Figure 1:	Prevalence	of	seronegative	samples to	me	asles

analyzed accord	ding to HIV status and age	group (n=2663)				
	% NEG	% NEG+IND				
HIV+ (n=348)	28.16	40.8				
HIV- (n=2663)	22.9	33.2				
р	0.031	0.005				
HIV+ <40 years	32.5	45.3				
HIV+ >40 years	14.5	31.3				
р	0.002	0.02				
HIV- <40 years	26.4	38.3				
HIV- >40 years	14.0	20.2				
р	<0.001	0.001				
NEG: Negative	Negative IND: Indeterminate					

NEG: Negative IND: Indeterminate

NOTE: The method to determine antibodies to measles include an "indeterminate" or "grey" zone of values (VIDAS® Measles IgG, Biomeriex)

Figure 2: Proportion of seronegativity to measles according to age and HIV status

HIV status	Age group	N, total	N, negative	N, neg + ind	% neg	% neg + ind
POSITIVE	50-60	12	0	1	0%	8%
	40-49	71	12	25	7%	35%
	30-39	169	56	74	33%	44%
	18-29	96	30	46	31%	48%
	50-60	270	13	20	5%	7%
NEGATIVE	40-49	380	78	111	21%	29%
	30-39	1115	303	438	27%	39%
	18-29	550	132	200	24%	36%

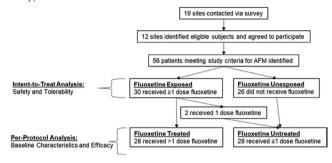
Neg: Negative Ind: Indeterminate %: Percentage

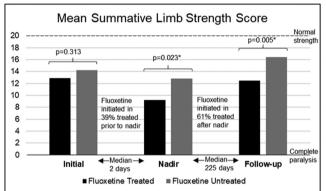
Disclosures. E. Bissio, MSD: Employee, Salary. M. E. Perez Carrega, MSD: Employee, Salary. J. L. Montes, MSD: Employee, Salary.

1901. Safety, Tolerability, and Efficacy of Fluoxetine as an Antiviral for Enterovirus D68 Associated Acute Flaccid Myelitis: A Retrospective Multicenter Cohort Study

Kevin Messacar, MD¹; Stefan Sillau, PhD²; Sarah Hopkins, MD³; Catherine Otten, MD⁴; Molly Wilson-Murphy, MD⁵; Brian Wong, MD⁶; Jonathan Santoro, MD⁷; Andrew Treister, MD⁸; Harlori Tokhie, MD⁹; Alcy Torres, MD¹⁰; Luke Zabrocki, MD¹¹; Julia Glanternik, MD¹²; Amanda L. Hurst, PharmD¹³; Jan Martin, MD²; Teri Schreiner, MD¹⁴; Naila Makhani, MD¹⁵; Roberta DeBiasi, MD, MS, FIDSA, FPIDS¹⁶; Michael Kruer, MD⁹; Adriana H. Tremoulet, MD, MAS¹⁷; Keith Van Haren, MD⁷; Jay Desai, MD¹⁸; Leslie Benson, MD⁵; Mark Gorman, MD⁵; Mark Abzug, MD¹⁹; Kenneth Tyler, MD²⁰ and Samuel Dominguez, MD, PhD²¹; ¹Pediatric Infectious Diseases and Hospital Medicine, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, ²University of Colorado, Aurora, Colorado, ³Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, ⁴Seattle Children's Hospital, Seattle, Washington, 5 Boston Children's Hospital, Boston, Massachusetts, ⁶Children's Hospital of Los Angeles, Los Angeles, California, ⁷Stanford University, Palo Alto, California, ⁸University of California San Diego, San Diego, California, ⁹Phoenix Children's Hospital, Phoenix, Arizona, ¹⁰Boston Medical Center, Boston, Massachusetts, ¹¹Naval Medical Center of San Diego, San Diego, California, ¹²Yale University, New Haven, Connecticut, ¹³Pharmacy, Children's Hospital Colorado, Aurora, Colorado, ¹⁴Neurology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, ¹⁵Yale, New Haven, Connecticut, ¹⁶Pedatrics (Infectious Diseases, Microbiology, Immunology and Tropical Medicine, Childrens National Health System/GWU School of Medicine, Washington, DC, ¹⁷University of California, San Diego, La Jolla, California, ¹⁸Division of Neurology, Children's Hospital Los Angeles, Los Angeles, California, ¹⁹University of Colorado School of Medicine, Children's Hospital, Aurora, Colorado, ²⁰University of Colorado Health Sciences Center, Aurora, Colorado, ²¹Infectious Diseases, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado

Session: 224. Antiviral Therapies Saturday, October 6, 2018: 12:30 PM


Background. Most patients with enterovirus (EV) D68-associated acute flaccid myelitis (AFM) have long-term disability. No effective therapies have been identified. Fluoxetine is the only FDA-approved medication with *in vitro* antiviral activity against EV-D68. This study retrospectively analyzed the safety, tolerability, and efficacy of fluoxetine for EV-D68-associated AFM.


Methods. A multicenter cohort study of US children with AFM in 2015–2016 compared serious adverse events (SAEs), adverse effects, and outcomes between fluox-etine-treated patients and untreated controls with AFM. Fluoxetine was administered

at the discretion of treating providers with data gathered retrospectively. The primary outcome was summative limb strength score (SLSS; sum of Medical Research Council strength in all four limbs).

Results. 56 patients with AFM from 12 centers met study criteria (Figure 1). Among 30 patients exposed to fluoxetine, no SAEs were reported and adverse effects were similar to controls (P = 0.16). The 28 patients treated with >1 dose of fluoxetine were more likely to have EV-D68 identified (57.1% vs. 14.3%, P = 0.001). Fluoxetine-treated patients had similar strength on initial examination compared with untreated controls (mean SLSS 12.9 vs. 14.3, P = 0.313), but more severe paralysis at nadir (mean SLSS 9.25 vs. 12.82, P = 0.023) and latest follow-up (mean SLSS 12.5 vs. 16.4, P = 0.005) (Figure 2). In propensity-adjusted analysis, SLSS from initial examination to latest follow-up decreased by 0.2 (95% CI: -1.8 to +1.4) in fluoxetine-treated patients and increased by 2.5 (95% CI: +0.7 to +4.4) in controls (P = 0.015).

Conclusion. Fluoxetine was safely administered and relatively well-tolerated. Patients with AFM treated with fluoxetine were more likely to have EV-D68-associated disease and had more severe paralysis at nadir and poorer long-term outcomes. These data do not suggest a positive efficacy signal for fluoxetine as a potential antiviral therapy for AFM.

Disclosures. All authors: No reported disclosures.

1902. A Survey of Pediatric Bone Marrow Transplant Centers Regarding Local Cytomegalovirus Prophylaxis Management Practices and Interest in a Future Randomized Trial

Brian T. Fisher, DO, MSCE, MPH¹; Craig L.K. Boge, MPH² and Christopher Dvorak, MD³; ¹Department of Pediatrics, Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, ²Center for Pediatric Clinical Effectiveness, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, ³Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, UCSF Benioff Children's Hospital, San Francisco, California

Session: 224. Antiviral Therapies

Saturday, October 6, 2018: 12:30 PM

Background. Cytomegalovirus (CMV) is a major source of morbidity and mortality after hematopoietic cell transplantation (HCT). A recent adult trial comparing letermovir to placebo, found this agent to be efficacious in preventing CMV reactivation with limited toxicity. Additional investigation of letermovir in pediatric HCT recipients is needed. To inform the feasibility of a pediatric trial, we surveyed bone marrow transplant (BMT) centers registered with the Children's Oncology Group (COG) regarding their CMV management practices and interest in a pediatric trial for CMV prevention.

Methods. A brief 6-item questionnaire was created using REDCap[™] and distributed by email to all COG-approved BMT Centers. The initial email request was sent on March 26, 2018 to the BMT physician representative listed in the COG member roster. A follow-up request was sent on April 2, 2018. The questionnaire requested information about CMV prophylaxis strategies, including antiviral agent(s) employed, and interest in a pediatric trial of CMV prophylaxis.

Results. The questionnaire was emailed to 89 BMT centers and was completed at 57 (64%). Of these, 23 (40%) reported giving prophylaxis to all or a subset of allogeneic/hap-loidentical HCT recipients. The most common indication for CMV prophylaxis (21/23)