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ABSTRACT

Motivation: Gene–gene interactions are of potential biological and

medical interest, as they can shed light on both the inheritance mech-

anism of a trait and on the underlying biological mechanisms.

Evidence of epistatic interactions has been reported in both humans

and other organisms. Unlike single-locus genome-wide association

studies (GWAS), which proved efficient in detecting numerous genetic

loci related with various traits, interaction-based GWAS have so far

produced very few reproducible discoveries. Such studies introduce a

great computational and statistical burden by necessitating a large

number of hypotheses to be tested including all pairs of single nucleo-

tide polymorphisms (SNPs). Thus, many software tools have been

developed for interaction-based case–control studies, some leading

to reliable discoveries. For quantitative data, on the other hand, only a

handful of tools exist, and the computational burden is still substantial.

Results: We present an efficient algorithm for detecting epistasis in

quantitative GWAS, achieving a substantial runtime speedup by avoid-

ing the need to exhaustively test all SNP pairs using metric embedding

and random projections. Unlike previous metric embedding methods

for case–control studies, we introduce a new embedding, where each

SNP is mapped to two Euclidean spaces. We implemented our

method in a tool named EPIQ (EPIstasis detection for Quantitative

GWAS), and we show by simulations that EPIQ requires hours of pro-

cessing time where other methods require days and sometimes

weeks. Applying our method to a dataset from the Ludwigshafen

risk and cardiovascular health study, we discovered a pair of SNPs

with a near-significant interaction (P= 2.2�10�13), in only 1.5 h on 10

processors.

Availability: https://github.com/yaarasegre/EPIQ

Contact: heran@post.tau.ac.il

1 INTRODUCTION

Genome-wide association studies (GWAS) have so far detected
thousands of single nucleotide polymorphism (SNP) loci that are

associated with various traits (Hindorff et al., 2009).
Unfortunately, for most complex traits the discovered SNPs
explain only a small fraction of the estimated heritability, a

phenomena often referred to as the ‘missing heritability’

(Maher, 2008). One plausible explanation suggested for this

problem is the existence of an epistatic effect, where two or

more loci have a synergetic influence on the phenotype, also

referred to as gene–gene interactions (Maher, 2008). The discov-

ery of interacting SNP loci has an additional benefit, as it may

shed light on the underlying biological mechanism or involved

pathways.
Despite evidences of gene–gene interactions reported in both

human and other organisms (Evans et al., 2006), very few repro-

ducible discoveries were reported by GWAS (Liu et al., 2011;

Prabhu and Pe’er, 2012 for example). The amount of data pro-

duced in a single study is a possible cause: when searching for

groups of k SNPs with an epistatic effect, the number of possible

k-sized groups is �(mk), where m is the number of SNP loci.

With current GWAS typically including hundreds of thousands

of SNPs, this implies both a computational and statistical burden

even for groups sizes as small as k=2: the numerous tests takes

days and even weeks to compute and require a substantial cor-

rection for multiple hypothesis, leading in some cases to a loss of

power (Evans et al., 2006). One common approach is the reduc-

tion of the search space, usually by filtering candidate loci pairs:

Marchini et al. (2005) suggested selecting a subset of SNPs with a

moderate marginal effect and testing for interaction in pairs

where at least one locus is included in the subset. Reduction of

the search space can also be done by manipulating contingency

tables (Wan et al., 2010; Zhang et al., 2010) or searching for a

linkage disequilibrium (LD) contrast between cases and controls

(Brinza et al., 2010; Prabhu and Pe’er, 2012). A more straight-

forward approach is increasing the computational power, either

by multi-threaded implementations or by utilizing special hard-

ware (Hu et al., 2010; Yung et al., 2011). Binary operations are

used in some cases to speedup performance (Prabhu and Pe’er,

2012; Wan et al., 2010).

All of these tools, and many others, are designed for case–

control studies; whereas for the quantitative case, where the

tested phenotypes are physiological measurements of some

sort, the selection of available software is limited. Since the

phenotype tested is not dichotomous, testing for quantitative

associations can be more challenging compared with case–con-

trol studies, as methods utilizing contingency tables, LD-contrast

or binary operations are usually inapplicable. Methods tailored*To whom correspondence should be addressed.
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for case–control studies can be applied on quantitative traits

after dichotomizing the phenotype (as in Bhattacharya et al.,

2011); however, the resulting statistical test is different than the

original, thus a loss of power is inevitable and would be difficult

to quantify.
In this study, we present EPIQ (EPIstasis detection for quan-

titative GWAS)—an efficient algorithm for detecting pairs of

SNP loci that have an epistatic effect on quantitative phenotypes.

EPIQ achieves a substantial runtime speedup by avoiding the

need to exhaustively test all SNP pairs: it applies a carefully

chosen transformation that maps each genotyped SNP to a

vector in a Euclidean space. This transformation has the prop-

erty that SNP pairs with an epistatic effect are converted

to vector pairs with a large inner product. A random projections

method is subsequently applied to efficiently recover these

SNPs. A novelty of our method is that each SNP is projected

to two different points, for a more efficient detection of

interacting SNPs. We show on simulated data that in just43h

our algorithm was able to process a dataset that would take

days or weeks using state of the art software, and present the re-

sults of running EPIQ on data from the Ludwigshafen risk and

cardiovascular health (LURIC, Winkelmann et al. 2001) study.

2 METHODS

2.1 Outline

EPIQ is designed to efficiently discover SNPs that have a significant

epistatic effect over a quantitative phenotype, without exhaustively test-

ing all pairs of SNPs in a dataset. This goal is achieved in two steps: a

filtering stage—generating a list of candidate SNP pairs, and a validation

stage—fitting a linear regression model to these pairs. By shortening the

list of pairs to be tested during the filtering stage, running time for the

linear regression step is reduced substantially. Filtering is performed by

assigning a score to each SNP; this score is stochastically generated so

that for each pair of SNPs, the expected value for the product of their

scores is proportional to the generalized likelihood ratio (GLR) test stat-

istic of their interaction. This means epistatic pairs are expected to have a

high score product. By performing multiple iterations and collecting pairs

that pass a given threshold, we assure with high probability that if an

interacting pair exists, it is included in the candidates list and will be

reported during validation stage. To do so we present a new test-statistic

�2 which is roughly proportional to the GLR test score, and apply a

random projection algorithm that discovers pairs with exceptionally

high �2 scores.

2.2 Model description

2.2.1 Model input EPIQ receives as input a vector y 2 R
n, represent-

ing the phenotypic values of all n individuals in the cohort, and a matrix

Xn�m 2 f0; 1g
n�m representing the cohort at m polymorphic loci. The

algorithm is adjusted for binary SNPs; therefore genotypes should be

converted to a binary representation according to the expected type of

interaction. For example, converting AA to 0 and aA, aa to 1 states a

dominant model of interactions. The phenotype vector y is centered

so that it has zero mean and SD of 1. x 2 f0; 1gn denotes the column

vector of allelic values measured for all n samples at a certain locus. xi
is the allele value of this locus for person number i and yi is the

phenotype value of person number i. We denote p=Pr ½xi=1�, and

estimate it with the maximum likelihood estimator p̂=meanðxÞ.

Denote x2=ðx21; x
2
2; . . . ; x2nÞ

T; xx0=ðx1x
0
1; x2x

0
2; . . . ; xnx

0
nÞ

T and

yxx0=ðy1x1x
0
1; y2x2x

0
2; . . . ; ynxnx

0
nÞ

T.

2.2.2 Linear model When testing for an epistatic interaction between

a pair of SNPs, the linear model can be defined as follows (Cordell, 2009):

yi=�0+�1xi+�2x
0
i+�3xix

0
i+�i ð1aÞ

�i�Nð0; �
2Þ ð1bÞ

H0 : �3=0;H1 : �3 6¼ 0 ð1cÞ

Since tests for interaction are usually performed after testing for a main

effect for each of the SNPs, it is reasonable to zero the main effects from

the model. By altering the model so that �1=�2=0 and �0, �3 are

replaced with �0, �1 respectively, a new, simpler model is obtained:

yi=�0+�1xix
0
i+�i ð2aÞ

�i�Nð0; �
2Þ ð2bÞ

H0 : �1=0;H1 : �1 6¼ 0 ð2cÞ

In this case, using ordinary least squares (OLS), the GLR tests statistic is:

2 ln GLR=� n ln

X
i

ðyi � �̂0 � �̂1xix
0
iÞ
2

X
i

ðyi � yÞ2

0
B@

1
CA ð3Þ

Where y= mean(y). This simplification allows us to define an alternative

test statistic, �2, which is an approximation of the GLR test statistic and

can be very useful for our filtering stage. Disregarding the main effect can

in fact lead to false positive results, but these will only be a fraction of the

total number of SNP pairs and will all be discarded during the validation

stage, where pairs are tested against the full linear model (Equation 1).

To achieve simplicity and efficiency, the model does not include cov-

ariates—the residuals from the phenotype adjusted for other parameters

should be used as the response variable. Population stratification can be

addressed by applying an adjustment method such as EIGENSTRAT

(Price et al., 2006) and using the first axes of variation as covariates

while adjusting the phenotype. The model assumes linkage equilibrium

between SNPs, an assumption that does not hold for GWAS, where

proximal SNPs are in LD. As a result, the distribution of the �2 score

for proximal SNPs deviates from what is expected under the null assump-

tion, which results in an excess of pairs passing the filtering stage. This

problem can be addressed by dismissing proximal pairs during the filter-

ing stage, and exhaustively testing them later during post-processing time.

As the number of proximal pairs in LD isO(m), the cost of this correction

is minor.

2.3 GLR test and the new test-statistic �2

In the following section we introduce our new test statistic �2 and show

that for large sample sizes, 2ln GLR � �2. The new tests statistic is pre-

sented not as a means to achieve more power, rather as a means for

reducing runtime by serving as a proxy to the GLR test statistic: we

show in the next section how random projections methods can efficiently

detect pairs with a high �2 score, as a filtering stage for detecting statis-

tically significant interactions.

Since y is standardized, the denominator of Equation (3) equals n.

Replacing �̂0; �̂1 in Equation (3) with their OLS estimators

y � �̂1xx
0 ; yxx0

x2x02�xx0
2 respectively, it is easy to verify that:

X
i

ðyi � �̂0 � �̂1xix
0
iÞ
2=

X
i

�
yi �

yxx0

xx0 � xx0
2
ðxix

0
i � xx0 Þ

�2
ð4aÞ

=n

 
1�

yxx0
2

xx0 � xx0
2

!
ð4bÞ
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2 ln GLR=� n ln
�
1�

yxx0
2

xx0 � xx0
2

�
ð5Þ

Under the linkage equilibrium assumption, xx0 !p pp0. Using first order

Taylor expansion, after neglecting xx0
2
, we conclude that for a large

sample size:

�2 � n
yxx0

2

p̂p̂ 0
� 2 ln GLR ð6Þ

Figure 1a displays 2ln GLR versus �2. With r2 of 0.99, �2 is a good

approximation of the GLR score. As seen in Figure 1c, under the null

assumption of no interaction, the distribution of �2 is very close to a chi-

square distribution with 1 degree of freedom, similar to the GLR test

statistic (chi-square goodness-of-fit test P=0.396). As a result, the task

of finding an interacting SNP pair can now be replaced with the task of

finding a pair with significantly high �2 score. In the next section, we show

that this task can be done efficiently without testing all pairs.

2.4 Efficient discovery of interacting SNPs

We describe an algorithm for finding pairs of SNP where �2 is larger

than a given threshold. For each binary SNP x we define a vector

v=ðv1; . . . ; vnÞ where vi=
ffiffiffiffiffiffiffi
jyi j
p̂
ffiffi
n
p

q
xi and a vector u=ðu1; . . . ; unÞ where

ui=signðyiÞvi. For example, if y=ð�0:1; 0:2;�0:3;�0:4;�0:5; 0:6Þ

and x=ð1; 1; 0; 1; 0; 0Þ then v= 1ffiffiffiffiffiffiffiffiffi
0:5

ffiffi
6
pp ð

ffiffiffiffiffiffiffi
0:1
p

;
ffiffiffiffiffiffiffi
0:2
p

; 0;
ffiffiffiffiffiffiffi
0:4
p

; 0; 0Þ and

u= 1ffiffiffiffiffiffiffiffiffi
0:5

ffiffi
6
pp ð�

ffiffiffiffiffiffiffi
0:1
p

;
ffiffiffiffiffiffiffi
0:2
p

; 0;�
ffiffiffiffiffiffiffi
0:4
p

; 0; 0Þ. It is easy to see that

8x;x0 : v � u0=
1ffiffiffiffiffiffiffiffiffi
np̂p̂ 0

p Xn
i=1

yixix
0
i=� ð7Þ

So instead of searching for pairs with an exceptional � score, we are now

looking for an exceptional inner product size. To do so we apply a

random projections method: we perform multiple iterations; in each

iteration we sample a random vector r=ðr1; r2; :::; rnÞ, where

ri�N(0,1). For each SNP x, we calculate two scores: a=v � r and

b=u � r. Since ri are sampled i.i.d. with mean 0 and variance 1, the ex-

pected value of the two scores’ product is �:

8x;x0 : Er½ab
0�=Er

"X
i

rivi
X
j

rju
0
j

#
=v � u0=� ð8Þ

Note that while non-interacting SNPs have a zero expected value for ab
0

,

pairs with a significant P-value after a Bonferroni correction of
106

2

 !
are

expected to have �2 of over 55. It can also be shown that

Var½ab0�=�2+kvk2ku0k2. As a result, the distribution of ab
0

has a

longer tail under the alternative assumption, so for any positive threshold

t, the probability of jab
0

j 	 t is always greater for interacting pairs

(Fig. 2a). We utilize this fact to distinguish between interacting and

non-interacting pairs: we perform several iterations where a vector r is

sampled, and the scores a and b are calculated for all SNPs. In each

iteration we collect the pairs of SNPs whose scores product pass a

given threshold t. The last part can easily be done without testing all

pairs: we define a vector ~a=ða21 . . . a2mÞ and a vector ~b=ðb21 . . . b2mÞ.

Both vectors are first sorted in descending order and then scanned in

linear time to find pairs x; x0 such that a2b
024t2.

Since, as seen in Figure 2b, the variance of ab
0

is affected by the com-

bination of minor allele frequencies (MAFs) of both SNPs, different t

thresholds are used for different MAF combinations. This is done by

assigning SNPs to bins of similar MAF: each bin B has two score vectors,
!

a

B;!
b

B, sorted by their score value. For each pair of bins, B and B0, we

report all SNP pairs x 2 B; x0 2 B0 where a2b
02 	 t2BB0 ^ a

02b2 	 t2BB0 ,

when t2BB0 is the appropriate threshold. Reported SNP pairs are validated

against the linear model. Optimal t thresholds for each pair of bins were

empirically calculated, as described in the following section. See algo-

rithm pseudo-code 1.

2.4.1 Runtime analysis The improvement in runtime achieved by

EPIQ is due to the fact that only a fraction of the SNP pairs is tested.

The algorithm performs L iterations, each iteration has O(nm) operations

for calculating a, b scores and Oðmlog mÞ operations for sorting score

vectors. If we denote  as the average fraction of SNP pairs that pass the

threshold t at each iteration, then scanning the vectors for interaction

(c)

(b)(a)

Fig. 1. The new test-statistic: (a) 2 ln GLR versus �2. Data were gener-

ated with n=5000, MAF 2 ½0:01; 0:5�; marginal and epistatic effects were

sampled uniformly from the range (0, 1); r2=0.99. (b) r2 of the linear

correlation between 2ln ðGLRÞ and �2, as a function of n: �2 is highly

correlated with the original test statistic for all tested sample sizes. (c) �2

distribution is proportional to the chi-square distribution with 1 degree of

freedom. Passed a chi-square goodness-of-fit test with P-value of 0.396
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candidates would take O
m

2

 !
 

 !
and the total runtime including valid-

ations is OðLðnm+mlogðmÞ+
m

2

 !
 nÞÞ. As exhaustive testing of all pairs

take O
m

2

 !
n

 !
, speedup is achieved when L 
 and also L 
 m. To

speedup performance, EPIQ keeps all SNP data in memory; therefore

space complexity is O(nm).

2.4.2 Choosing the parameters L, t to assure the requested power
with minimal runtime Given the stochastic nature of the algorithm,

there is always a possibility that interacting pairs will be missed. This

creates a trade-off between power and runtime, controlled by a success

rate parameter. Setting this parameter to 90%, for example, would mean

that the probability of missing a SNP pair with a significant GLR score is

at most 10%, and the overall power achieved is at least 90% compared

with an all-pairs scan. Strongly interacting pairs have an even larger

chance of being detected, as the probability of passing the filtering

stage is a function of the GLR score.

According to the success rate requested by the user, optimal values for

L and t can be set. The two parameters are strongly linked with runtime:

higher t values reduce probability of success, which means more iterations

are required in order to provide the requested success rate. This elongates

the filtering stage, and also might shorten the validation stage by reducing

false positive rate. To calculate optimal parameters one must first

calculate f � Pr ½min ða2b
02; a

02b2Þ 	 t2� for both interacting and non-

interacting pairs. One can show that ða; b0Þ�N2

�
½0; 0�;

kvjj2 �

� ku0jj2

" #�
, so

the probability of the event a2b
02
	 t2 can be easily calculated. The

value of f, on the other hand, is not as simple to calculate analytically.

As a result, the choice of the parameters was done empirically: A sample

dataset was randomly generated, using MAFs taken from the 1000 gen-

omes project (Abecasis et al., 2012), as explained in the results section.

SNPs were distributed among bins of similar MAFs, and each pair of

bins was assigned with the maximal threshold value that enabled the

required success rate, given the current number of iterations. As a final

step, the number of iterations that led to the shortest runtime was chosen.

2.5 Simulated datasets

In order to test our algorithm we generated several datasets of diploid

genotypes, with cohort sizes varying between 1000 and 5000, and the

number of SNP loci between 10000 and 1 million. While generating

the SNPs we used the MAF distribution found on the 1000 genomes

project (Abecasis et al.,2012) and assumed Hardy–Weinberg equilibrium.

We later converted the datasets to a binary representation using a dom-

inant coding, where AA was translated to 0 and aA, aa to 1. We used

these datasets to demonstrate the runtime and power of EPIQ under

different conditions.

2.6 The LURIC study

We applied our method to measurements of lipid concentration in cells

(Cer(d18:0/24:1)), taken from the LURIC study. The LURIC study con-

sists of 3316 white patients hospitalized for coronary angiography be-

tween 1997 and 2000 at a tertiary care center in Southwestern

Germany (Winkelmann et al., 2001). To limit clinical heterogeneity, in-

dividuals suffering from acute illnesses other than acute coronary syn-

drome (ACS), chronic non-cardiac diseases and a history of malignancy

within the past 5 years were excluded.

2.6.1 Laboratory procedures Fasting blood samples were obtained

by venipuncture in the early morning. Genomic DNA was prepared from

EDTA anticoagulated peripheral blood by using a common salting-out

procedure. Genotyping was done using the Affymetrix Human SNP

Array 6.0 at the Synlab Center of Laboratory Diagnostics Heidelberg

and the Mannheim Institute of Public Health of Heidelberg University.

2.6.2 Quality control We used PLINK (Purcell et al., 2007) for qual-

ity control, excluding SNPs with call rate595%. We excluded individuals

with call rate 597%, ambiguous on genetic sex test or showing high

estimated identity by descent (IBD) scores (PI_HAT	 0.1875), control-

ling for cryptic relatedness. For the population stratification part, we used

the Population Reference Sample (POPRES) dataset (Nelson et al., 2008)

as a reference population. We considered the first four components of a

multidimensional scaling (MDS) on both LURIC and POPRES individ-

uals for determining and removing outliers. Finally, we had 687253 SNPs

and 859 individuals remaining for the analysis, of which 826 had lipid cell

concentration measurements.

3 RESULTS

In this section, we show that in just a few hours EPIQ can pro-
cess amounts of data that would take weeks and even years on

common existing software. We demonstrate how the power of
EPIQ is affected by the underlying model of interaction and

present the results of applying EPIQ to a dataset from the
LURIC study.

3.1 Runtime improvement

While epistasis detection tools for case–control studies are rela-
tively common, not many quantitative pairwise epistasis tools

were found. We chose to compare EPIQ against PLINK
(Purcell et al., 2007), FastEpistasis (Sch €upbach et al., 2010),

EpiGPU (Hemani et al., 2011) and EpiGPUHSIC (Kam-
Thong et al., 2011). All four tools perform an exhaustive
search, using different hardware and various statistical tests.

PLINK is a commonly used whole-genome association analysis
toolset. Its epistasis option performs linear regression tests on all

SNP pairs. FastEpistasis is an efficient parallel extension of the
PLINK epistasis module. While the first two tools run on regular

processors, EpiGPU and EpiGPUHSIC run on graphical pro-
cessing units (GPUs), which are specialized electronic circuits

that provide up to 100� speedup in performance. The former
two tools utilize different statistical tests as well: EpiGPU per-

forms an F-test, while EpiGPUHSIC is a quantitative extension
of the Hilbert-Schmidt Independence Criterion (HSIC) (Gretton
et al., 2005), which uses the correlation coefficient difference be-

tween cases and controls, as an approximation to the significance

(a) (b)

Fig. 2. (a) An illustration of the ab0 score distribution for interacting pairs

(blue) and non-interacting pairs (gray): interacting pairs have a higher

probability of passing a threshold t during the filtering stage. (b) Variance

of ab0 as a function of MAFs, for an interacting pair with corrected

P-value of 0.05

i22

Y.Arkin et al.

a
,
to
but
minor allele frequencie
, 
minor allele frequency
-
Ludwigshafen Risk and Cardiovascular Health (
)
,
five past
,
Ludwigshafen Risk and Cardiovascular Health (
)
-
-
&times; 


of the interaction term. Since EPIQ was run with the parameter

success rate set to 80%, we compared its runtime against testing

80% of the pairs in the exhaustive search algorithms. As seen in

Table 1, EPIQ shows a great improvement in runtime, compared

with the exhaustive tools.

We ran EPIQ using different inputs in order to test how the

program scales with changes in the number of SNPs, cohort size

or requested power. As seen in Figure 3a, EPIQ scales linearly

with the number of SNP pairs in the dataset. Figure 3b shows

that gaining more power becomes increasingly time consuming

when approaching 100% power, as can be expected in stochastic

algorithms of this sort. However, one can achieve 95% power in

a matter of hours. Scaling in the number of samples is above

linear as well: while testing 5� 1011 pairs takes 3.2h for 1000

individuals, it takes 7 times longer for 3000 samples, and 30 times

longer for 5000 samples. Nevertheless, for moderate cohort sizes

EPIQ remains an efficient choice. (All benchmark tests were per-

formed on the Ubuntu Linux server with 2.5GHz processor.)

3.2 Power analysis

To evaluate the power of our algorithm, we compared it against

two commonly used baseline methods suggested by Marchini

et al. (2005). First is a simple exhaustive all-pairs test, where all

SNP pairs are tested for interaction. Although this method is not

feasible for large datasets, the power achieved by an all-pairs test

is of relevance, as this is the upper bound for the power of our

algorithm. The second baseline we compared against is a method

in which the top K marginal predictors are identified, and then

tested for all pairwise iterations between them. When choosing

K=
ffiffiffiffiffiffiffi
2m
p

, for example, the number of tests performed

is
ffiffiffiffiffiffiffi
2m
p

2

 !
� m. We refer to this method as the ‘two-step’ algorithm.

In all our tests we apply the conservative Bonferroni correction,

in order to address the issue of multiple hypothesis. Since EPIQ

implicitly evaluates all SNP pairs, the number of tests for a mul-

tiple testing correction is
m

2

 !
, as in the all-pairs algorithm. For

each test the program generated a quantitative phenotype ac-

cording to the linear model described earlier,

yi=�0+�1xix
0
i+�i, where x, x0 are two SNPs that were ran-

domly chosen as the interacting pair. The phenotype was later

standardized so that y=0; stdevðyÞ=1.

We compared EPIQ against the two methods, using different

MAFs for the interacting SNPs and success rate equal to 80%

(Fig. 4a–c). Note that although the requested success rate was

80%, the actual power of EPIQ (shown in dark blue) is consist-

ently 480% of the power achieved by the all-pairs algorithm

(light blue), as this parameter states the minimal relative

power. Another conclusion drawn from these figures is that in

some cases there is a substantial difference in power between the

all-pairs test and the two-stage test (green), in favor of the all-

pairs test. The opposite is true for large MAFs, as in this case the

marginal effect is easy to detect, and the multiple testing correc-

tion is less stringent for a two-stage approach (data not shown).

Similar results were described by Evans et al. (2006), which

showed that for various models of interaction, an exhaustive

all-pairs search is more powerful compared with the two-step

strategy, despite the harsher multiple testing correction [O(m2)

compared to O(m)]. In these cases, using EPIQ can yield a sub-

stantial improvement in power.

3.2.1 Comparison with PLINK In order to further investigate
the power achieved by EPIQ, we carried 50 experiments compar-

ing our method with the linear regression performed by PLINK

and FastEpistasis, using the 50 distinct models of interaction

from Li and Reich (2000), which were adapted for quantitative

traits. These models assume that there are two phenotypic means

in the population: 0 and 1, and each model of interaction deter-

mines a different partitioning of the population to either mean.

Table 1. Runtime of the C++ implementation of EPIQ, compared with other programs available

Tool Computational method Statistical test Cores Runtime

PLINK (Purcell et al., 2007)a Exhaustive search OLS 1 �10 years

FastEpistasis (Sch€upbach et al., 2010)b Exhaustive search OLS 8 381h

EpiGPU (Hemani et al., 2011)b Exhaustive search F-test – 9.3–90 hc

EpiGPUHSIC (Hemani et al., 2011)b Exhaustive search HSIC – 194h

EPIQ (Kam-Thong et al., 2011)b Random projections OLS on binary SNPs 8 3.2h

EPIQ was run with the parameter success rate set to 80%, therefore runtime is compared against testing 80% of the pairs in the exhaustive search algorithms (n=1000,

m=106).
aTimes were extrapolated according to a test of 1000 SNPs performed on the same 2.5GHz processor, scaling linearly with the number of SNP pairs.
bTimes were extrapolated according to self-reported performance.
cRuntime varies with the chosen GPU.

(a) (b)

Fig. 3. Runtime of EPIQ for different settings: (a) runtime for various

numbers of SNP pairs, n=1000; EPIQ scales linearly with the number of

pairs. (b) Runtime of EPIQ for different power thresholds; nearly 100%

power can be achieved in a matter of hours (n=1000, m=106)

i23

EPIQ

o
to 
o
-
&times; 
ours
a
The 
'
=
5
-5
more than 
h
to
(
)
to


For example, model M1 states that only the individuals that are

homozygous with the minor allele on both SNPs have the higher

phenotypic mean [see Li and Reich (2000) for more details].

We generated datasets with 2000 individuals, where the two

SNPs account for 10% of the trait variance. Before running

EPIQ, we converted the genotypes to two binary representations,

a dominant one and a recessive one, and applied EPIQ to both

encodings [as in Brinza et al. (2010) and Prabhu and Pe’er

(2012)]. We compared EPIQ’s results with the power achieved

by applying the full linear model of PLINK on the original geno-

types. Figure 4d shows the results for all models, when the x axis

is the model number and the z axis is the power of EPIQ minus

the power of PLINK, averaged over all MAF combinations. Out

of the 50 models, 23 showed greater power when using EPIQ, 15

showed greater power with PLINK and the remaining 12 result

in a similar power when using either method. Several of the 15

models where PLINK shows higher power describe either a com-

plex and biologically unintuitive pattern of interaction (such as

M101), or have a large marginal effect, which makes them easy

to discover using Marchini’s two-stage algorithm (Marchini et al.

2005).

3.3 Results from the LURIC study

We applied EPIQ to measurements of lipid concentration in cells

(Cer(d18:0/24:1)), taken from the LURIC study, setting the suc-

cess rate parameter to 90%. Lipid concentration in cells was

converted to the log scale, standardized and corrected for

BMI, sex, age and statins usage, using the residuals as the

input for EPIQ. Processing of 826 individuals and 687 253

SNPs took 1.5h on 10 processors, identifying a single pair of

SNPs (rs436969 (chr5, HWE p=0.005), rs9385393 (chr6, HWE

p=1)) with a P-value of 2.2� 10�13, which is near significant

after applying a Bonferroni correction. No genes exist within 100

kb up- and down-stream of the SNPs. Figure 5 shows a

Manhattan plot of the SNPs surrounding the pair of SNPs.

4 DISCUSSION

In this article we demonstrated how random projections methods

can be applied on quantitative GWAS, achieving in most cases at

least an order of magnitude speedup compared with other exist-

ing tools, scaling linearly with the number of SNP pairs. We

showed that EPIQ required only 1.5 h on 10 processors for a

real dataset of 687 253 SNPs and 826 individuals, identifying a

pair of SNPs with a possible epistatic interaction, demonstrating

that the model’s assumptions do not hinder an efficient discovery

of interacting pairs. This speedup is gained in exchange of a

minor loss of power. As mentioned before, a search for interact-

ing SNP pairs in current GWAS suffers from an inherent mul-

tiple testing problem, where P-values must be as small as 10�13

or less in order to be considered significant. Like RAPID (Brinza

et al., 2010) and SIXPAC (Prabhu and Pe’er, 2012) have done,

EPIQ turns this limitation into an advantage: for a given sample

size, smaller P-values are a result of larger effect sizes. This in

turn makes interacting pairs more distinct from the rest of the

SNPs and consequently easier to detect by EPIQ. The drawback

is that as sample size increases, a smaller effect size is required for

achieving the same significance level. In this case EPIQ is

required to perform more iterations in order to distinguish be-

tween interacting and non-interacting pairs, and therefore does

not scale linearly with sample size. Thus, as GWAS expand to

include increasingly larger cohorts, further adjustments in the

algorithm would be required.
We wish to state that the settings used in this article are only a

portion of a wide range of options. The approach we described

can be extended to fit other statistical tests, and the binary

(a) (b)

(c) (d)

Fig. 4. Evaluating the power of EPIQ: (a–c) The power of the different

algorithms: EPIQ, all-pairs search and the two-stage search, to discover

the true interacting SNP pair. P and P
0

are Pr ½xi=1� and Pr ½x0i=1�,

respectively. Under all settings, the relative power of EPIQ compared

with the exhaustive search exceeds the requested success rate of 80%.

(d) The power of EPIQ compared with the full linear model used by

PLINK: Each dot represents a distinct model of interaction from Li

and Reich (2000): the x axis is the model number, the y axis is the average

power of EPIQ minus the power of PLINK

(a) (b) (c)

Fig. 5. Results on the LURIC dataset. (a and b) Manhattan plots of 100

SNPs up- and down-stream of rs436969, rs9385393. The epistasis option

of PLINK was used to test for interactions in all 40 401 pairs and the

smallest P-value for each SNP was recorded. Note that the P-value for

the top scoring pair is slightly higher than the one calculated by EPIQ, as

EPIQ was run on the binary representation of the SNPs. (c) A QQ-plot of

the P-values distribution shows a negligible inflation. P-values were cal-

culated for a sample of 10000 SNP pairs

i24

Y.Arkin et al.

(
)
(
)
5
23 
,
,
ours
--
-
p
4
paper 
to
ours
,


coding of the genotypes can be performed differently than
described, to match other underlying models of interaction.
EPIQ can also be used in conjunction with methods such as
the genome-wide rapid association testing (GRAT) (Kostem

and Eskin, 2013), which utilize LD between SNPs for choosing
a subset of proxy SNPs, thus reducing the number of tests and
further improving runtime. Moreover, the runtime reported re-

lates to the current code implementation of the algorithm.
Different implementations, such as GPU-based code, are likely
to achieve even better results. With the decrease in runtime, per-

mutation tests for significance become a feasible option, resulting
in increased power compared with stringent methods for multiple
hypothesis correction.
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