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Abstract: Additive manufacturing, through the process of thermoplastic extrusion of filament, allows
the manufacture of complex composite sandwich structures in a short time with low costs. This
paper presents the design and fabrication by Fused Filament Fabrication (FFF) of composite sandwich
structures with short fibers, having three core types C, Z, and H, followed by mechanical performance
testing of the structures for compression and bending in three points. Flatwise compression tests and
three-point bending have clearly indicated the superior performance of H-core sandwich structures
due to dense core structures. The main modes of failure of composite sandwich structures were
analyzed microscopically, highlighting core shear buckling in compression tests and face indentation
in three-point bending tests. The strength–mass ratio allowed the identification of the structures with
the best performances considering the desire to reduce the mass, so: the H-core sandwich structures
showed the best results in compression tests and the C-core sandwich structures in three-point
bending tests. The feasibility of the FFF process and the three-point bending test of composite wing
sections, which will be used on an unmanned aircraft, have also been demonstrated. The finite
element analysis showed the distribution of equivalent stresses and reaction forces for the composite
wing sections tested for bending, proving to validate the experimental results.

Keywords: sandwich structures; fused filament fabrication; short carbon fiber; mechanical testing;
failure analysis; wing structure

1. Introduction

Composite materials have been developed primarily out of the need to reduce the
weight of industrial structures and extend their lifespan, a particularly important goal
in aerospace [1], automotive [2], marine [3], and construction industries [4]. There is
virtually no field, from cutting-edge industries to traditional industries, to which composite
materials have not penetrated. One direction intensively researched and used in industrial
applications of composite materials is the sandwich structure of composite materials. They
are a special category of composite materials, which are made by attaching two thin
but rigid skins (shells) to a light but thick core. The advantages of composite sandwich
structures compared to classic metal structures are the greater rigidity, better bending
strength, high fatigue strength, low weight, and good thermal and sound insulation.
Composite sandwich structures can be made by new manufacturing methods, such as
Fused Filament Fabrication (FFF). Composite sandwich structures include a base material
and outer skins that can be made from the same material or from a different material than
the core. The FFF process benefits from a relatively low cost, a wide range of materials,
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a high manufacturing speed, and a simple, quiet, and safe process. However, the FFF
process also has some disadvantages: the strength of the parts in the direction of 3D
printing (Z) is always lower than their strength in the XY plane, poor surface quality, low
dimensional accuracy, and specific defects of 3D printing (voids, layer shifting, blocked
nozzle, warping, delamination, stringing. Elephant’s foot).

Filaments reinforced with short fibers (chopped) or continuous fibers have been
developed in order to improve the mechanical strength of parts manufactured through the
FFF process [5]. However, the fabrication by the FFF process with filaments reinforced by
composite fibers introduces some problems, such as low adhesion between the layers of
material, fiber orientation, poor connection between fiber and a matrix with the formation
of voids, deformation of the shape caused by residual stresses that comes from uneven
temperature gradients, an uneven distribution of fibers in the fiber-reinforced thermoplastic
filament, and surface roughness [6–8]. Although 3D-polymer composites reinforced with
short fibers show significant performance improvements over pure plastics (Polylactic acid
-PLA, Acrylonitrile butadiene styrene—ABS, Polyethylene terephthalate glycol—PETG),
the mechanical properties are much lower compared to 3D-printed polymer composites
reinforced with continuous fibers. As the fibers have a specific stiffness and a much higher
specific strength than the matrix, it is recommended to design composite structures so that
the loads are mainly supported and transmitted by the fibers. In order to facilitate this
design goal, maintaining fiber continuity is essential [9]. Some researchers [10–12] have
been dedicated to determining the mechanical performance by varying the manufacturing
parameters of the FFF process (infill density, infill pattern, deposition layer height, printing
speed, printing temperature, nozzle diameter) for polymer composites reinforced with short
fibers. Yasa et al. [13] showed that there was a severe level of anisotropy in the mechanical
properties for the modulus of elasticity caused by insufficient adhesion between the layers
deposited in the construction direction of the parts made from chopped carbon-reinforced
polymers. Another study [14] on nylon filaments reinforced with carbon fiber indicated
that the hardness and the tensile strength are influenced by the construction direction of the
part, the infill density, and the thermal stresses, while the resilience is influenced only by the
construction direction, and the relationship between the mechanical properties and the infill
factor is not linear. In a study [15], the effects of the process conditions on the manufacture
of polymer composites reinforced with short carbon fiber made by the material extrusion
process were investigated at micro and macro levels. Image-based statistical analysis was
used for microstructural characterization (by example, fiber volume fraction), and the
results obtained confirmed that the manufacturing parameters play an important role in
void generation and the distribution of the void volume fraction. Zhong et al. [16] found
that the strength of parts made in the FFF process significantly improved by adding short
glass fibers to an acrylonitrile–butadiene–styrene (ABS) matrix.

For composites reinforced with continuous fibers, the composite can be 3D printed by
a double extrusion [17] or co-extrusion [18] method. Studies have been performed [19–21]
to compare the performance of polymer composites reinforced with short and continuous
carbon fiber manufactured by the FFF process. Araya-Calvo et al. [22] determined the bend-
ing and compression performance of polyamide 6 (PA6) reinforced with continuous carbon
fiber and studied the effect of fiber pattern, reinforcement distribution, and print orientation
on mechanical properties. The study [23] investigated the microstructure and mechanical
properties of polyamide composites reinforced with continuous carbon fiber manufactured
by the FFF process. The mechanical properties of 3D-printed composite specimens rein-
forced with continuous fibers indicate high values of rigidity and strength for longitudinal
composites, where the fibers have been aligned unidirectionally in the loading direction.
Defects specific to the FFF process (high void content, poor interlayer bonding, and inhomo-
geneous fibers distribution) have a significant impact on the strength to interlaminar shear
and on the breaking behavior of 3D-printed specimens [23–27]. However, researchers have
studied and significantly improved the mechanical performance of composites reinforced
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with continuous fibers, using various types of tests as compression [28,29], tensile [30–32],
bending [33–35], fatigue [36,37], and impact [38,39].

Sandwich structures manufactured by the thermoplastic extrusion process represent
an intensely researched direction, primarily due to the continuous development of 3D
printing systems and filaments. Thus, lately, sandwich structures from various types of
materials with different core topologies have been manufactured by the FFF process and
tested afterward. Zaharia et al. [40] studied three types of cores (honeycomb, diamond,
and corrugated) made by the FFF process from polylactic acid/polyhydroxyalkanoate
(PLA/PHA). The results showed good performance for the diamond core in three-point
compression and bending, and the corrugated core showed good performance for the
tensile stress. In a recent study, 3D printed sandwich structures, using TPU as the base
material and ABS, PMMA, and HIPS for coatings, have been tested for: bending and
impact [5]. The mechanical properties of sandwich structures manufactured by the FFF
process have also been improved by the simultaneous use of reinforced filament materials
and by optimizing the parameters of the 3D printing process. Therefore, using the FFF
process, hybrid composite laminates were manufactured that showed better mechanical
properties [41,42] compared to conventional materials. Zeng et al. [43] analyzed the static
performance of continuous fiber reinforced composite trapezoidal corrugated sandwich
structures with shape-memory capability manufactured by the FFF process. It was found
that the studied structures can offer new opportunities for use in lightweight systems
and multifunctional applications through the studied concept of shape recovery. Three-
dimensional printed sandwich composites were investigated [44] in order to determine
the performance of bending in three points, after which the structural failure modes were
analyzed. The result indicates that the addition of a glass micro balloon increases both the
specific modulus and the strength of sandwich composites. Galatas et al. [45] investigated
the mechanical properties of composite sandwich structures with an ABS core and a carbon-
fiber-reinforced polymer coating. The results showed an improvement in the specific
strength and modulus of elasticity as the number of polymers reinforced with carbon fiber
increased, and the analyzed material was implemented on the structure of a clamp in the
structure of a quadcopter. Recently, Andrey et al. [46] manufactured the lattice frame of
a small unmanned aerial vehicle from continuous fiber-reinforced composites using the
FFF process.

The present paper is aimed to design and test sandwich structures reinforced with
short carbon fibers, with various core topologies (Z, C, Hat) fabricated by the FFF process.
The performances at flatwise compression and at three-point bending were evaluated for
the three core configurations. In this paper, composite wing sections with a C core type
spar, manufactured by the FFF process, from an unmanned aerial vehicle (UAV) are studied
as an application of short fiber-reinforced composite sandwich structures. The performance
evaluation of the three-point mechanical bending of composite wing sections was also
determined in this study. Moreover, microstructural analysis of the defects appeared
after the tests were performed, starting from the filament, the sandwich structures, and
the wing sections. A final stage was dedicated to the comparative study of the wing
sections, between the experimental results and the results obtained using simulation by
finite element method.

2. Materials and Methods
2.1. Design of Composite Sandwich Structures

The composite sandwich structures were designed in SolidWorks 2021 (Dassault
Systèmes SolidWorks Corporation, Waltham, MA, USA), considering the specific regula-
tions in force (MIL-STD-401) regarding the testing of such specimens. For each type of test
(compression and three-point bending), three sandwich structures were designed with the
following core types: C core (Figure 1a–c), Z core (Figure 1d–f), and Hat core (Figure 1g–i).
The dimensional details regarding the positioning of the three core types can be found
in Figure 1. The sandwich specimens used in the compression tests had the following
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dimensions: length 50 mm, width 50 mm, and height 15 mm. For the three-point bending
test specimens, the dimensional characteristics were as follows: length 150 mm; width
20 mm, and height 15 mm.
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Figure 1. Design and dimensional description of composite sandwich structures (mm): (a) C profile
dimensions; (b) C-core composite sandwich structure subjected to compression test; (c) the C-core
composite sandwich structure subjected to bending test; (d) the dimensions of the Z profile; (e) Z-core
composite sandwich structure subjected to compression test; (f) Z-core composite sandwich structure
subjected to bending test; (g) Hat profile dimensions; (h) Hat core composite sandwich structure
subjected to compression test; (i) Hat core composite sandwich structure subjected to bending test.

2.2. Design of Wing Sections

The wing sections designed and tested in this study are part of the structure of an
unmanned aerial vehicle (UAV) made exclusively by 3D printing composite materials.
The wing is the main component of the airplane because around the wing, the whole
skeleton of the airplane is built, and the design begins with it. The wing creates, during
the movement of the airplane, the lifting force that keeps the airplane in the air. The forces
acting on the wing are: aerodynamic forces (lift, drag, and aerodynamic moment) and
mass forces that can be concentrated or distributed, coming from various components
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(own engine weight, landing gear, weight of the wings). These forces will be multiplied
by the load factor corresponding to the evolution of the aircraft. The stresses produced
by these forces are defined in relation to the line of the centers of rigidity of the wing
and generally consist of: a dominant stress—shear–bending in the normal direction of
the chord and twisting (normal shear force, bending moment, torque) and a secondary
load (shearing–bending in the plane of the chords). The design of the wing sections was
carried out in SolidWorks 2021, starting with the coordinates for the NACA 4415 airfoil.
The placement of the main spar was performed according to the aeronautical building
techniques, as follows: the first spar, a C core type, was positioned around 17–25% of the
chord, and the second spar, an X core type, was placed at around 30–45% of the chord, and
the third spar, again a C core type, was located between 60–75% of the chord. The internal
configuration of the wing section (Figure 2a) had a structure with three spars, as follows a
C core type spar on the wing leading edge, an X core type spar which takes the load from
the central part of the wing, and a C core type spar that is required to take the loads from
the wing trailing edge. The thickness of the wing skin was 1 mm, the width of the section
was 43 mm, and the thickness of the three spars was 0.8 mm (Figure 2b).
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the wing segment subjected to three-point bending.

2.3. Manufacture of Sandwich Specimens and Wing Sections Using the FFF Process
2.3.1. Materials

The filament used in the manufacture of the composite sandwich specimens and wing
sections was a BASF Ultrafuse PAHT CF15 (Emmen, The Netherlands), with a diameter of
2.85 mm [47]. The commercial filament is composed of a polyamide matrix reinforced with
short carbon fibers at a volume fraction of 6.5 ± 0.2% [48]. For the FFF specimen process,
the BASF Ultrafuse PAHT CF15 filament was pre-dried at 70 ◦C for 12 h, according to the
manufacturer’s specifications, using the Wanhao Box 2 dryer (Wanhao, Jinhua, China).
Packages of silica gel were placed inside the closed enclosure of the 3D printer to keep
the absorption of moisture by the polymer as low as possible. The filament was analyzed
microscopically before being used in the 3D printing of specimens and wing sections. The
filament was analyzed microscopically using Nikon Eclipse MA 100 microscopes (Nikon
Corp., Tokyo, Japan) before being used in the FFF process. Voids in the BASF Ultrafuse
PAHT CF15 filament were highlighted. These defects are due to the poor incorporation of
short fibers into the thermoplastic matrix during the filament manufacturing process [48].
These defects have been reported in other studies [49–51] in which short fiber-reinforced
filaments were analyzed, where it was observed that they are prone to porosity due to
low adhesion between thermoplastic and carbon-fiber surfaces. The following can be seen
in the microscopic images of the filament: the white lines (Figure 3a) or the white dots
(Figure 3b) represent the carbon fibers, and the darker areas represent voids that come from
the filament manufacturing process.
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2.3.2. Manufacture of Composite Sandwich Specimens

All of the composite structures were printed using the BCN3D Epsilon W50 3D printer
(Barcelona, Spain) from the BASF Ultrafuse PAHT CF15 filament. Positioning (Figure 4) and
the 3D printing of the structures were performed on the edge (XZ plane) without support.
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Figure 4. Establishing the 3D printing position of structures: (a) Composite sandwich specimens
subjected to compression test; (b) Composite sandwich specimens subjected to three-point bending
test; (c) Wing sections tested for three-point bending.

The manufacturing parameters of the FFF process for the composite sandwich speci-
mens and wing sections are described in Table 1.

Table 1. Parameters used in the manufacture of composite structures.

FFF Parameters Value

Infill density [%] 100
Layer height [mm] 0.2

Printing speed [mm/sec] 50
Extrusion temperature [◦C] 260

Bed Temperature [◦C] 100
Nozzle diameter [mm] 0.6

2.4. Testing of Composite Sandwich Specimens

The mechanical tests for the composite structures (sandwich structures and wing
sections) were performed on the WDW-150S universal testing machine (Jinan Testing
Equipment IE Corporation, Jinan, China). For the experimental tests (flatwise compression
and three-point bending), five specimens were manufactured by the FFF process for each
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core configuration (C, Z, and Hat), 15 for flatwise compression and 15 for bending, a total
of 30 specimens. The compression-tested specimens (Figure 5a) were manufactured in
accordance with ASTM C365 [52], and the loading speed was 5 mm/min. These tests were
performed to determine the mechanical performance of composite sandwich structures
(flatwise compressive strength and modulus of elasticity for compression). The three-
point bending tests (Figure 5b) evaluated the bending strengths of 3D printed composite
specimens until failure using a 5 mm/min speed in accordance with ASTM D790 [53]. Five
wing section specimens were tested at three-point bending (Figure 5c) at a displacement
speed of 5 mm/min. Following the three-point bending tests of the 3D-printed wing
sections, the load that the wing structure will be able to support during the flight was
determined using the three spars (two spars with a C section type and one spar with an X
section type).
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3. Results and Discussion
3.1. Flatwise Compression Performance of Carbon Fiber Sandwich Structures

Five compression tests were performed for each type of core specimen (C, Z, and
Hat), 3D printed by the FFF process. From these tests were determined the mean values
of compressive strength and modulus of elasticity for compression (Figure 6a). Figure 6b
shows a representative load–displacement curve for a compression test for each core
type from the composite sandwich structure. The compressive performance of different
composite sandwich structures varies depending on the different core topologies. The
mechanical performances (compression strength and modulus of elasticity of compression)
were calculated with the standardized calculation relationships of the compression tests
introduced by the manufacturer in the software of the test equipment. These values
of compressive strength and compression modulus are automatically generated in the
test report that came out from the testing of the sandwich specimens. The sandwich
structures with a C core had the lowest compression performance (5.6 Mpa compressive
strength and 0.256 Gpa modulus of elasticity for compression), and the composite sandwich
structures with a Hat core had the highest performance (14 Mpa compressive strength and
0.44 Gpa modulus of elasticity for compression). The values of the compressive strength
of the Hat core sandwich structure are higher compared to the results obtained in other
studies for different types of materials manufactured by additive processes, such as the
compressive strength of the diamond core sandwich structure (3 Mpa) manufactured by the
FFF process from PLA-PHA material [40]; compressive strength of sandwich structures with
diamond core (6.97 Mpa) manufactured by the Vat Photopolymerization process [54]. Load–
displacement curves typical of compression tests present similar evolutionary patterns,
which can be divided into three different stages: elastic deformation, deformation plateau,
and densification [55–57]. In the flatwise compression test, the plate of the test machine
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was close to the sandwich specimen but without coming into contact with it. Thus, there
was a distance at which the equipment recorded only the movement without loading the
specimen. In the case of the composite specimens from this study, they showed similar
behavior: an elastic domain, a short transient elastic-plastic domain, and then a progressive
failure of the structure to reach the maximum compressive strength. The irreversible
failure of the composite sandwich specimens appeared as follows: for specimens with
a C core, the maximum compression force was 11.3 kN, for specimens with a Z core,
the maximum compression force was 13.2 kN, and for specimens with a Hat core, the
maximum compression force was 25.5 kN. Following the compression tests, the maximum
displacements were between 1.4 mm and 1.8 mm. The phenomenon of densification could
be observed only in the sandwich structures with a Hat core because they have a denser
core network but also the highest strength.
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Figure 6. Compression test results of composite sandwich structures: (a) Mean values of compressive
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The main statistical indicators (Table 2) were determined, for the values of compressive
strength and elasticity of compression, of composite sandwich specimens manufactured by
the FFF process.

Table 2. Statistical indicators calculated from flatwise compression tests of composite
sandwich specimens.

Composite Sandwich Specimens Mean (m) Standard Deviation (s) Coefficient of Variation (CV)%

C core—Compressive Strength (MPa) 5.60 0.55 9.78
Z core—Compressive Strength (MPa) 6.20 0.45 7.21

Hat core—Compressive Strength (MPa) 14.00 1.22 8.75
C core—Compressive Modulus (GPa) 0.25 0.02 8.99
Z core—Compressive Modulus (GPa) 0.26 0.02 8.00

Hat core—Compressive Modulus (GPa) 0.44 0.03 6.81

Of all the variables that characterize variations, the standard deviation is used for
certain statistical analyzes. However, the standard deviation provides an absolute estimate
of the measurement of the dispersion of the values, and, in order to understand how large
it is in relation to the values themselves, it is necessary to introduce a relative indicator.
This indicator is called the coefficient of variation (CV) and is defined as the ratio between
the standard deviation and the mean value of the data sample, expressed as a percentage.
Moreover, in the statistical analysis of the experimental data, there is a system of indicators
that reflect the homogeneity of the data and the stability of the processes, including the
coefficient of variation (CV). In the case of data obtained from compression tests, it can be
stated that the data are homogeneous, and the averages are representative for the six sets
of values because the coefficient of variation is close to zero (CV < 30%).
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The compression load was mainly supported by the three core configurations, and
the role of the skin is to take over and transmit the loads to the core. The core with C
configuration (Figure 7a) showed, during the compression test, a shear buckling of the core,
which determined its rupture. Another mode of failure that occurred after the compression
testing of this type of specimen was cracking, followed by a debonding between the skin
layers and the C core. Microscopic inspection of a defective Z core sandwich specimen
(Figure 7b) seems to confirm the complexity of the deformation mechanism, in which the
typical buckling modes of the core appear at the neighboring Z profiles, together with the
cracking and rupture of both the core and the skin. Shear buckling shows a mode of failure
specific to the configuration of the Hat core (Figure 7c), with a deformation directed to the
inside of the structure, totally opposite to the other two structures (with C core and Z core)
analyzed above. This structure is much more rigid, the two components (core and skin) are
well designed, and the phenomenon of core densification has led to a higher strength. Due
to the denser core, the Hat core sandwich skin did not crack; only the core failed.
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Figure 7. Microscopic analysis of sandwich structures subjected to flatwise compression (20×
magnification): (a) C core; (b) Z core; (c) Hat core.

3.2. Three-Point Bending Behavior of Carbon Fiber Sandwich Structures

Following the three-point bending tests of the composite specimens, for each type of
C, Z, and Hat core specimen, the mean values of bending strength and modulus of bending
elasticity were determined (Figure 8a). The bending tests were performed on a number of
five specimens for each type of core C, Z, and Hat, and with the help of experimental data
were obtained and exposed the representative curves load–displacement. C core sandwich
structures and Z core sandwich structures showed close values for the mean bending
strength, 12.4 Mpa for C core, and 12.2 Mpa for Z core. In contrast, Hat core sandwich
structures have approximately 50% higher strength compared to the other two composite
structures. The superior mechanical performance of Hat core sandwich structures is due
to the denser structure of the core, corroborated with the occurrence of its densification
phenomenon. Figure 8b illustrates the evolution of the force as a function of displacement
for composite sandwich specimens, and the mechanical behavior has two areas:

• In the first domain, a linear elastic behavior of composite sandwich structures was
observed. At the beginning of this domain, for Hat core specimens, the force increases
and corresponds to a smaller displacement. This clearly demonstrates that the bending
stiffness of this sandwich structure is enhanced by the shear stiffness of the Hat core;

• The second domain comprises the final range of the curve and corresponds to the
nonlinear behavior of the material until the sudden rupture of the composite sandwich
specimens. The end of this area highlights the failure mode of the composite sandwich
structures. The core is shear loaded, and its failure occurs as the critical value (shear
strength) of the core material is reached by the maximum shear stress.
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strength and modulus of elasticity; (b) Load–Displacement curves.

The irreversible failure of the composite sandwich specimens with the highest bending
performance (Hat core sandwich specimens) occurred at a force of approximately 0.66 kN
correlated with a maximum displacement of approximately 7.6 mm. The C core and Z core
sandwich structures exhibited similar behavior in terms of bending stress according to the
Load–Displacement curves. Higher displacement is due to the fact that these two types
of core topologies, C and Z, are more elastic with much more distance between the cores
compared to the Hat core, which has very close stiffening elements (can be assimilated with
a structure with a double core).

The bending performance of Hat core composite sandwich structures is higher or
similar compared to the results obtained in other studies for different 3D printed core
topologies with various types of materials, such as: the bending strength of the diamond
core sandwich structure (16 Mpa) 3D printed from PLA-PHA material [40]; the bending
stresses for specimens with a core gyroid thickness of 0.75 mm and a CFRP insert diameter
of 1.20 mm was 2.3 Mpa, the specimens obtained using the technique of light-curing
acrylic resin stereolithography [58]; the value of the bending strength of some gyroid-
structured core specimens, manufactured by the FFF process, from wood/PLA filaments,
was 11.82 Mpa [59].

For the composite sandwich specimens manufactured through the FFF process, the
basic statistical indicators for the values of the bending strength and the modulus of
elasticity at bending were calculated (Table 3). Suppose the coefficient of variation (CV)
is close to zero (CV < 30%), then the statistically processed data are homogeneous, and
the calculated mean is representative of these experimental data sets. The values of the
coefficient of variation in the bending tests, were between 1.66% and 9.01%, so it can be
concluded that the data are homogeneous.

Table 3. Statistical indicators calculated from three-point bending tests of composite
sandwich specimens.

Composite Sandwich Specimens Mean (m) Standard Deviation (s) Coefficient of Variation (CV)%

C core—Bending Strength (MPa) 12.40 0.55 4.43
Z core—Bending Strength (MPa) 12.20 1.10 9.01

Hat core—Bending Strength (MPa) 17.00 0.71 4.17
C core—Bending Modulus (GPa) 0.49 0.01 2.04
Z core—Bending Modulus (GPa) 0.48 0.02 4.16

Hat core—Bending Modulus (GPa) 0.60 0.01 1.66

Different modes of failure have been observed for composite sandwich specimens
under bending tests. The C core and Z core sandwich structures have a high degree of
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flexibility, and the failure mode for the two is similar, namely a stable, progressive defect
with local indentation of the skin, both in the loading punch area and in supporting pins.
The local indentation of the composite sandwich structures started with an initial phase of
linear elastic deformation, followed by a deep local deformation both in the area where the
stress is applied (Figure 9a) but also in the area where the specimen surface is in contact
with the supporting pins (Figure 9b). This local defect in the composite sandwich structure
quickly reduced its load-bearing capacity, resulting in a sudden drop in load required to
continue the bending test. For the Hat core sandwich specimens (Figure 9c), there was also
a ductile rupture of the skin, which is caused by tangential stresses and is preceded by large
plastic deformations. When the structure of the core is sufficiently well dimensioned, the
indentation of the skin takes place, followed by the failure by yielding the upper face of the
skin, and finally, the structure fails by yielding the lower skin. It is also possible to observe
in this type of structure a debonding and cracking of the Hat core from the lower skin.
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Figure 9. Microscopic analysis of sandwich structures tested for bending at three points (20X magni-
fication): (a) C core; (b) Z core; (c) Hat core.

3.3. Bending Performance of Wing Sections

In this study, starting from the sandwich structures analyzed previously, the research
on the manufacture and testing of the performance of some wing sections was extended.
Thus, the three-point bend test wing was manufactured using three spars (two with a
C profile and the main spar with an X profile). Figure 10a describes the results of the
bending strengths of the wing specimens, and their values are between 5.5 Mpa and
6.5 Mpa. The main statistical indicators were determined for the bending results of the
wing sections. Thus, the value of the coefficient of variation is 9.8%, and the mean is
5.8 Mpa; it demonstrates that the data are homogeneous, and the mean is representative.
The representative Load–Displacement curve (Figure 10b) shows two main zones: a linear
increase, between the applied force and the displacement, with a certain non-linear behavior,
towards the maximum of the curve and then a sudden decrease, at the maximum force, at
the moment the specimens suffer breakage. It can be observed that the maximum force,
until the appearance of irreversible failure in the material of the composite sandwich
structure, was approximately 0.3 kN. Furthermore, the maximum displacement at which
the irreversible failure occurred in the material of composite sandwich structures was
19 mm.

The five wing section specimens had as a main mode of failure the deformation
(indentation) in the loading area, as well as in the fixing area of the two supports. However,
two of the wing sections manufactured by the FFF process also showed a complete fracture
of the skin (Figure 11a) and in the area where the force was applied. In Figure 11b, there is a
top view of the wing skin, where the wing failure can be seen, followed by a crack between
the layers of the extruded material.
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Figure 11. Microscopic analysis of three-point bending wing sections (magnification 20×): (a) Fracture
of the wing skin; (b) Failure of the wing skin—top view.

3.4. Microscopic Analysis of Composite Sandwich Structures

Microstructural analyzes were performed for the composite sandwich specimens to
highlight the main defects specific to the FFF process for composite filaments reinforced
with short carbon fiber. The composite sandwich specimens were prepared for microscopic
analysis as follows: the specimens were cut in cross-section, incorporated into the resin,
and polished using a granulation suspension of 1 µm and 0.5 µm Al2O3. The composite
sandwich specimens were analyzed microscopically on the sections perpendicular to the
XY plane (cross section) and according to the construction direction—Z axis (longitudinal
section) with a magnification of 100×. On the microscopic analysis, typical defects of short
fiber-reinforced composites were found, similar to the ones in other studies [7,23,30,60–62].
The defects are rectangular and triangular voids formation, inter-layer voids, voids found
in the matrix or filament, and poor adhesion between the fiber and the matrix. Figure 12a
shows a 90◦ corner area of a sandwich structure manufactured by the FFF process, and in
this corner, we can see a change in the orientation of the carbon fibers with some voids
where the direction of 3D printing had changed. Figure 12b analyzed an area with a partial
area of the sandwich structure skin, where the breaking of carbon fibers and pull-out fibers
can be observed. Figure 12c shows an area within the core of profile C where the orientation
of the carbon fibers and some voids can be seen. The stratified structure of the composite
sandwich specimens obtained from the FFF process is visible by microscopic analysis due
to interlayer voids and irregular distribution of carbon fibers and matrix (Figure 12d).
A solution for better adhesion between layers of extruded carbon fiber material is 3D
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printing with a lower layer height, which will allow better interlayer adhesion and stability
between individual lines [63,64].
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Figure 12. Microscopic analysis of wing sections tested for three-point bending (magnification 100×):
(a–c) Longitudinal section; (d) Cross-section.

3.5. Analysis of the Specific Strength-to-Mass Ratio of Composite Specimens

The specific strength-to-mass ratio was used to analyze the mechanical performance
of composite sandwich structures. All of the composite sandwich specimens were weighed
(Figure 13a), and the mean of the two characteristics (strength and mass) was used to
calculate the specific ratio. Thus, the strength-to-mass ratio was evaluated for the three-
point compression, and bending tests were conducted on the composite sandwich structures
manufactured with the three core configurations (C, Z, H). Following the analysis of this
report, the following conclusions can be drawn:

• For compression tests, H core composite sandwich structures have the highest value;
it turns out that this structure can be used for aeronautical components whose main
requirement is compression. It can also be seen that the specimens with the Z-core
sandwich structure have a higher ratio compared to the C-core structures. This is due
to the fact that the Z-core, through the flanges positioned to the left and right of the
core, absorbs the compression force much better.

• For the three-point bending tests, the sandwich structures showed a very close strength-
to-mass ratio. However, C-core sandwich structures showed the highest strength-to-
mass ratio, as confirmed by the frequent use of this structure in the wing airframes for
small aircraft and unmanned aerial vehicles.
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3.6. Bending Finite Element Analysis of Composite Wing Sections

Finite element analysis of the wing sections manufactured by the FFF process was
performed in the static module of the ANSYS 2021 R2 software system (ANSYS, Inc.,
Canonsburg, PA, USA). For this analysis, the model is consistent with the experimental
model of the wing section, and the three-point bending test conditions (section size, PAHT-
CF15 material properties, punch and support radius, and the distance between the supports
were established in accordance with the three-point bending tests). The finite element
analysis at three-point bending was performed following two aspects: the comparative
analysis between the defective behavior of the wing sections, tested at three-point bending
and the result obtained from the finite element analysis of the same models; the comparative
study of the maximum forces that appeared at the breaking of the wing sections, tested
at the bending in three points, and the reaction forces, appeared in the structure of the
supports, from the model with finite elements. In the finite element analysis, the boundary
conditions of the frictionless support type (Figure 14a) for the wing section were established
so as not to rotate during the simulation. The displacement of the punch was applied in
the middle of the wing section, having a value of 5 mm/min (Figure 14a), under the same
conditions as in the case of experimental tests. For the components of the test machine,
rigid body properties (which do not deform under the action of forces) were assigned,
and for the two supports, the option of a body–ground fixed joint was used (Figure 14b).
The discretization of the wing model for finite element analysis at the three-point bending
stress was performed with Hexa-type three-dimensional elements with a discretization
element size of 0.5 mm (Figure 14c). The punch and the two supports were discretized with
the same Hexa element type with a discretization element size of 2 mm (Figure 14c). The
friction between the punch, supports, and the surface of the wing section was taken into
account, and the coefficient of friction was 0.1 [65].

In the finite element analysis, the elastic-plastic model was used for the wing sections,
both for the two skins and for the spar. The finite element model was analyzed according
to the properties of the wing sections, showing an infill density of 100%. In the finite
element analysis of the wing sections, some simplifying hypotheses were established, and
used in other studies [60,66–68]: the constituents have a linear elastic behavior, the matrix
(polyamide) has isotropic properties; short micro-carbon fibers are transverse isotropic; the
fiber matrix has a perfect adhesion and has no voids or defects. The value of the modulus
of elasticity was 8386 Mpa, assumed to be that of the composite filament, and the Poisson’s
ratio had the value of 0.3 [66,68]. The material used in the FEA analysis was described
based on the material characteristics provided by the filament manufacturer. The failure
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criterion used in the finite element analysis, performed using Ansys software, of the wing
sections that were printed through the FFF process was Maximum Stress.
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tions; (c) Model discretization; (d) Failure of the wing section following three-point bending tests;
(e) Comparative analysis of reaction force; (f) Equivalent stress distribution [MPa].

Thus, following the investigation of the wing sections subjected to three-point bending
tests (Figure 14d) and the finite element analysis (Figure 14f), it can be seen that the rupture
occurs, in both cases, at the upper skin of the wing section, where the equivalent Von
Mises stress is maximum (66 Mpa). It can also be observed that the entire composite
wing structure, tested at three-point bending and finite element simulation, showed the
same mode of deformation, namely: a local buckling of the skin in the area where the
load is applied. This mode of failure indicates a good behavior of both the wing skin
and the network of stiffening structures (the two spars with C cores and the main spar
with an X core). Regarding the comparative study, between the maximum forces, which
appeared in the three-point bending tests of the wing sections and the reaction forces,
which appeared in the supports of the finite element model, it can be stated that there is an



Polymers 2022, 14, 2923 16 of 19

adequate validation of the results. If the two values of the forces appearing in the supports
are analyzed (Figure 14e) between the experimental and the simulated results, it can be
specified that there is an error that falls to a maximum of 3%. This relative error is accepted
in the field of aviation and normally occurs due to the simplifying assumptions set out
above. Based on the results of three-point mechanical bending tests of the wing sections,
it can be established that the data from the computer-generated bending tests (FEA) is an
effective method to characterize the deformation behavior of composite wing specimens
manufactured by the FFF process.

4. Conclusions

Composite sandwich structures are successfully used in the aerospace field for various
structural components, such as wing leading edges, fuselage structures, internal wing
configurations and feathers, and helicopter blades. In this study, short carbon-fiber com-
posite sandwich structures with three different core topologies, C, Z, and H, were designed,
manufactured by the FFF process, and afterward tested.

The compression tests of the three types of specimens showed that the H-core sandwich
structures presented the highest compressive strength due to the dense core structure. The
analysis of the composite sandwich specimens tested at compression revealed a mode of
failure specific to these types of structures, namely core shear buckling, followed by the
rupture of the skin and cracks between the layers of extruded material.

The three-point bending tests showed that the H-core specimens had the highest
performance, and the other two had a very close bending strength value. Microscopic
analysis of the composite sandwich specimens indicated a face indentation for the C and Z
core topologies and for the H core, a failure of both the skin and the core. After studying
the mass strength ratio, the following conclusions can be drawn: in the compression test,
the H-core sandwich structures showed the best performance; In contrast, in three-point
bending testing, C-core sandwich structures performed best.

The demonstration of the feasibility of manufacturing FFF sections of wing sections
for an unmanned aircraft using the C core topology was also analyzed in this study. From
the three-point bending tests, it can be seen that the wing section can take on approximately
0.3 kN, which is an adequate value for an unmanned aircraft, without the need for other
types of structural elements (spars, stringers, ribs). Finite element analysis complements
the experimental results for the wing sections and successfully validates the three-point
bending tests, with a low relative error value of about 3%. The results of this study provide
insights into the development of composite sandwich structures manufactured by the
FFF process, for a wide range of engineering applications, especially in aviation, where
lightweight components with high structural performance are required.

Author Contributions: Conceptualization, S.M.Z. and G.R.B.; methodology, S.M.Z., M.A.P., L.-A.C.
and I.S.P.; software, G.R.B. and C.L.; validation, V.-M.S.; investigation, S.M.Z., M.A.P. and G.R.B.;
writing—original draft preparation, G.R.B., S.M.Z., L.-A.C. and I.S.P.; project administration, S.M.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a grant of the Ministry of Research, Innovation and Digitiza-
tion, CNCS/CCCDI—UEFISCDI, project number PN-III-P2-2.1-PED-2019-0739, within PNCDI III.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We also acknowledge PRO-DD Structural Founds Project (POS-CCE, O.2.2.1.,
ID 123, SMIS 2637, ctr. No. 11/2009) for providing the infrastructure used in this work.

Conflicts of Interest: The authors declare no conflict of interest.



Polymers 2022, 14, 2923 17 of 19

References
1. Wang, Y.; Zhou, D.; Yan, G.; Wang, Z. Experimental and Numerical Study on Residual Strength of Honeycomb Sandwich

Composite Structure after Lightning Strike. Aerospace 2022, 9, 158. [CrossRef]
2. Ferreira, F.V.; Pinheiro, I.F.; de Souza, S.F.; Mei, L.H.I.; Lona, L.M.F. Polymer Composites Reinforced with Natural Fibers and

Nanocellulose in the Automotive Industry: A Short Review. J. Compos. Sci. 2019, 3, 51. [CrossRef]
3. Rubino, F.; Nisticò, A.; Tucci, F.; Carlone, P. Marine Application of Fiber Reinforced Composites: A Review. J. Mar. Sci. Eng. 2020,

8, 26. [CrossRef]
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