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Simple Summary: Insects such as beet armyworm (Spodoptera exigua) can cause extensive damage
to tomato plants (Solanum lycopersicum). Tomato photosynthesis was clearly reduced directly at S.
exigua feeding spots. However, neighboring zones and the rest of the leaf compensated through
increased light energy use in photosystem II, possibly trigged by singlet oxygen from the feeding zone.
Three hours after feeding, whole-leaf photosynthetic efficiency was as before feeding, demonstrating
the compensatory ability. Thus, chlorophyll fluorescence imaging analysis could contribute to
understanding the effects of herbivory on photosynthesis at a detailed spatial and temporal pattern.

Abstract: In addition to direct tissue consumption, herbivory may affect other important plant
processes. Here, we evaluated the effects of short-time leaf feeding by Spodoptera exigua larvae on
the photosynthetic efficiency of tomato plants, using chlorophyll a fluorescence imaging analysis.
After 15 min of feeding, the light used for photochemistry at photosystem II (PSII) (ΦPSII), and the
regulated heat loss at PSII (ΦNPQ) decreased locally at the feeding zones, accompanied by increased
non-regulated energy losses (ΦNO) that indicated increased singlet oxygen (1O2) formation. In
contrast, in zones neighboring the feeding zones and in the rest of the leaf, ΦPSII increased due
to a decreased ΦNPQ. This suggests that leaf areas not directly affected by herbivory compensate
for the photosynthetic losses by increasing the fraction of open PSII reaction centers (qp) and the
efficiency of these centers (Fv’/Fm’), because of decreased non-photochemical quenching (NPQ). This
compensatory reaction mechanism may be signaled by singlet oxygen formed at the feeding zone.
PSII functionality at the feeding zones began to balance with the rest of the leaf 3 h after feeding,
in parallel with decreased compensatory responses. Thus, 3 h after feeding, PSII efficiency at the
whole-leaf level was the same as before feeding, indicating that the plant managed to overcome the
feeding effects with no or minor photosynthetic costs.

Keywords: insect herbivory; photosynthetic efficiency; compensatory process; chlorophyll fluo-
rescence imaging; herbivory costs; non-photochemical quenching; photosystem II; singlet oxygen;
Solanum lycopersicum

1. Introduction

Globally around 14% of agricultural production is lost due to herbivores, and the
loss could be as high as 50% in the absence of insecticide application [1,2]. The damage
caused by herbivores is mainly assessed as the amount of leaf tissue consumed, assuming
that the leftover tissue is “undamaged”. However, this is a common misconception as
the photosynthesis of the remaining tissue is also affected [2–4]. Photosynthesis of the
remaining tissue can be suppressed by herbivory [4–6], but it can also be increased [7–9].
The photosynthetic efficiency of the remaining tissue plays an important role in how the
plant will develop and overcome herbivory since photosynthesis generates the energy
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needed for the synthesis of compounds used in defense, such as hormones, primary and
secondary defense-related metabolites, for compensatory repair and growth [10].

Tomato (Solanum lycopersicum) is an important crop plant worldwide, producing veg-
etables with rich nutritional value, but tomato plants are also susceptible to multiple pests,
which can severely affect taste and nutritional value [11]. Among these, the larval stages
of Spodoptera exigua (Hűbner), the beet armyworm, is a polyphagous insect with a wide
distribution and wide variety of plant hosts, most of which are crop species such as cotton,
cabbage, alfalfa, lettuce, and tomato plants [12–14]. Severe use of insecticides to control
S. exigua has led to the evolution of insecticide resistance in many populations [14–16]. It
was calculated that the economic injury level in tomato plants, e.g., the lowest population
density that will cause economic damage [17], is only one S. exigua larva per twenty tomato
plants, reflecting the severity of this pest on tomato production [18].

Plants defend themselves against herbivore attack through constitutive and inducible
defenses and other response mechanisms, while herbivores, in turn, have evolved adapta-
tions to defeat these mechanisms [19]. Diverse molecular processes regulate the interactions
between plants and insect herbivores [20] and subsequent compensatory processes in the
plants [7]. A better understanding of the extensive range of plant responses to herbivory
can result from studies on how tissue injury changes the plant’s physiology, especially
photosynthesis [21–23]. A wide range of leaf-level photosynthetic responses has been
reported to occur after herbivory, fluctuating from increased, no change, or decreased
photosynthetic impairment [22,24,25].

The way that we estimate productivity loss by herbivory in agriculture does not reflect
the extent to which herbivory affects photosynthesis of the remaining leaf area [4]. By
studying the photosynthetic response of plants in-depth, we can better understand how
the undamaged tissue is affected. Chlorophyll fluorescence measurements have been used
to explore the function of the photosynthetic apparatus and for the assessment of pho-
tosynthetic tolerance mechanisms to biotic and abiotic stresses [7,25–27]. Photosynthetic
impairment due to biotic stresses can be readily revealed with chlorophyll fluorescence
measurements due to the effects on light energy use [7,25]. Nevertheless, photosynthetic
functioning is not homogeneous at the leaf surface, which makes standard chlorophyll flu-
orescence analysis non-representative of the photosynthetic status of the whole leaf [27–29].
The development of chlorophyll fluorescence imaging has overcome those challenges by
allowing us to study the spatial heterogeneity of leaves [30–32].

Analyses of chlorophyll fluorescence imaging technique can be used to estimate
quantitative photosynthetic changes in photosystem II (PSII), after herbivore attack, by
evaluating the light energy used for photochemistry (ΦPSII), the energy lost in PSII as heat
(ΦNPQ), and the non-regulated energy loss (ΦNO), which contributes to the formation of
reactive oxygen species (ROS) as singlet oxygen (1O2) [33]. It should be noted that the
heat energy loss, ΦNPQ, serves as a photoprotective process. Following the absorption of
photons by the light-harvesting complexes (LHCs), the transfer of excitons to the reaction
centers (RCs) and the initiation of electron transfer from PSII to photosystem I (PSI) must
be well regulated to prevent “over-excitation” of the photosystems, which leads to the
formation of ROS and photoinhibition [33–36]. In the light reactions of photosynthesis, at
PSII and PSI, ROS, such as superoxide anion radical (O2

•−), hydrogen peroxide (H2O2),
and singlet oxygen (1O2) are continuously produced at basal levels that do not cause
damage, as they are scavenged by antioxidant mechanisms [37–41]. However, under most
biotic or abiotic stresses, the absorbed light energy exceeds what can be used, and thus, can
damage the photosynthetic apparatus [42–44], with PSII being particularly unprotected [45].
The most important mechanism that protects against excess light conditions is the non-
photochemical quenching (NPQ), which dissipates the over-excitation as heat within a time
range from minutes to hours [46–50]. Non-photochemical exciton quenching is typically
measured by the quenching of chlorophyll a fluorescence [7,40,51]. If this excess excitation
energy is not quenched by NPQ, increased production of ROS occurs that can lead to
oxidative stress [38,52,53].
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Plant’s response to herbivory has evolved to minimize both damage and energy costs
for defense and compensation. Since photosynthesis provides the energy for both these
processes, it must also have evolved to be highly integrated with the plant’s reaction to
herbivory. There seem to be a variability in the effect of feeding damage on photosynthesis,
based on the feeding guild of the herbivore, but also the plant species under study and
whether we measure the response on the plant level or the leaf level. Identifying the
photosynthetic changes that occur in plants in response to herbivores will enable the under-
standing of response mechanisms to herbivore damage and identify potential mechanisms
of tolerance [54]. In this study, we investigated whether (1) the photosynthetic efficiency of
tomato leaves was suppressed immediately after a short time feeding by Spodoptera exigua,
(2) if the plant shows signs of compensation in the leaf parts not damaged by herbivory,
and (3) if the leaves are recovering from herbivory or maintain a suppressed photosynthetic
state over time.

2. Materials and Methods
2.1. Plant Material and Growth Conditions

Seeds of tomato plants (Solanum lycopersicum cv. Moneymaker) were acquired from
Kings seeds (Essex, UK) and surface sterilized with 70% ethanol for 1 min and 1% sodium
hypochlorite solution for 10 min, followed by 6 washes with sterilized water. After that,
they were sown in 2 L pots with potting soil (clay and silica, gröna linjen, SW Horto AB,
Hammenhög, Sweden), and grown in a greenhouse chamber for 8 weeks under controlled
conditions, 19 ± 1/17 ± 1 ◦C day/night temperature, with a photoperiod of 16-h day at
180 ± 20 µmol photons m−2 s−1 light intensity, and 60 ± 5% relative humidity. Nine-week-
old plants were used for the experiments.

2.2. Spodoptera exigua

Spodoptera exigua eggs were provided by Entocare (Wageningen, The Netherlands).
After hatching, L1 larvae were transferred to an artificial diet (agar 28 g, cornflower 160 g,
beer-yeast 50 g, wheat germs 50 g, sorbic acid 2 g, methy1-4-hydoxybenzoato 1.6 g, ascorbic
acid 8 g, streptomycin 0.1 g per L) until L2 instar. Larvae were kept under control conditions
at 21 ± 1 ◦C day-night temperature, with a 12 h light cycle and 38% ± 5% relative humidity.
The L2 instar larvae used in the experiment were starved for 24h prior to exposure to
tomato leaflets in order to ensure quick consumption.

2.3. Experimental Design

In each of the four experimental plants, the terminal leaflet of the sixth leaf was used
for the experimental measurements. The leaflet was enclosed in the measurement chamber
of a fluorometer (Figure 1a), and the photosynthetic efficiency was measured (“Before
herbivory” measurements). One larva was added to the leaflet within the measurement
chamber, and a cap was placed over to act as an enclosure (Figure 1b). After 15 min of
feeding, the larva was removed, and the leaflet was measured immediately and 90 min
and 180 min later (post-feeding period).
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Figure 1. The layout of the experimental setup for chlorophyll fluorescence measurements. The ter-
minal leaflet of the 6th leaf is placed in the instrument for the measurement before feeding (a), and 
then the larva was added on top of the leaflet (b). A protective cap (with holes on the top for venti-
lation) was placed to restrain the movement of the larva for the 15 min of feeding. 

2.4. Chlorophyll Fluorescence Imaging Analysis 
Chlorophyll a fluorescence was measured at room temperature (21–22 °C) using the 

MINI version of an imaging-PAM fluorometer (Walz, Effeltrich, Germany, 
https://www.walz.com, accessed on 10 June 2021), as described before [55]. Tomato leaf-
lets were dark-adapted for 15 min before each measurement. Eight to ten areas of interest 
(AOI) were selected in each leaflet before herbivory (“Before”) to cover the whole leaflet 
area (Figure 2a). After herbivory, an AOI was added, covering each spot of herbivory 
(feeding spot) and one or two AOI adjacent to the feeding spot (surrounding area) (Fig-
ure 2b). Exceptions were made when the feeding spot occurred in a nearby or an existing 
AOI; in that case, the new AOI was added as close as possible to the feeding spot. In total, 
7 AOIs were analyzed as feeding spots. 
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Figure 2. False color image of a tomato leaflet in which the color of each pixel represents the level 
of Fm (maximum chlorophyll a fluorescence in the dark) at the location showing the position of 
areas of interest (AOIs). Ten AOIs were chosen before feeding (a) while five additional AOIs were 
chosen after feeding (b),at the upper feeding spot (shown by an asterisk), a new AOI (shown by an 
arrow) was added near the existing AOIs as close as possible to the feeding spot, and another new 
AOI (shown by arrow) was added as a surrounding zone. At the lower feeding spot (shown also by 
an asterisk), one new AOI (shown by white arrow) was added in the feeding spot, and two new 
more AOIs (shown by black arrows) as surrounding zones. The AOIs are complemented by red 
labels with the Fm value at their location. The color code on the right side shows pixel values from 
0 to 0.4. 

The first step of each measurement was to determine Fo (minimum chlorophyll a flu-
orescence in the dark) with 0.5 μmol photons m–2 s−1 measuring light and Fm (maximum 
chlorophyll a fluorescence in the dark) with a saturating pulse (SP) of 6000 μmol photons 

Figure 1. The layout of the experimental setup for chlorophyll fluorescence measurements. The
terminal leaflet of the 6th leaf is placed in the instrument for the measurement before feeding (a),
and then the larva was added on top of the leaflet (b). A protective cap (with holes on the top for
ventilation) was placed to restrain the movement of the larva for the 15 min of feeding.

2.4. Chlorophyll Fluorescence Imaging Analysis

Chlorophyll a fluorescence was measured at room temperature (21–22 ◦C) using
the MINI version of an imaging-PAM fluorometer (Walz, Effeltrich, Germany, https://
www.walz.com, accessed on 10 June 2021), as described before [55]. Tomato leaflets were
dark-adapted for 15 min before each measurement. Eight to ten areas of interest (AOI)
were selected in each leaflet before herbivory (“Before”) to cover the whole leaflet area
(Figure 2a). After herbivory, an AOI was added, covering each spot of herbivory (feeding
spot) and one or two AOI adjacent to the feeding spot (surrounding area) (Figure 2b).
Exceptions were made when the feeding spot occurred in a nearby or an existing AOI; in
that case, the new AOI was added as close as possible to the feeding spot. In total, 7 AOIs
were analyzed as feeding spots.
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Figure 2. False color image of a tomato leaflet in which the color of each pixel represents the level of
Fm (maximum chlorophyll a fluorescence in the dark) at the location showing the position of areas of
interest (AOIs). Ten AOIs were chosen before feeding (a) while five additional AOIs were chosen
after feeding (b),at the upper feeding spot (shown by an asterisk), a new AOI (shown by an arrow)
was added near the existing AOIs as close as possible to the feeding spot, and another new AOI
(shown by arrow) was added as a surrounding zone. At the lower feeding spot (shown also by an
asterisk), one new AOI (shown by white arrow) was added in the feeding spot, and two new more
AOIs (shown by black arrows) as surrounding zones. The AOIs are complemented by red labels with
the Fm value at their location. The color code on the right side shows pixel values from 0 to 0.4.

The first step of each measurement was to determine Fo (minimum chlorophyll a fluores-
cence in the dark) with 0.5 µmol photons m−2 s−1 measuring light and Fm (maximum chloro-

https://www.walz.com
https://www.walz.com


Insects 2021, 12, 562 5 of 15

phyll a fluorescence in the dark) with a saturating pulse (SP) of 6000 µmol photons m−2 s−1.
The steady-state photosynthesis Fs was measured after 5 min illumination time before switching
off the actinic light (AL). The actinic light (AL) applied to assess steady-state photosynthesis was
200 µmol photons m−2 s−1, selected to correspond with the growing light of the tomato plants.
The maximum chlorophyll a fluorescence in the light-adapted leaf (Fm’) was measured with
SPs every 20 s for 5 min after application of the AL (200 µmol photons m−2 s−1). The minimum
chlorophyll a fluorescence in the light-adapted leaf (Fo’) was computed by the Imaging Win
software using the approximation of Oxborough and Baker [56] as Fo’ = Fo/(Fv/Fm + Fo/Fm’),
where Fv (variable chlorophyll a fluorescence in the dark) was calculated as Fm − Fo. The
measured chlorophyll fluorescence parameters are shown in Table 1. Representative color code
images that are displayed were obtained with 200 µmol photons m−2 s−1 AL. The results of the
chlorophyll fluorescence analysis are split into (a) the whole leaflet response as a mean value of
all the AOIs, and (b) the response in 3 zones, feeding spots, surrounding zones, and the rest of
the leaflet.

Table 1. Definitions of the chlorophyll fluorescence parameters calculated from the five main chloro-
phyll fluorescence parameters (Fo, Fm, Fo’, Fm’, and Fs).

Parameter Definition Calculation

ΦPSII
Fraction of absorbed light energy used

for PSII photochemistry (Fm’ − Fs)/Fm’

ΦNPQ
Fraction of absorbed light energy

diverted into regulated heat loss in PSII Fs/Fm’ − Fs/Fm

ΦNO

Fraction of absorbed light energy
dissipated as non-regulated energy loss

in PSII
Fs/Fm

NPQ
Non-photochemical quenching reflecting

the dissipation of excitation energy
as heat

(Fm − Fm’)/Fm’

ETR Electron transport rate

ΦPSII × PAR × c × abs, where
PAR is the photosynthetically

active radiation, c is 0.5, and abs
are the total light absorption of

the leaf taken as 0.84

Fv’/Fm’ Efficiency of open PSII reaction centers (Fm’ − Fo’)/Fm’

qp

Photochemical quenching, representing
the redox state of the plastoquinone pool,

or the fraction of open PSII
reaction centers

(Fm’ − Fs)/(Fm’ − Fo’)

2.5. Statistical Analysis

Pairwise differences in chlorophyll fluorescence parameters from before to after her-
bivory (15, 90, and 180 min) were analyzed with Student’s t-test, using the IBM SPSS
Statistics for Windows version 27.0, at a level of p < 0.05. Average fluorescence values were
estimated across the AOIs for the “Before” measurements and for each of the leaf zones
(“Feeding spot”, “Surrounding zone”, and “Rest of the leaflet”) directly after herbivory
(15 min) and later (90 and 180 min).

3. Results
3.1. Allocation of Absorbed Light Energy at the Whole Leaflet before and after Feeding

For the estimation of the allocation of absorbed light energy before and after feeding,
we measured the fraction of the absorbed light energy that is used for photochemistry
(ΦPSII), the energy that is lost in PSII as heat (ΦNPQ), and the non-regulated energy loss
(ΦNO), that add up to unity [50,57]. For the whole leaflet, the fraction of absorbed light
energy directed to photochemistry (ΦPSII) increased from 37% before feeding to 42% directly
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after feeding (15 min; significantly higher than before; Figure 3a, Table S1). Later, 90 and
180 min after feeding, ΦPSII gradually decreased to 41% and 36%, respectively (although
not significantly different from before herbivory, Table S1). In contrast, the energy fraction
lost in PSII as regulated heat (ΦNPQ) decreased from 36% before feeding to 31% directly
after feeding (significantly lower; Figure 3a, Table S1). Ninety minutes after feeding, ΦNPQ
decreased further to 28% but increased to 36% at 180 min, the same as before feeding
(0 min). The fraction of non-regulated energy lost (ΦNO) increased from 26% before feeding
to 27% and 31% directly after feeding and at 90 min after feeding, respectively (Table S1).
At 180 min, it decreased slightly again to 28% (non-significant increase and decrease,
Figure 3a, Table S1).

Insects 2021, 12, x FOR PEER REVIEW 6 of 15 
 

 

(ΦPSII), the energy that is lost in PSII as heat (ΦNPQ), and the non-regulated energy loss 
(ΦNO), that add up to unity [50,57]. For the whole leaflet, the fraction of absorbed light 
energy directed to photochemistry (ΦPSII) increased from 37% before feeding to 42% di-
rectly after feeding (15 min; significantly higher than before; Figure 3a, Table S1). Later, 
90 and 180 min after feeding, ΦPSII gradually decreased to 41% and 36%, respectively (alt-
hough not significantly different from before herbivory, Table S1). In contrast, the energy 
fraction lost in PSII as regulated heat (ΦNPQ) decreased from 36% before feeding to 31% 
directly after feeding (significantly lower; Figure 3a, Table S1). Ninety minutes after feed-
ing, ΦNPQ decreased further to 28% but increased to 36% at 180 min, the same as before 
feeding (0 min). The fraction of non-regulated energy lost (ΦNO) increased from 26% before 
feeding to 27% and 31% directly after feeding and at 90 min after feeding, respectively 
(Table S1). At 180 min, it decreased slightly again to 28% (non-significant increase and 
decrease, Figure 3a, Table S1). 

  
(a) (b) 

Figure 3. Light energy utilization in photosystem II of tomato leaflets before (0 min), immediately after insect feeding (15 
min), and post-feeding period (90 and 180 min). (a) Allocation at the whole leaflet of absorbed light energy for photochem-
istry (ΦPSΙΙ, blue), regulated non-photochemical energy loss (ΦNPQ, dark green), and non-regulated energy loss (ΦNO, dark 
red). (b) The effective quantum yield of photochemistry (ΦPSΙΙ) for the whole leaflet (blue), in the feeding zone (light red), 
the zone surrounding the feeding zone (dark red), and in the rest of the leaflet (dark green). Boxes and whiskers indicate 
the tenth, twenty-fifth, fiftieth, seventy-fifth, and ninetieth percentiles. Circles and squares indicate outliers. Asterisks in-
dicate significant pairwise differences from the Before values: *: p < 0.05; **: p < 0.01; ***: p < 0.001. 

3.2. Allocation of Absorbed Light Energy at the Feeding Site, the Surrounding Zone, and at the 
Rest Leaflet Areas before and after Feeding 

At the feeding zone, ΦPSII decreased significantly at the larval feeding spots from be-
fore to immediately after herbivory (Figure 3b, Table S2); it increased slightly again from 
90 min to 180 min but remained significantly lower compared to before herbivory. In con-
trast, at the surrounding leaflet zone and the rest leaflet ΦPSII was significantly higher im-
mediately after feeding (15 min) as well as 90 min later but 180 min after feeding did not 
differ compared to 0 min (before herbivory, Figure 3b, Table S2). 

The energy lost in PSII as heat (ΦNPQ) at the feeding zone (Figures 4a and 5) decreased 
significantly from before to immediately after herbivory as well as 90 min later, but 180 
min after feeding it did not differ compared to before herbivory (Table S3). In the sur-
rounding leaflet area and the rest leaflet area, ΦNPQ decreased significantly immediately 
after feeding as well as 90 min later (Figures 4a and 5, Table S3). At 180 min, ΦNPQ, in the 
surrounding area was still significantly reduced (Table S3) while the rest of the leaflet did 
not differ compared to before herbivory (Figures 4a and 5). 

Figure 3. Light energy utilization in photosystem II of tomato leaflets before (0 min), immediately after insect feeding
(15 min), and post-feeding period (90 and 180 min). (a) Allocation at the whole leaflet of absorbed light energy for
photochemistry (ΦPSII, blue), regulated non-photochemical energy loss (ΦNPQ, dark green), and non-regulated energy
loss (ΦNO, dark red). (b) The effective quantum yield of photochemistry (ΦPSII) for the whole leaflet (blue), in the feeding
zone (light red), the zone surrounding the feeding zone (dark red), and in the rest of the leaflet (dark green). Boxes and
whiskers indicate the tenth, twenty-fifth, fiftieth, seventy-fifth, and ninetieth percentiles. Circles and squares indicate
outliers. Asterisks indicate significant pairwise differences from the Before values: *: p < 0.05; **: p < 0.01; ***: p < 0.001.

3.2. Allocation of Absorbed Light Energy at the Feeding Site, the Surrounding Zone, and at the
Rest Leaflet Areas before and after Feeding

At the feeding zone, ΦPSII decreased significantly at the larval feeding spots from
before to immediately after herbivory (Figure 3b, Table S2); it increased slightly again
from 90 min to 180 min but remained significantly lower compared to before herbivory. In
contrast, at the surrounding leaflet zone and the rest leaflet ΦPSII was significantly higher
immediately after feeding (15 min) as well as 90 min later but 180 min after feeding did not
differ compared to 0 min (before herbivory, Figure 3b, Table S2).

The energy lost in PSII as heat (ΦNPQ) at the feeding zone (Figures 4a and 5) decreased
significantly from before to immediately after herbivory as well as 90 min later, but 180 min
after feeding it did not differ compared to before herbivory (Table S3). In the surrounding
leaflet area and the rest leaflet area, ΦNPQ decreased significantly immediately after feeding
as well as 90 min later (Figures 4a and 5, Table S3). At 180 min, ΦNPQ, in the surrounding
area was still significantly reduced (Table S3) while the rest of the leaflet did not differ
compared to before herbivory (Figures 4a and 5).
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energy loss (ΦNO) in different zones of tomato leaflets before (0 min), immediately after (15 min), and post-feeding period,
90 and 180 min after insect feeding. Symbols, box plots, and significances are as in Figure 3.
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Figure 5. Representative color-coded images of effective quantum yield of PSII photochemistry
(ΦPSII), regulated non-photochemical energy loss (ΦNPQ), and non-regulated energy loss (ΦNO) of a
tomato leaflet before insect feeding (0 min; upper row), immediately after (15 min; second row), and
post-feeding period (90 and 180 min; lower two rows). Ten initial measurement areas (areas of interest:
AOIs) are shown in circles with their associated measurements in red labels; the corresponding values
for the whole leaflet (average ± SD) are given in white. At 15 min, two AOI (shown by white arrows)
were added to cover each spot of herbivory (feeding spot) and three more adjacent to and as close as
possible to the two feeding spots (surrounding area). The single asterisks at 15 and 90 min mark an
additional minor feeding spot, which recovered later (indicated by two asterisks at 180 min). The
color code on the right side of the images shows pixel values ranging from 0.1 (dark green) to 0.5
(dark brown).
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In the feeding zones, the non-regulated energy loss (ΦNO) increased to almost double
from before to after feeding (significantly higher, Table S4), but decreased again from
15 min to 180 min (Figures 4b and 5). At 180 min, it was still significantly higher than before
feeding (Table S4). ΦNO also increased significantly in the surrounding zone (Table S4)
immediately after feeding as well as 90 and 180 min after feeding compared to before
herbivory (0 min). In contrast, ΦNO did not differ in the rest of the leaflet immediately after
feeding as well as 90 and 180 min later.

3.3. Changes in Non-Photochemical Fluorescence Quenching and Electron Transport Rate before
and after Feeding

The excitation energy dissipated as heat (NPQ) at the feeding zone (Figure 6a) de-
creased significantly (Table S5) immediately after feeding as well as 90 and 180 min later
(compared to before herbivory). At the surrounding zone and the rest of the leaflet, NPQ
decreased significantly immediately after feeding as well as 90 min later. At 180 min after
feeding, only the surrounding area was significantly lower, while the rest of the leaflet did
not differ to 0 min (before herbivory, Figure 6a).
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Figure 6. Changes in (a) non-photochemical quenching (NPQ) and (b) electron transport rate (ETR) in different zones of
tomato leaflets before (0 min), immediately after (15 min), and post-feeding period, 90 and 180 min after insect feeding.
Symbols, box plots, and significances are as in Figure 3.

In the feeding zone, the electron transport rate, ETR, decreased significantly from
before to directly after herbivory (15 min; Figure 6b, Table S6) and 180 min, while at
90 min did not differ but later (180 min) was significantly lower compared to the 0 min.
At the surrounding leaflet area and the rest of the leaflet, ETR was significantly higher
immediately after feeding, as well as 90 min later, but 180 min after feeding did not differ
compared to 0 min (before herbivory, Figure 6b, Table S6).

3.4. Changes in the Fraction of Open Photosystem II Reaction Centers and Their Efficiency before
and after Feeding

The efficiency of open PSII reaction centers (Fv’/Fm’) increased significantly directly
after herbivory (15 min) and at 90 min in the rest of the leaflet (Figure 7a, Table S7).
However, it did not differ compared to other leaflet areas at all measured times (Table S7).
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The open reaction centers of PSII (qp) decreased significantly at the feeding zones from
63% to only 40% immediately after herbivory (15 min). At the same time, the fraction of
open reaction centers increased to 69% in the surrounding area and to 68% at the rest of the
leaflet (Figure 7b, Table S8).

4. Discussion

Herbivory is an important selective pressure in most plant species, as it usually results
in reduced plant fitness [7]. However, some plants are able to compensate for the resources
lost to herbivory and do not suffer any reduction in growth or reproduction after a short
attack [7].

Our results show that photosynthesis of tomato leaflets in response to insect herbivory
show clearly differential response at the feeding zone and at the surrounding areas. While at
the feeding zone, we observed a reduction in photochemical efficiency (ΦPSII), as expected,
at the surrounding leaflet area, and the rest of the leaflet ΦPSII was in contrast significantly
increased (Figure 3b). Thus, photosynthetic efficiency showed signs of compensation even
within the same leaflet. Compensatory ability varies depending on the plant species, the
amount of leaf area lost, the environmental conditions, the mode of herbivore damage, and
the timing of the herbivory [7].

In contrast to the photochemical efficiency, the fraction of energy dissipated as non-
regulated energy loss in PSII (ΦNO) increased drastically upon herbivory to almost double
in the feeding zones, but much less so in other leaf parts. Likewise, the fraction of energy
diverted into regulated heat loss (ΦNPQ) decreased much more in the feeding zones than
elsewhere. Thus, our results indicate a different response to herbivory at the different
leaf zones.

The increased ΦPSII immediately after feeding in the zone surrounding the herbivore
damage and in the rest of the leaflet could be ascribed either to an increased fraction of open
PSII reaction centers (qp) or to increased efficiency of these centers (Fv’/Fm’) [58]. According
to our measurements, the increased ΦPSII, was due to both, as indicated by the decrease in
NPQ. The NPQ parameter is primarily representing regulated thermal energy dissipation
from the light-harvesting complexes (LHCs) via the zeaxanthin quencher [33,59]. In cases
of an increase in the excess light energy that is dissipated as heat (NPQ), this decreases
the efficiency of photochemical reactions of photosynthesis [34,40,47,49]. Accordingly,
the increased ΦPSII at the zones surrounding the feeding sites and the rest of the leaflets
immediately after feeding was due to the decreased NPQ that resulted in increased electron-
transport rate (ETR) (Figure 6a,b). In accordance with our results, Cucumis sativus plants that
were subject to herbivory were able to compensate for herbivore damage by increasing their
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photosynthetic efficiency and capacity and by using a higher proportion of the absorbed
light energy for photosynthesis [7]. Compensatory photosynthesis under herbivory was
explained by a higher demand on the remaining leaf area to fix larger amounts of carbon,
requiring a higher proportion of the absorbed light energy for photosynthesis [7].

The simultaneous increase in the fraction of light energy that dissipates as non-
regulated energy, ΦNO indicates increased ROS creation, especially at the feeding sites
through 1O2 formation (Figure 4b). ΦNO involves chlorophyll fluorescence internal conver-
sions and intersystem crossing that results in the formation of singlet oxygen (1O2) creation
via the triplet state of chlorophyll (3chl*) [33,41,60,61]. The 1O2 formatted this way is a
highly harmful ROS generated in PSII [62–66]. High concentrations of 1O2 can damage
proteins, pigments, and lipids in the photosynthetic apparatus and trigger programmed cell
death [38,42,67]. Non-photochemical quenching (NPQ) is the photoprotective mechanism
that dissipates excess light energy as heat and protects photosynthesis [45,47,68,69]. Thus,
the decreased NPQ (Figure 6a) resulted in increased ROS creation through 1O2 formation
(Figure 4b).

The photosystem II subunit S protein, PsbS, plays an important role in triggering
NPQ responses to dissipate over-excitation harmlessly, involved in the photoprotective
mechanism of heat dissipation [70]. In an impaired Arabidopsis thaliana NPQ mutant, lacking
PsbS and the violaxanthin de-epoxidase Vde1 (commonly known as npq4 npq1), ROS
generation was enhanced [71,72], while jasmonic acid content was altered [73,74]. Jasmonic
acid is an important plant hormone that regulates, among other key responses, biotic
defenses [74]. In addition, the deletion of PsbS renders A. thaliana mutants less attractive
for herbivores [71] and capable of achieving superior pathogen defense [74]. In contrast,
A. thaliana mutants overexpressing PsbS were preferred for feeding by both a generalist
(Plutella xylostella) and a specialist (Spodoptera littoralis) insect [72]. It seems that the PsbS
dependent thermal dissipation may be an important adjustment between abiotic stress
tolerance and biotic defense [74]. Gaining photoprotection in photosynthesis occasionally
causes decreased pathogen and herbivore defense. Consequently, plants growing in
environments with a high herbivory level may evolve compensatory mechanisms as a
way to maximize fitness in these environments [7]. At the same time, when no herbivory
occurs, a non-compensating plant may have higher fitness than a compensating one [7].
Accordingly, in environments with constantly high herbivory, the non-compensating plant
would suffer reduced fitness. From this, we suggest that the decreased NPQ, especially
in the feeding zones, was due to the downregulation of PsbS. Downregulation of PsbS
might be a way for plants to adjust to herbivory. Moreover, the compensatory reactions in
surrounding zones and the rest of the leaflets may be signaled by 1O2 formed at the feeding
zone. Future research may examine the PsbS gene expression levels and/or protein levels
of plant leaves after herbivore feeding.

In our experiment, while the non-photochemical quenching (NPQ) decreased immedi-
ately after feeding, it increased again in all leaf zones until the last measurement at 180 min,
to a level indistinguishable from the before feeding in the rest of the leaves (Figure 6a). At
the same time, ΦPSII, ΦNPQ, and ΦNO returned to before feeding levels (Figure 3a). Other
studies have reported a decreased NPQ upon pathogen attack, as early as 20 min after
the attack, which was attributed to a reduced amount of PsbS, and it was proposed that
NPQ regulation is a fundamental component of the plant’s defense program [71]. Defense
response mechanisms can be triggered by NPQ so that light energy allocation is adjusted
in order to have an enhanced PSII functionality [31]. The decreased NPQ immediately after
feeding was probably caused by a reduction in the protein levels of the PSII subunit protein
PsbS [75]. However, during infection with virulent and avirulent pathogens, NPQ was
increased, 6 to 9 h after infection [76,77], while contrasting results with both an increase
and a decrease in NPQ have also been reported [78]. These opposing results are probably
due to the role of PsbS protein in the NPQ process. The PsbS protein plays the role of a
kinetic modulator of the energy dissipation process in the PSII light-harvesting antenna,
being not the primary cause of NPQ [79]. Arabidopsis thaliana plants lacking PsbS (npq4
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mutant) were found to possess a process that worked on a longer timescale, taking about
1 h to reach the same level of NPQ achieved in the wild type simply in a few minutes [79].

After herbivory, all parts of the leaflets gradually reverted towards their pre-herbivory
levels. The suppressed PSII functionality at the feeding zones began to balance with the
rest of the leaf 180 min after feeding, in parallel with the decreased compensatory responses
at the surrounding area of the feeding zone and the rest of the leaflet. Thus, 180 min after
feeding, PSII efficiency at the whole-leaf level was the same as before feeding, indicating
that the plant managed to overcome the 15 min feeding effects without, or with minor,
photosynthetic costs.

To the best of our knowledge, the few studies using chlorophyll fluorescence imag-
ing analysis to study herbivory have shown increased photosynthetic damage to the
leaves [2,6,30,80,81] or a slight but not significant increase in the rest of the leaf area [82].
An enhancement of photosynthesis adjacent to the sites damaged by chewing herbivores
maybe because the detached leaf tissue alters the amount of source tissue without affecting
the amount of sink tissue, e.g., roots and stems. Thus, photosynthesis of the remaining
undamaged leaf tissue that is adjacent to the damaged leaf area may increase to compensate
for the demands of the sink tissues [23]. Although there are some examples of compen-
satory photosynthetic mechanisms in response to insect herbivore feeding [7,83], a decline
in photosynthesis occurs in most cases [2,4,5,23,84–88]. Photosynthesis in the remaining
leaves of the plants can be upregulated as a mechanism of tolerance of herbivory [54],
and there are cases of compensation in photosynthesis [7–9] and cases of decreased pho-
tosynthetic rates [24,81]. These contradictory results can be due to different experimental
strategies, including differentially time-scheduled spatiotemporal measurements [4–6]
and/or to the lack of spatiotemporal measurements [7–9]. In addition, increased NPQ at
the whole leaf level is considered a major component of the systemic acquired resistance
in many photosynthetic species-specific responses to insect herbivory [89]. Due to global
climate change, elevated average temperatures are expected to influence plant–insect inter-
actions and increase crop damage for two reasons [90]. First, at increased temperatures,
insect metabolism increases, and the accelerated insect metabolism will cause increased
crop damage; and secondly, through the herbivore-induced jasmonate signaling at elevated
temperatures, the plant’s ability to cool itself is blocked by reduced stomatal opening to
lead to leaf overheating and reduced photosynthesis, ultimately resulting in growth inhibi-
tion [90]. Under the increased average temperatures, the NPQ reaction is an interesting
topic for future research that could be species-specific.

In conclusion, our results show that photosynthetic efficiency was only locally sup-
pressed by Spodoptera exigua feeding, while in other zones of the leaflets, photosynthetic
efficiency increased, indicating a compensatory response within the tomato leaflets. While
this increase was also obvious at the whole leaflet level, our results show that individ-
ual local zones of the leaflets react differently and that the compensatory response was
strongest closest to the feeding site. For example, the drastic increase in ΦNO, the fraction
of light energy dissipated as non-regulated energy at the feeding spots immediately after
herbivory could not be discerned at the whole leaflet area. Thus, comparing the whole
leaflet measurements to the different zones provides a better understanding of the plant’s
response to herbivory. Finally, our results show a relatively fast recovery of leaves after
herbivory toward the pre-feeding level.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/insects12060562/s1, Table S1: p-values for whole leaflets quantum yields (ΦPSII, ΦNPQ,
ΦNO); Table S2: p-values for the effective quantum yield of PSII photochemistry (ΦPSII); Table S3:
p-values of quantum yield for regulated non-photochemical energy loss in PSII (ΦNPQ); Table S4:
p-values for the quantum yield of non-regulated energy loss in PSII (ΦNO); Table S5: p-values for
Non-Photochemical Quenching (NPQ); Table S6: p-values for Electron Transport Rate (ETR); Table
S7: p-values for the efficiency of open PSII reaction centers (Fv’/Fm’); Table S8: p-values for the
photochemical quenching (qP).
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