes, which has the potential to reduce the cost
and expand the reach of diabetes health coaching [32,33].

This study has several limitations. The internal working of the
reinforcement learning model is difficult to interpret, and as a
result, the model appears as a black box to health care
professionals and patients, which may present a barrier to
adoption in some clinical settings [34]. Due to the relatively
small sample size, the data source for this study lacks
heterogeneity, which may result in insufficient generalizability
of the estimated optimal policy, despite its satisfactory
performance on the study population. We plan to address this
limitation in future work, which will seek to include a larger
and more diverse group of patients. The aggregation of detailed
diabetes health-coaching data into discrete intervention options
may have led to a loss of fidelity, which in turn may translate
into less optimal intervention recommendations. Future work
in this area may look to more advanced statistical methods to

fully use the fine-grained original coaching information to
produce a better performance. Finally, diabetes health coach’s
interventions can potentially have different consequences on
patients due to the human factors (eg, patients’ adherence to
coaching) that cannot be fully simulated, which may lead to
lower performance in real-world clinical practice. Future work
should investigate quantifying these human factors and including
them in the reinforcement learning model.

This pilot study presents a novel application of artificial
intelligence in diabetes management and demonstrated that
applying reinforcement learning to diabetes health-coaching
data has the potential to automate coaching and yield substantial
improvement in health outcomes. Future research will include
applying the reinforcement learning approach to larger diabetes
health-coaching data sets and exploring the feasibility and
acceptability of diabetes health coaching supported by artificial
intelligence.
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