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Abstract: Lactoferrin (Lf), an iron-binding glycoprotein expressed in most biological 
fluids, represents a major component of the mammalian innate immune system. Lf’s 
multiple activities rely not only on its capacity to bind iron, but also to interact with 
molecular and cellular components of both host and pathogens. Lf can bind and sequester 
lipopolysaccharide (LPS), thus preventing pro-inflammatory pathway activation, sepsis and 
tissue damage. However, Lf-bound LPS may retain the capacity to induce cell activation 
via Toll-like receptor 4-dependent and -independent mechanisms. This review discusses 
the complex interplay between Lf and LPS and its relevance in the regulation of the 
immune response. 
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1. Introduction  

Lipopolysaccharide (LPS), a major constituent of the Gram-negative bacteria outer membrane, is 
one of the most potent inducers of the innate immune response. Recognition of various form of LPS 
from different strains of Gram-negative bacteria triggers a signaling cascade that results in the release 
of pro-inflammatory mediators, such as cytokines and chemokines, as well as small molecules, such as 
lipid mediators and reactive oxygen species [1]. LPS is known to be capable of initiating the morbidity 
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and mortality associated with Gram-negative sepsis, as well as the modulation of myriad other host 
innate inflammatory responses. Specifically, LPS has been characterized as the 'prototypical stimuli' 
for host activation through myeloid cells (neutrophils, monocytes, macrophages) and non-myeloid 
cells (fibroblasts, platelets), as well as other innate host defense mechanisms, such as serum 
complement, and specific components within the intrinsic coagulation pathway. 

LPS is ubiquitous within our environment, in vivo and in vitro, and can express potent bioactivity in 
extremely small amounts [2]. This bacterial component is a complex molecule consisting of three 
parts: a core oligosaccharide, a distal hydrophilic O side chain, and a highly conserved lipid A 
portion [3]. The lipid A moiety is the main pathogen-associated molecular pattern of LPS, and is 
responsible for its toxic proinflammatory properties. Using the C3H/HeJ mouse strain, which is known 
to have a defective response to LPS, it has been demonstrated that the Toll-like receptor 4 (TLR4) is an 
important sensor for LPS [4]. LPS stimulation of mammalian cells occurs through a series of 
interactions with several proteins including the LPS binding protein (LBP), CD14, MD-2 and 
TLR4 [5]. LBP is a 60kDa acute-phase serum protein which directly binds to LPS and facilitates the 
association between LPS and CD14. Since the discovery of the LBP/CD14 host activation 
pathway [6,7] it has become increasingly clear that the release of numerous inflammatory mediators 
and the expression of cell adhesion molecules necessary for inflammation occur in response to LBP 
and/or CD14 complexed with microbial components [8,9]. After initial LBP-LPS binding, the next 
step toward host cell activation is the transfer of LBP-LPS complex to either soluble or membrane-
bound CD14. It has been shown that aggregate forms of LPS initially bind LBP, which then facilitates 
the transfer of separated, monomeric LPS to either membrane CD14 (mCD14) or soluble CD14 
(sCD14), found in serum [8,9]. mCD14-positive cells (usually cells of myeloid origin) contain mCD14 
as a glycosylphosphatidylinositol-anchored membrane protein, whereas the sCD14/LPS complex is 
required for CD14-negative cell (e.g., endothelial and certain epithelial cells) activation by 
LPS [10,11]. CD14 facilitates the transfer of LPS to the TLR4/MD-2 receptor complex and modulates 
LPS recognition. MD-2, a small secreted protein which comprises part of the cell surface receptor 
complex, is absolutely required for the TLR4-mediated cellular response to LPS [12]. After activation 
by LPS, TLR4 recruits adapter molecules such as MyD88, Mal, Trif, and Tram within the cytoplasm 
of cells to propagate a signal [5]. These adapter molecules in turn activate other molecules within the 
cell, including protein kinases IRAK1, IRAK4, TBK1, and IKKi, to amplify the signal, and result in 
the induction or suppression of genes that orchestrate the inflammatory response. LPS/TLR4 signaling 
can be separated into MyD88-dependent and MyD88-independent pathways, which mediate the 
activation of proinflammatory cytokines and type 1 interferon (IFN), respectively [5]. 

The outcome of Gram-negative infections is dependent not only by an individual’s ability to 
recognize endotoxin and respond to its presence but also by numerous phenomena that inactivate 
endotoxin and/or prevent harmful reactions to it [13]. Until now, many detoxification mechanisms 
have been described acting in different body compartments, including proteins that facilitate LPS 
sequestration or prevent endotoxin interaction with its receptors. In this respect, lactoferrin (Lf), an  
80 kDa non-heme-iron binding glycoprotein, represents one of the most efficacious mechanisms of 
LPS neutralization, both in tissues and secretions, activated by the innate response in peripheral tissues 
during the inflammatory processes. Lf is physiologically found in exocrine secretions of mammals, in 
particular in milk and fluids of the digestive tract, and is abundantly released by exocrine glands of 
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mucosa and by neutrophils during inflammation [14]. Lf is a key element in the host defense system. 
This assumption is mainly based on the antimicrobial properties of this molecule, which include iron 
sequestration (bacteriostatic activity), direct lytic activities (bactericidal activity), and/or impaired 
binding of microbes to host cells [15]. More recently, however, it has becoming evident that its 
protective effect also extends to the modulation of the host response to infections. Depending on the 
immune status of an individual, Lf can have anti-inflammatory properties which are mostly explained 
by its capacity to interact with exogenous proinflammatory molecules, mainly LPS [16] and its CD14 
receptor [17], as well as CpG bacterial DNA [18], thus decreasing the immune response and 
preventing septic shock and damage to tissues. However, Lf can also favor the activation, 
differentiation, and proliferation of immune cells, and this promoting activity has been related to a 
direct effect of Lf on immune cells [19,20]. 

2. Structure of Lf and Molecular Basis of Lf-LPS Interaction 

Lf is a monomeric, highly cationic (pI 8.4–9.0) glycoprotein with a single polypeptide chain of 
about 690 amino acid residues. Crystallographic analysis of Lf from different species has revealed a 
highly conserved three-dimensional structure, but with differences in detail between species [21]. The 
polypeptide is folded in two symmetric globular structures named the N and C lobes, which are linked 
by a short α-helix. Non-covalent interactions, mostly hydrophobic, provide a cushion between the two 
lobes, with C-terminal helix playing a large part. Both lobes have the same fold, consistent with their 
sequence homology of ~ 40%. Each lobe, two α/β domains, referred to as N1 and N2 or C1 and C2, 
encloses a deep cleft within which is the iron binding site. Each site binds at a remarkably high affinity 
(Kd 1022 M), but reversibly, one Fe3+ ion [22]. 

The two lobes, four-domain structure, provides the key to understanding the dynamic properties of 
Lf (Figure 1). Indeed, two structures have been observed for this molecule: a closed conformation 
(Figure 1A), mainly observed with the iron-saturated molecule (holo-Lf), and an open conformation, 
originally described for the iron-free Lf (apo-Lf) (Figure 1B). The conformational transition could be 
involved in basic functions such as transportation and catalysis. According to crystallographic data, the 
domains move essentially as rigid bodies that close over the bound metal or open to release it. Metal 
binding and release are facilitated by the flexibility of the apo form, and strong retention by the relative 
rigidity of the holo form. Recently, Lf has been described as a molecule with a double face, composed 
by an internal portion, highly conserved between species and endowed with iron binding capacity, and 
an external surface strongly cationic and prone to interact with a number of negatively charged 
macromolecules. The positive charge, mainly concentrated at the N-terminus (amino acids 1–7), in the 
first helix (amino acids 13–30) and in the region that connects the two lobes, is thought to be crucial 
for the majority of Lf activities, including immunomodulation and LPS binding [22]. In particular, the 
first helix includes the major portion of the lactoferricin domain, a potent bactericidal peptide [23], and 
the N-lobe that participates as binding domain in Lf-pathogen interactions [24] as well as 
ceruloplasmin binding [25]. 

Structurally, Lf contains a highly basic arginin-rich region close to the N-terminus which binds to a 
variety of anionic biological molecules [26,27]. Human Lf (huLf) binds specifically and with a high 
affinity (Kd = 2–5 nM) to the lipid A moiety of bacterial LPS [16,28], sCD14 and the sCD14/LPS 
complex [17], heparin, or cell-surface heparan sulphates [26,29,30]. HuLf binding to anionic 
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molecules mostly relies on two N-terminal basic clusters (residues 1 to 5 and 28 to 34). Specifically, 
two binding sites for Escherichia Coli 055B5 LPS have been found on human Lf: a high affinity (Kd 

3.6 ± 1 nM) site located at the N-terminus, and a low-affinity (Kd 390 ± 20 nM) site at the C-terminus, 
which is exposed at high protein concentrations [28]. Several studies indicate that Lf is capable of 
destabilizing the outer membrane of Gram-negative bacteria upon its binding to LPS exposed on the 
bacterial surface, promoting LPS release and bacterial killing through osmotic damage [31]. It has 
been reported that LPS release in vitro may occur without a direct interaction of Lf with bacteria but 
requires sequestering of Ca2+ by Lf. Calcium binding to Lf destabilizes bacterial membrane while has a 
marked stabilizing effect on the protein structure towards thermal and chemical denaturation [32]. All 
Lfs are glycosylated with some differences between species, having huLf three and bovine Lf (bLf) 
five potential N-glycosylation sites [22]. Studies characterizing the Lf structure have demonstrated that 
only a part of these potential sites are usually glycosylated, two in huLf and four in bLf [33,34]. 
Although glycosylation has no influence on Lf folding, most of the glycosylation sites are exposed on 
the external surface of the molecule and have been supposed to play a role in Lf interaction with 
viruses [15], toxins [35], sialic acid-binding immunoglobulin superfamily lectins [36] and C-type 
lectin receptors on immune cells [37,38]. 

The interaction of bacterial endotoxins with Lf has been investigated at a biophysical level. The 
formation of LPS-Lf complexes occurs through electrostatic interactions. It was shown that Lf binds to 
the phosphate group within the lipid A moiety and induces a rigidification of the acyl chain of LPS. 
The secondary structure of Lf was, however, not changed [39]. Binding saturation was found to lie at a 
[Lf]:[Lipid A] ratio of 1:3 to 1:5 M and promotes the conversion of the molecular shape of lipid A 
from a conical form (active) into a cylindrical form (inactive), in keeping with previous studies 
suggesting that the conical shape of lipid A is a prerequisite for its endotoxic activity [40,41]. Lf was 
shown to intercalate into phospholipid liposomes and to block the LBP-mediated intercalation of LPS, 
suggesting that conversion from an active to inactive form occurs at the plasma membrane level [39]. 

In addition, Lf may act by interfering with the access of endotoxin to its cell surface receptor. 
Indeed, evidence has been provided that huLf inhibits the interaction of LPS with CD14 on 
monocytes/macrophages by competition with the LBP, which binds to the lipid A portion of LPS, thus 
mediating the transfer of LPS to CD14 [28]. In particular, Elass-Rochard and colleagues [28], by using 
a mutated huLf demonstrated that the loop region containing amino acids 28 to 34, located in the  
N-terminal domain I, is essential for the high-affinity interaction with LPS. This region is also present 
in lactoferricin, which in vitro suppresses the release of IL-6 from monocytic THP-1 cells stimulated 
with LPS [42]. 

Subsequent studies led to the identification of a cationic region, the GRRRR N-terminal sequence  
(amino acids 1–5), which plays a crucial role in the competition of human LBP for LPS binding [43]. 
Specifically, it has been demonstrated that recombinant huLf lacking residues 1 to 5 does not inhibit 
the LBP-mediated binding of LPS, suggesting that these Lf residues may interact synergistically with 
residues 28 to 34 as a cationic cradle to bind LPS. 

Overall, LPS-binding property of Lf plays an important role in the immunomodulatory activity of 
this molecule offering a dual advantage. In fact, from one side, Lf can sequester LPS, thus inhibiting 
the excessive host’s response to endotoxin challenge, and from the other, can take advantage of the 
LPS bound to its molecule to trigger an immune response engaging specific LPS receptors. 
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Figure 1. Polypeptide folding of human lactoferrin. Structure of the iron-bound (holo) 
form (A) and iron-free (apo) form (B) of Lf reprinted with permission from [22].  

3. Lf Interference with LPS Inflammatory Activity 

The endotoxin-chelating properties of Lf and its ability to compete with LPS receptors account, in 
part, for the antinflammatory activity of this protein. Several in vitro studies have demonstrated that Lf 
can inhibit, in a concentration- and time-dependent manner, a number of LPS-induced effects  
(Table 1). Although the mechanisms responsible for this inhibitory activity have not been fully 
elucidated, at least some may be ascribable to Lf capacity to avidly bind LPS, thus blocking its 
interaction with cellular membranes or compete with LPS for binding to a common receptor. 

In this respect, Baveye and co-workers demonstrated that huLf, at LPS serum concentrations 
observed in pathological conditions, blocks the LPS-induced production of oxygen free radicals by 
competing with L-selectin, a serum-independent LPS receptor in neutrophils, for LPS binding [44]. 
Similarly, Elass-Rochard and colleagues [43] showed that huLf also prevents the LBP-mediated 
binding of LPS to the CD14 receptor. However, maximal inhibition of LPS interaction with the cell 
occurs when huLf and LBP are simultaneously added or pre-incubated together prior to their addition 
to the cultures, but not when huLf is added after LBP interaction with LPS has occurred. These results 
suggest that huLf competes with LBP for LPS binding, and this competition negatively affects the 
subsequent interaction of LPS with CD14 [43]. The alignment of the N-terminal sequences of huLf and 
LBP shows similarity between amino acid residues of these proteins. Notably, a structural motif of 
three basic amino acids separated by one hydrophobic amino acid is present in both huLf and LBP. 
Despite these shared features, LBP and huLf exhibit antagonistic effects by favouring or inhibiting 
LPS interaction with CD14, respectively. In keeping with these results and with the antinflammatory 
activity of Lf, it has been shown that the LPS-triggered release of IL-1, IL-6, IL-8, TNF-α in a variety 
of human and mouse cell types is inhibited in the presence of Lf [45–47]. In particular, Haversen and 
co-workers [46] showed that in human monocytic cell line Lf was internalized into cells and detected 
in the nucleoli. In keeping with this finding, Lf was showed to decrease the LPS-induced binding of 
NF-κB to TNF-α promoter. Lactoferricin-derived peptides were also reported to down-modulate  
TNF-α production in human PBMC by changing the aggregate structure of LPS or lipid A into a 
multilamellar form [48]. Furthermore, it has been reported that huLf down-modulates the LPS-induced 
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expression of some adhesion molecules, e.g., ICAM-1 and E-selectin, in endothelial cells [17]. This 
effect was shown to rely on the huLf capacity to bind specifically and with high affinity to sCD14 and 
to LPS-CD14 complexes. This observation suggested that Lf can modulate the recruitment of immune 
cells to inflammatory sites by down-regulating the adhesion of leukocytes to endothelial cells. In 
keeping with this hypothesis, it has been reported that Lf inhibits LPS-induced expression of IL-8, and 
competes with this chemokine for its binding to proteoglycans of endothelial cells [49]. Lf has also 
been reported to protect intestinal cells against LPS-induced mucosal damage [50] as well as to inhibit 
LPS-induced proliferation, prostaglandin E2 production, and cyclooxygenase (COX)-2 and matrix 
metalloproteinase (MMP)-9 expression in PBMC [51] via unknown mechanisms. Lastly, Lf released 
from LPS-activated neutrophils and apo-Lf have been reported to exert protective effects on neutrophil 
priming for enhanced superoxide production [52,53]. 

Table 1. Lactoferrin protective activity on in vitro LPS-induced effects. 

Cell Lf type LPS-induced functions Suggested 
mechanism 

References 

Mouse RAW 264.7 
Human THP-1 
Human Mono Mac 6 

huLf, bLf Cytokine production (TNF-
　 IL-1　, IL-6, IL-8) 

Inhibition of NF-kB 
activation 

[42,45–47,49] 

HUVEC huLf Cytokine production (IL-8) Interaction with 
sCD14/LPS complex 

[49] 

Human PBMC  Lfcin-derived 
peptides 

Cytokine production  
(TNF- )　  

LPS inactivation via 
structural changes 

[48] 

Human THP-1 
Primary human monocytes 
Human PBMC 

huLf, bLf, 
Lfcin B 

Cytokine production (IL-6, 
IL-1, TNF- 　 

Not determined [42,47] 

HUVEC huLf Endothelial adhesion 
molecule expression 

Interaction with 
sCD14/LPS complex 

[17] 

Human neutrophils huLf Hydrogen peroxide 
production 

Inhibition of LPS 
binding to L-selectin 

[44] 

Human neutrophils Neutrophil 
released Lf 

ApoLf* 

Priming for enhanced 
superoxide production 

LPS sequestration [52,53] 

Bovine PBMC bLf Proliferation 
PGE2 production 

COX-2 and MMP-9 
expression 

Not determined [51] 

Human CaCo2 huLf Intestinal mucosa damage Not determined [50] 

* Lf source not indicated in the original article. 

This Table summarises the in vitro results describing the Lf inhibitory actions on LPS-stimulated 
cell responses. HUVEC, human umbilical vein endothelial cells; PBMC, peripheral blood 
mononuclear cells; huLf, human lactoferrin; Lfcin, lactoferricin; bLf, bovine lactoferrin; PGE2, 
prostaglandin E2; COX-2, cyclooxygenase (COX)-2; MMP-9, matrix metalloproteinase (MMP)-9. 
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The capacity of Lf to modulate the LPS-induced inflammatory process has been also well 
documented in vivo. Indeed, several studies [54–59] have demonstrated that Lf administration protects 
animals against sub-lethal doses of LPS (Table 2). Interestingly, the optimal protection against induced 
septicaemia required a 12 to 24 h pre-injection of Lf, suggesting that this protein may act by 
mechanisms in addition to simple LPS scavenging [54]. Furthermore, mice previously treated with Lf 
did not develop hepatitis [60], arthritis [61], diarrhea [58] and preterm delivery [62–64] after LPS 
challenge. The exact mechanisms by which Lf exerts preventive and/or therapeutic potential are not 
yet known, however, some of the effects could be due to Lf capacity to neutralize LPS in vivo. In 
keeping with the antinflammatory effect of Lf observed in in vitro studies, serum levels of LPS-
induced pro-inflammatory factors such as IL-6, TNF-α and nitric oxide were found significantly 
reduced in Lf-treated animals in comparison with untreated controls after LPS inoculation [61,65–67]. 
In addition, growing evidence indicates that progression of systemic inflammatory response syndrome 
into sepsis is due to the cellular damage and death induced by acute inflammatory response. In this 
respect, Kruzel and colleagues have recently reported that Lf protects against oxidative stress-induced 
mitochondrial dysfunction and DNA damage, both in cell culture and within an animal model of 
endotoxemia [68]. 

Table 2. Protective effects of lactoferrin on LPS-triggered pathologies in vivo. 

Animal Lf source Administration LPS-triggered effects Lf 
activity 

References 

Mice, 
Piglets 

bLf, huLf, Lfcin-
derived peptides 

i.v., i.p., p.o. endotoxin lethal shock survival [54,55–57] 
 

Mice bLf, huLf i.p. preterm delivery prevention [62–64] 
Mice huLf i.v. hepatitis protection [60] 
Rats,  
Mice 

bLf, huLf i.v., p.o., i.p. TNF- ,　  IL-6, IL-10, NO 
production 

decreased [61,65–67] 
 

Rats bLf p.o. arthritis and hyperalgesia prevention [61] 

Mice bLf i.p. diarrhea prevention [58] 
Mice huLf i.p. liver mitochondrial 

dysfunction 
protection [68] 

 
Rats bLf, huLf i.p. albumin extravasation, 

neutrophilia 
prevention [59] 

This table reports experimental evidence of Lf beneficial effects in animal models challenged with 
LPS. huLf, human lactoferrin; bLf, bovine lactoferrin; NO, nitric oxide; i.v., intravenous; i.p., 
intraperitoneal; p.o., per os. 

4. Biological Activity of Lf-Bound LPS: TLR4 -Dependent and –Independent Effects 

Despite the well recognized activity of Lf as a powerful scavenger of endotoxins, some studies 
documented that Lf-bound LPS retains the capacity to stimulate mouse and human cells. In particular, 
it was reported that Lf-LPS complexes can still prime human monocytes and stimulate B lymphocyte 
proliferation [53]. 
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Furthermore, Na and co-workers reported that when LPS and purified Lf were mixed, and formed a 
complex, induction of proinflammatory mediators or tolerance, rather than inhibition of LPS challenge, 
were observed in RAW 264.7 cells and peritoneal macrophages harvested from C3H/HeN mice [69]. 
Similarly, Chodaczek and colleagues have showed that Lf complexed to monophosphoryl lipid A can 
exert adjuvant activity in mice immunized with a suboptimal dose of sheep red blood cells or 
ovalbumin, thus increasing their humoral immune response [70]. Comparative studies carried out with 
LPS responsive and LPS hypo-responsive mice demonstrated a strong dependency of the Lf-LPS 
complex triggered signals on TLR4, leading to the conclusion that the immunomodulatory properties 
of Lf could be due, at least in part, to LPS binding [69]. Lf binds to the lipid A portion of LPS via 
charge-charge interaction. The portion of Lf that binds to anionic molecules, including lipid A, is 
limited to its N-terminus arginine rich domain [27]. Thus, it is likely that bound LPS can still expose 
the unbound part of lipid A that is recognized by LPS receptors such as TLR4. Such a Lf-LPS complex 
recognition would result in macrophage activation [69]. In this regard, it has been reported that Lf-
bound LPS retains clotting capacity in a conventional Limulus assay (LAL), the standard method for 
detection of endotoxin contamination [39]. Of note, the lipid A backbone is also the epitope being 
recognized in this assay, thus explaining why the Lf-LPS complex is found to be LAL positive [39,69]. 
Collectively, these results suggest that lipid A can be recognized even after Lf-LPS complex has been 
formed, and that this complex retains the capacity to activate macrophages through TLR4. Lf 
preparations experimentally used may contain some LPS. However, due to the extremely high capacity 
of Lf to form complexes with LPS through its lipid A moiety, it is conceivable that the little amount of 
LPS commonly detected in Lf preparations, is all bound to Lf molecule. In keeping with this 
assumption, we have previously demonstrated that low concentrations of LPS corresponding to the 
amount naturally present in Lf batches is per se not capable to induce type 1 IFN secretion in murine 
peritoneal macrophages, in contrast with the capacity of Lf to induce it. However, it has been reported 
that LPS binding to Lf may contribute to Lf biological activity by favouring its interaction with cell 
surface receptors [71]. Thus, LPS may represent an important structural component of Lf molecule, 
likely involved in its stabilization or favouring its interaction with receptors and accessory molecules.  

Despite these observations, the intimate relationship between Lf and LPS does not completely 
account for the different biological activities ascribed to this molecule. In keeping with these results, 
we have reported that the capacity of Lf to induce a type 1 IFN mediated antiviral state, but not TNF-α 
production, relies on the function of TLR4 in responding cells [72]. Our results showing that TLR4 is 
not essential for Lf–induced production of TNF-α by murine peritoneal macrophages, strongly suggest 
that this molecule induces macrophage activation via TLR4-dependent and -independent mechanisms. 
Accordingly, it has been recently reported that Lf-induced IL-6 secretion and CD40 expression in 
murine peritoneal macrophages was achieved via TLR4-independent and -dependent mechanisms, 
respectively, thus indicating potentially separate pathways for Lf-mediated macrophage events in 
innate immunity [73]. Likewise, a dichotomous nature of Lf binding to monocyte/macrophage-
differentiated HL-60 cells, one being mediated by specific Lf receptors whereas the other occurring 
mainly via LPS receptors after formation of Lf-LPS complexes, was also reported [71]. 

Thus, Lf binding to LPS may represent an important aspect, but does not entirely account for all 
immunomodulatory effects of this molecule. This aspect could be mostly relevant in those cell types, 
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such as the macrophages, in which TLR4 function is of critical importance in the regulation of their 
activity. 

5. Concluding Remarks 

Lf is a natural defence component of the innate immunity only found in mammals. This exclusive 
characteristic has suggested that this molecule could be involved in newborn nutrition and protection. 
However, in adult life, Lf continues to exert a plethora of biological activities. Its protective effects 
range from direct antimicrobial activities against a variety of pathogens, including bacteria, viruses, 
fungi and parasites, to anti-inflammatory and anti-tumour activities. These multiple functions rely not 
only on the capacity of Lf to sequester iron, but also on its property to interact with molecular and 
cellular components of both host and pathogens, including endotoxins and their receptors. In this 
respect, the ability of Lf to bind LPS or limit its in vitro interaction with LBP and sCD14 suggests that 
Lf behaves as a versatile molecule by efficiently suppressing endotoxin-induced excessive immune 
reaction in sepsis or promoting, in particular conditions, a protective response against pathogen 
challenge (Figure 2). 

Figure 2. Lactoferrin interplay on LPS-induced inflammatory response. A schematic 
representation of Lf interaction with LPS highlighting the multitasking strategy of Lf to 
maintain immune homeostasis. Lf behaves as a versatile molecule by efficiently 
suppressing endotoxin-induced excessive immune reaction in sepsis or promoting, in 
particular conditions, a protective response against pathogen challenge. 

 
In this scenario, we can speculate that in systemic infections, when LPS is present at high 

concentration, Lf drastically increases in serum where successfully targets and neutralizes either LPS 
or sCD14 alone, as well as already assembled LPS-CD14 complexes. Moreover, in peripheral tissue 
infections, Lf released by recruited neutrophils sequesters LPS impeding its association with LBP and 
consecutively reducing the rate and sensitivity of the response. The Lf mediated LPS sequestration 
would result in inhibition of activated cells, including neutrophils and monocytes, followed by  
tissue repair. 
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Conversely, under physiologic conditions, Lf could form complexes with LPS originating from 
commensal flora. Such Lf-LPS complexes may retain the capacity to bind to specific receptors 
associated to TLR4 pathway either promoting tolerance, or locally stimulating low levels of 
cytokines/factors. These Lf effects would contribute to maintain homeostasis and keep immune cells 
alerted against pathogen attack. 

Understanding the molecular mechanisms underlying the capacity of Lf to reduce excessive 
inflammation and stimulate host immune responses, as well as identifying cell targets and receptors 
involved in Lf immunomodulatory activities holds the promise of a better exploitation of Lf 
therapeutic potential. 
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