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Abstract

Current theories of object perception emphasize the automatic nature of perceptual inference. Repetition suppression (RS), the
successive decrease of brain responses to repeated stimuli, is thought to reflect the optimization of perceptual inference through
neural plasticity. While functional imaging studies revealed brain regions that show suppressed responses to the repeated presen-
tation of an object, little is known about the intra-trial time course of repetition effects to everyday objects. Here, we used event-
related potentials (ERPs) to task-irrelevant line-drawn objects, while participants engaged in a distractor task. We quantified
changes in ERPs over repetitions using three general linear models that modeled RS by an exponential, linear, or categorical
“change detection” function in each subject. Our aim was to select the model with highest evidence and determine the within-trial
time-course and scalp distribution of repetition effects using that model. Model comparison revealed the superiority of the expo-
nential model indicating that repetition effects are observable for trials beyond the first repetition. Model parameter estimates
revealed a sequence of RS effects in three time windows (86–140, 322–360, and 400–446 ms) and with occipital, temporopari-
etal, and frontotemporal distribution, respectively. An interval of repetition enhancement (RE) was also observed (320–340 ms)
over occipitotemporal sensors. Our results show that automatic processing of task-irrelevant objects involves multiple intervals of
RS with distinct scalp topographies. These sequential intervals of RS and RE might reflect the short-term plasticity required for
optimization of perceptual inference and the associated changes in prediction errors and predictions, respectively, over stimulus
repetitions during automatic object processing.

Introduction

Stimulus repetition-related phenomena are ubiquitous in psy-
chophysics, psychology, and neuroscience (Auksztulewicz & Fris-
ton, 2016; Barron, Garvert, & Behrens, 2016; Clifford et al., 2007;
Grill-Spector, Henson, & Martin, 2006; Henson, 2003; Ibbotson,
2005; Kohn, 2007; Krekelberg, Boynton, & van Wezel, 2006).
Functional neuroimaging studies have observed both repetition sup-
pression (RS) and repetition enhancement (RE) effects [reviewed in
Segaert, Weber, de Lange, Petersson, and Hagoort (2013)]. RS, also
referred to as stimulus specific adaptation (SSA), is thought to
reflect a rapid form of experience-dependent plasticity affecting

perception and response properties of neurons. It has also been
linked to optimization of the brain’s predictions about the sensory
environment (Solomon & Kohn, 2014) by discounting expected
properties (Clifford et al., 2007; Summerfield, Trittschuh, Monti,
Mesulam, & Egner, 2008; Vogels, 2016; Webster, 2011).
Repetition-related phenomena in the visual system are complex

and likely represent a compound of distinct neural processes, the
mechanisms of which are not fully understood yet (Grill-Spector
et al., 2006; Ibbotson, 2005; Solomon & Kohn, 2014). At least three
mechanisms contribute to SSA, including (a) somatic after hyperpo-
larization, (b) synaptic depression due to depletion of presynaptic
vesicles, and (c) circuit-level mechanisms (Kohn, 2007; von der
Behrens, Bauerle, Kossl, & Gaese, 2009). Adaptation is thought to
modify neural population coordination, and its effects cascade
through the processing stages, possibly affecting multiple networks
(Solomon & Kohn, 2014).
Predictive coding (PC) offers a neurobiologically plausible, mech-

anistic model for stimulus repetition-related phenomena, and
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accommodates observations in psychophysics, electrophysiology,
and functional neuroimaging (Auksztulewicz & Friston, 2016; Fris-
ton, 2005). PC suggests that the brain maintains and updates an
internal model of the environment to infer the most likely causes of
sensory inputs and actively generates predictions (Clark, 2015). In
this framework, sensory systems are hierarchically organized where
each level receives inputs from the level below that signals a mis-
match between predicted and observed events, a prediction error
(PE; Friston, 2005; Hinton, Dayan, Frey, & Neal, 1995; Hohwy,
2013; Rao & Ballard, 1999). In turn, each level sends its input to
the level below conveying predictions that are thought to explain
away PEs at the lower level. Perceptual inference, that is, the pro-
cess of determining the most likely cause of sensory inputs, thus,
rests on message passing across the hierarchy. From the perspective
of PC, adaptation or RS can be understood as a neural correlate of
perceptual learning, that is, the optimized process of perceptual
inference where PEs to repeated stimuli are explained away more
efficiently due to synaptic plasticity in sensory circuits (Baldeweg,
2007; Garrido et al., 2009). Conversely, RE could represent
increased neural activity during the “sharpening” of predictions cor-
responding to increasing precision (implemented by increased post-
synaptic gain) over repetitions. Encoding precision is important as
veridical perception not only rests on the content of sensory signals
but also on the confidence or precision of the signals that drive
inference. It has been suggested that the brain might employ mecha-
nisms to encode precision by relying on modulatory neurotransmit-
ters that regulate the gain or excitability of populations (Friston,
Brown, Siemerkus, & Stephan, 2016). Specifically, cholinergic
mechanisms might affect the encoding of sensory precision by mod-
ulating postsynaptic gain (Feldman & Friston, 2010; Moran et al.,
2013). Alternatively, cholinergic mechanisms can also affect the
function of N-methyl-D-aspartate (NMDA) receptors (Aramakis,
Bandrowski, & Ashe, 1997; Chen et al., 2008) which, in turn, are
thought be involved in signaling both PEs and predictions in cortical
hierarchies (Corlett, Honey, Krystal, & Fletcher, 2011; Friston,
2005; Stephan, Diaconescu, & Iglesias, 2016). In sum, PC offers
potential explanations for the phenomena observed during repeated
stimulus presentation: larger responses to unpredicted events, and
attenuation as well as enhancement to repeated events (de Gardelle,
Waszczuk, Egner, & Summerfield, 2013; Egner, Monti, & Summer-
field, 2010; Recasens, Leung, Grimm, Nowak, & Escera, 2015).
While studies on repetition of faces and words are relatively abun-

dant (for a recent review, see Schweinberger & Neumann, 2016),
there are few electroencephalography (EEG) studies where time-
course and topographic distribution of repetition effects to objects
were investigated at the whole-scalp level. Typically, most studies
focused the analysis on a preselected set of electrodes and confined
amplitude measurements to time windows either based on visual
inspection of the data or on previous reports in the literature. Further-
more, previous studies often investigated brain responses only to the
first repetition relative to the initial presentation, thus, ignoring the
dynamics of brain responses to further repetitions (Andrade, Butler,
Mercier, Molholm, & Foxe, 2015; Eddy, Schmid, & Holcomb, 2006;
Gilbert, Gotts, Carver, & Martin, 2010; Gosling, Thoma, de Fockert,
& Richardson-Klavehn, 2016; Gruber, Giabbiconi, Trujillo-Barreto,
& Muller, 2006; Gruber & Muller, 2006; Guillaume et al., 2009;
Henson, Rylands, Ross, Vuilleumeir, & Rugg, 2004; Kim, Jang,
Che, Kim, & Im, 2012; Schendan & Kutas, 2003). The aim of the
current study was to determine the time course and scalp distribution
of repetition effects without prior hypotheses about the dynamics
(RS vs. RE), time course, or scalp distribution of repetition effects.
To this end, we analyzed the spatiotemporal dynamics of ERPs to

black and white line drawings of common objects over six consecu-
tive presentations. We used statistical parametric mapping (SPM;
Friston, 2007) to analyze ERP amplitudes at each and every sensor
in the poststimulus 50–500 ms time window using a mass-univariate
approach. Given that most studies focused on the analysis of ERPs
to the first repetition only, little is known about the time course of
the decay of scalp-recorded ERPs to object stimuli that are repeated
multiple times. Therefore, we set up three GLMs with parametric
regressors incorporating three hypotheses about the time course of
repetition effects. We used an exponential, a linear, and a “change
detection” model to identify ERP components that showed a reliable
repetition effect and performed Bayesian model comparison (Ste-
phan, Penny, Daunizeau, Moran, & Friston, 2009) to identify the
model that best explained the observed data.

Methods

Participants and ethics statement

Seventeen students (mean age 21.06 years, SD 1.56 years, 8 female,
15 right-handed) volunteered to participate in the study. The experi-
mental protocols were approved by the Institutional Review Board
of the Institute for Psychology, Hungarian Academy of Sciences.
All participants gave their written informed consent after the nature
of the experiment had been fully explained. They received a mone-
tary compensation for their participation in the study. All partici-
pants had normal or corrected-to-normal vision. The experiments
were conducted in compliance with the Declaration of Helsinki.

Stimuli and procedure

In each of the four blocks, we recorded event-related potentials
(ERPs) to 60 black and white line drawings of common objects
taken from the picture inventory by Szekely et al. (2004). The 60
object pictures were selected from the following semantic categories:
small artifacts (n = 39, e.g., book, flag); large artifacts (n = 1, bed);
objects found in nature (n = 2, flower, leaf); things to wear (n = 5,
e.g., coat, hat); body parts (n = 2, feather, heart); foods (n = 11,
e.g., apple, mushroom). Stimuli were organized into microsequences
of 6–10 presentations of an object followed by a close-up or wider-
angle view of the same object, and an additional repetition of the
same object with its original viewing angle another two times (Fig-
ure 1a). ERPs to changes of viewing angle were not analyzed here.
They were included to study boundary extension effects (e.g., Czig-
ler, Intraub, & Stefanics, 2013) and will be published elsewhere.
Thus, the length of microsequences varied pseudo-randomly
between 9 and 13 presentations. To study repetition effects, here,
we analyzed ERPs to the first six stimuli, exclusively. In each block,
we used 60 individual black line-drawn objects on white back-
ground. Stimulus duration was 250 ms with 320 ms inter-stimulus
interval. Each picture subtended 11.4° visual angle and was pre-
sented on a dark gray background. A black fixation cross was pre-
sented in the center of the screen laid over a gray disk subtending
1.17° visual angle. To minimize eye-movements, subjects were
instructed to fixate at the cross throughout the experiment. Similar
to our prior studies (Csukly, Stefanics, Komlosi, Czigler, & Czobor,
2013; Farkas, Stefanics, Marosi, & Csukly, 2015; Kovacs-Balint,
Stefanics, Trunk, & Hernadi, 2014; Stefanics & Czigler, 2012; Ste-
fanics, Kimura, & Czigler, 2011), we employed a behavioral task to
minimize the variation of attentional effects on the processing of
object stimuli across participants by engaging the participants’ atten-
tion. Pseudo-randomly every 3–6 s, the fixation cross became wider
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or longer (Figure 1a). The participants’ task was a speeded button-
press to the changes of the cross, and reaction time (RT) was
recorded. Trials occurring within an 800-ms interval after a change
in the fixation cross were excluded from the analysis. RTs and hit
rates were compared between experimental blocks with analyses of
variance (ANOVA). Stimuli were presented using Cogent 2000 and
Cogent Graphics developed at the Wellcome Department of Imaging
Neuroscience (http://www.vislab.ucl.ac.uk/Cogent/index.html). Par-
ticipants sat in a comfortable chair in a sound-attenuated, dimly lit
room during EEG recording.

EEG recordings and preprocessing

EEG was recorded from 61 Ag/AgCl electrodes according to a mod-
ified international 10–20 system (AF7, Fp1, Fpz, Fp2, AF8, AF3,
AFz, AF4, F7, F5, F3, F1, Fz, F2, F4, F6, F8, FT7, FC5, FC3,
FC1, FCz, FC2, FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2, C4, C6,
T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, P7, P5, P3,
P1, Pz, P2, P4, P6, P8, PO7, PO3, POz, PO4, PO8, O1, Oz, O2).
An electrode attached to the tip of the nose was used as reference.
The ground electrode was placed on the forehead. EEG was
recorded from DC with a low-pass filter at 100 Hz (Neuroscan
Synamp, Victoria, Australia). Eye movements were monitored by
two horizontal and two vertical bipolar EOG electrodes. Data were

digitized at 32 bit resolution and a sampling rate of 500 Hz. EEG
was filtered off-line between 1 and 30 Hz (24 dB/octave) and re-
referenced to the common average.
Epochs extending �100 ms before to 550 ms after stimulus onset

were extracted from the continuous EEG for each object for the first
six presentations. Epochs were baseline corrected to the pre-stimulus
100-ms period. To avoid other potential artefacts, epochs with val-
ues exceeding �75 lV on any EEG or EOG channel were rejected
from the analysis using the open source software EEGLAB (RRID:
SCR_007292, Delorme & Makeig, 2004) in the Matlab development
environment (MathWorks, Natick, USA). After artifact rejection, the
total number of trials (summed over the four blocks) used for calcu-
lating the mean ERPs that entered the GLM was 197 (SD = 11),
184 (SD = 13), 183 (SD = 11), 182 (SD = 12), 187 (SD = 11), and
178 (SD = 11), for 1st, 2nd, 3rd, 4th, 5th, and 6th presentation of
stimuli, respectively.

Space 9 time SPM analysis

Mean ERP data were converted to scalp ⨯ time images for statisti-
cal analysis using the open source software SPM12 (v6470, RRID:
SCR_007037; Litvak et al., 2011), following similar preprocessing
and statistical procedures as in previous work (e.g., Auksztulewicz
& Friston, 2015; Garrido, Sahani, & Dolan, 2013; Henson,
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Fig. 1. Paradigm and 1st-level design matrix. (a) We used a simple stimulus repetition paradigm where line drawings of everyday objects were repeated 6–10
times. Between the 6th–10th presentations, a change in the viewing angle was introduced, after which the original picture was repeated two times. Note that our
analysis focused on the first six presentations where stimuli did not change over repetitions. (b) Covariates plotted over the 1st-level design matrix. Image num-
ber corresponds to images for mean event-related potentials (ERPs) to the 1–6 presentations in four blocks (x axis). ERPs were modeled with a parametric mod-
ulator and a main regressor for each block (y axis right). The exponential function (mean centered) used for modeling repetition effects for the first block is
plotted in blue over the design matrix (y axis left). (c and d) Covariates plotted over the 1st-level design matrix for the change detection and the linear models,
respectively.
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Mouchlianitis, Matthews, & Kouider, 2008; Stefanics, Heinzle,
Horv�ath, & Stephan, 2018). The data were interpolated to create a
32 9 32 pixel scalp map for each time-point in the poststimulus
50–500-ms interval. Given a sampling frequency of 500 Hz, the
time dimension consisted of 226 samples in each averaged ERP.
Images were stacked to create a 3D space-time image volume that
was smoothed with a Gaussian kernel (full-width at half-
maximum = [16 mm 16 mm 16 ms]) in accordance with the
assumptions of Random Field Theory (Kiebel & Friston, 2004;
Worsley & Friston, 1995).
A GLM with four main regressors corresponding to the four

experimental blocks, and a generic decay/rise function as a paramet-
ric modulator for each stimulus presentation in each block, was esti-
mated for each participant. The design matrix for a single subject is
depicted in Figure 1b. The decay/rise function was used to quantify
changes in ERP amplitude over repetitions within microsequences
as unpredicted firstly presented objects became more predictable
over consecutive repetitions. We chose an exponential function as
parametric modulator as several electrophysiological and neuroimag-
ing findings indicating that response attenuation over repeated stimu-
lus presentations typically follows a non-linear decay that is well
approximated by an exponential function (e.g., Baldeweg, 2006;
Boehnke et al., 2011; de Gardelle et al., 2013; Kaliukhovich &
Vogels, 2014; Puce, Allison, & McCarthy, 1999; Sanchez-Vives,
Nowak, & McCormick, 2000). This allowed us to estimate modula-
tion of the repetition sequence with an exponential time course.
Importantly this design is flexible enough to capture both decay (at-
tenuation or suppression) and rise (facilitation or enhancement) pro-
cesses. For example, a decrease of a positive ERP component would
show a positive correlation with our regressor across repetitions,
whereas an increase of a positive component would show a negative
correlation with our regressor (conversely for negative components).
The estimated regression coefficients (beta parameter estimates) of
the decay function for each scalp time-point for each participant
were analyzed at the group level for all three models (exponential,
linear, “change detection”), using a standard two-stage summary
statistics approach (Friston, Stephan, Lund, Morcom, & Kiebel,
2005; Mumford & Nichols, 2009). These parameter estimates repre-
sent the relationship (similarity) between the dynamics of ERPs over
repeated stimulus presentations and the parametric decay regressors.
On the group level, we used F-tests to find scalp time-points

where mean ERPs were significantly modulated by repeated stimu-
lus presentations. The resulting statistical parametric maps (SPMs)
were family-wise error (FWE) corrected for multiple comparisons at
the voxel level (p < 0.05 [FWE]) using Random Field Theory (Flan-
din & Friston, 2017).

Model comparison

Beside using an exponential function as parametric modulator, we
explored two alternative models previously considered for studying
repetition effects (Lieder, Daunizeau, Garrido, Friston, & Stephan,
2013; Noppeney & Penny, 2006) and compared them with the expo-
nential model. In particular, we considered repetition effects as (a)
categorical decay (i.e., object 1st presentation > presentations 2–6)
and (b) linear decrease. The categorical decay corresponds to a
“change detection” model, that is, it represents the hypothesis that
whenever a new object is presented in a sequence, it elicits a phasic
response which disappears completely under the following repeti-
tions. While the linear model is not realistic (given that RS effects
must become consecutively smaller in physiological systems with
decay mechanisms), we included this regressor as a “null” model,

similar to Noppeney and Penny (2006). Thus, we set up another
two GLMs, incorporating these two hypotheses. The design matrices
for a single subject are depicted in Figure 1c,d, respectively.
To compare the models formally, we used the Bayesian Informa-

tion Criterion (Schwarz, 1978) approximation to the log model evi-
dence (LME). Under Gaussian noise (as assumed by the GLM), this
leads to an approximation of LME that is a function of the residual
sum of squares (RSSs):

LME ’ � 1
2
n ln

RSS
n

� �
� 1
2
k ln ðnÞ ð1Þ

where n is the number of data points and k is the number of param-
eters estimated by the model.
We first computed the LME for each voxel in individual partici-

pants. To perform model comparison at the group level, we com-
puted the sum of DLME (between models) across subjects for each
voxel. This is equal to the logarithm of the group Bayes factor (Ste-
phan, Weiskopf, Drysdale, Robinson, & Friston, 2007) and corre-
sponds to a fixed-effects group-level Bayesian model selection
(Stephan et al., 2009) procedure. Group model comparison was per-
formed both within a functionally defined mask (of voxels showing
repetition effects under all models) as well as on all voxels in the
3D space-time image volume (to perform an unconstrained compar-
ison). The mask comprised all voxels from the SPM analyses where
all three models had yielded a significant whole-brain corrected
effect (logical “AND” conjunction). We then used a non-parametric
Wilcoxon signed-rank test to assess the null hypothesis of zero med-
ian for DLME across all voxels.

Results

Reaction time and hit rate

We compared RTs and hit rates for the occasional changes in the
fixation cross between experimental blocks. An ANOVA of RTs
across the four blocks yielded no significant effect (F3,48 = 1.12,
p = 0.35) indicating lack of evidence for a change in reaction speed
across the blocks. The mean RT was 452 ms (SD = 87 ms). An
ANOVA of hit rate across the four blocks yielded no significant
effect (F3,48 = 0.396, p = 0.76) indicating a high detection perfor-
mance without signs of a change in hit rate during the experiment.
The mean hit rate was 95.26% (SD = 6.7%).

Model comparison

We assessed the three models by performing model comparison at
the group level as described above. The functionally defined mask
was a conjoint mask of voxels showing significant repetition effects
under any of the three models (logical “AND” conjunction). Fixed-
effects Bayesian model comparison revealed that the Exponential
model was clearly superior compared to the other two models and
that the Change detection model performed better than the Linear
model, both for voxels within the functional mask (Figure 2a), as
well as for voxels within the whole volume (Figure 2b).
To characterize the distribution of DLME values more formally,

we performed null hypothesis testing, as described above. The
results are summarized in Table 1.

ERP results

Given that model comparison showed that the GLM with the expo-
nential decay function explains the data best, we used the
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space 9 time clusters with significant results for the winning model
to illustrate repetition effects. We start from scalp topographies and
then show using time-windowed data and conventional ERP plots of
the effects that lead to significant results in SPM. Scalp topographies
of the SPMs are shown in Figure 3a for the cluster maxima. Model
estimates to responses to line drawings showed a sequence of RS
effects. Over repeated presentations of our visual stimuli, brain
responses showed a sequence of RS and RE effects. An early RS
effect was observed at bilateral occipital areas in the 86–140-ms
interval followed by RE at midline occipital sites (320–340 ms).
Temporoparietal electrodes over the right hemisphere showed RS in
the 322–360 ms time window followed by a further interval of RS
in the 400–446 ms time window at right frontotemporal sites.
Details of test statistics are given in Table 2. A video animation of
the time course of repetition effects over the whole scalp is available
in the Supporting Information of the online version of this paper.

For visual comparison, ERP amplitudes for each subject are
shown in Figure 3b for each of the six stimulus presentations at
selected electrodes in the intervals where significant repetition
effects were observed. The early RS effect over occipital areas sug-
gests an abrupt suppression of PE responses from the first to the
second stimulus presentation, with constant response amplitude for
further repetitions. In turn, the subsequent RS effects over temporal
and frontal areas show a more smoothly decaying response profile.
The occipital RE effect also shows a smooth time course of incre-
mentally increasing response amplitude to repeated stimulus presen-
tations.
For visualization, grand-average ERP waveforms to the first and

sixth stimulus presentations are shown in Figure 3c at electrode sites
where SPM analysis had shown significant repetition effects. Our
visual stimuli (line drawings of objects) evoked the canonical poste-
rior P1 and P2 components, as well as prominent negative-going
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Fig. 2. Histograms of DLME. (a) Histograms over the voxels within a mask defined by the “logical AND” conjunction of significant voxels under any of the
three models, and (b) over all voxels in the whole 3D space-time volume. LME: log model evidence.

Table 1. Summary of model comparison statistics. The results show that the distribution of DLME values is not Gaussian and median DLME values are sig-
nificantly different from zero for all comparisons. The absolute value of median DLME in all comparisons was >12. Notably, a difference in LME >5 is consid-
ered as very strong evidence in favor of the superior model (Kass & Raftery, 1995)

DLME Median Mean Std
% of
voxels >0

Kolmogorov–
Smirnov
test (D)

Kolmogorov–
Smirnov test (p)

Wilcoxon
signed-rank
test (Z)

Wilcoxon
signed-rank
test (p)

EXP vs. LIN (within mask) 38.77 43.59 14.24 100 1 <0.00001 �53.58 <0.00001
EXP vs. CDT (within mask) 16.73 21.48 11.42 100 1 <0.00001 �53.58 <0.00001
CDT vs. LIN (within mask) �21.76 �22.11 9.63 0.57 0.9839 <0.00001 �53.57 <0.00001
EXP vs. LIN (all voxels) 25.03 29.15 18.58 98.36 0.9704 <0.00001 �375.75 <0.00001
EXP vs. CDT (all voxels) 13.78 13.73 11.03 89.28 0.8439 <0.00001 �348.01 <0.00001
CDT vs. LIN (all voxels) �12.77 �15.43 19.98 21.43 0.7286 <0.00001 �283.30 <0.00001

Note. LME: log model evidence.
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peaks at parietotemporal and frontal electrodes. Note that ERPs are
shown for illustration purpose only and no further null hypothesis
tests are conducted; all statistical tests were carried out as part of
the SPM analysis covering the entire space-time volume, comprising
data from all electrodes in the poststimulus 50–500-ms interval (see
Methods for details).

Discussion

In this study, we used SPM, a comprehensive analysis framework to
investigate effects of stimulus repetition on ERPs to line drawings
of everyday objects. For each subject, we estimated a GLM includ-
ing a decay function to quantify changes in brain potentials over the
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whole scalp in the poststimulus 50–500 ms time window. We
observed three consecutive intervals of RS in the 86–140, 322–360,
and 400–446 ms time window with occipital, temporoparietal, and
frontotemporal distribution (Figure 3a), respectively. Furthermore,
we found an interval of RE in the 320–340 ms window with occipi-
totemporal distribution.
Importantly, similar to previous studies (e.g., Csukly et al., 2013;

Farkas et al., 2015; Kovacs-Balint et al., 2014; Stefanics & Czigler,
2012; Stefanics et al., 2011, 2018), our experimental design imple-
mented a primary task to control attentional effects that might modu-
late repetition-related neural activity (Auksztulewicz & Friston, 2016;
Chennu et al., 2013, 2016; Egner et al., 2010; Gosling et al., 2016;
Vuilleumier, Schwartz, Duhoux, Dolan, & Driver, 2005). The con-
stantly high hit rate and fast RT over the experiment indicated that
participants complied with the task and attended the fixation cross.
This suggests that repetition effects observed in our study likely
reflect automatic perceptual inference operating outside the focus of
visual attention. Theories of perception as unconscious inference
originate from Helmholtz’s classical idea that perceptual experience
is the “conclusion” of unconscious inductive inference from sensory
input (Hatfield, 2002; Kiefer, 2017). In current theories of cortical
information processing such as PC (Friston, 2005), RS is viewed as
the result of a process during which the brain minimizes the PE (the
difference between the predicted and the actual input) with increasing
efficacy (due to updating of predictions and the associated synaptic
plasticity of cortical connections) during repeated presentations of the
same stimulus type. This decrease of PEs during processing of a
given stimulus, and the change in efficacy of stimulus processing via
plasticity in underlying neural circuits, corresponds to perceptual
inference and learning, respectively (Baldeweg, 2007).
Our findings represent an important advance in the understanding

of the time course and scalp distribution of repetition effects in ERP
correlates of object perception as they are based on an unbiased
mass-univariate statistical approach that covers the entire
space 9 time volume of EEG signals. Instead of relying on visual
inspection and preselection of a subset of channels for amplitude
tests, this approach included data from all electrodes and all time-
points in the poststimulus 50–500-ms interval. The analysis takes
into account the smoothness of scalp potentials (correlations
between neighboring channels and temporal smoothness of the EEG
signal) and used a stringent method for correcting for multiple com-
parisons (FWE) using Random Field Theory.
Repetition suppression has been widely used in fMRI studies that

examine how specific representations may be encoded by neuronal

population activity (e.g., Barron et al., 2016). Furthermore, models
of network mechanisms have been put forward to explain RS at the
level of population dynamics (Grill-Spector et al., 2006). In electro-
physiology, RS effects have been studied frequently over trials; by
contrast, their temporal evolution within trials has received little
attention. A PC view suggests that RS reflects the minimization of
PE by updating predictions about the content and precision of sen-
sory inputs (Auksztulewicz & Friston, 2015). Importantly, PC also
suggests that for non-trivial stimuli, which are processed at several
(spatial, temporal, or semantic) scales, multiple significant within-
trial intervals of RS should occur. This is because model updating
and the “explaining away” of PEs during perceptual inference
occurs at several levels of the cortical hierarchy, with temporal
delays inherent to the recurrent message passing between areas, and
increasing synaptic efficacy due to short-term plasticity is found on
all levels (Baldeweg, 2006, 2007; Friston, 2005; Garrido et al.,
2009). Our findings suggest that, for the particular stimuli used here
(line drawings of everyday objects), this implicit perceptual process
might take place in neural circuitry comprising occipital, temporal,
and frontal areas.
Attention is known to counteract RS, that is, it increases neural

response to the repeated stimuli (e.g., Auksztulewicz & Friston, 2015;
Kok, Rahnev, Jehee, Lau, & de Lange, 2012). However, in our experi-
ment, the object stimuli were task-irrelevant and our protocol
employed a primary task to engage the participants’ attention. There-
fore, attentional effects are unlikely to account for the enhanced
responses we observed in the 320–340 ms window with occipitotem-
poral distribution. RE has received less consideration than RS thus far
(Segaert et al., 2013). RE effects in studies with implicit tasks have
been suggested to reflect perceptual identification (Schnyer, Ryan,
Trouard, & Forster, 2002) and involvement of explicit memory pro-
cesses (Segaert et al., 2013). The PC theory assumes that activity of a
subset of neural elements that participate in perceptual inference repre-
sent predictions about the content and precision of sensory inputs.
During stimulus repetition, neural activity underlying both kinds of
predictions might increase and manifest as enhanced neural responses.
A prior study using fMRI reported that RS and RE co-occurred in a
single cortical region during stimulus repetition (de Gardelle et al.,
2013). While our present analyses do not link our scalp ERP results to
the source level, our findings of an early interval of RS in the 86–
140 ms time window followed by an interval of RE in the 320–
340 ms window with posterior distributions suggest occipitotemporal
generator sources. Repetition paradigms with masked object (Eddy
et al., 2006) and face (Henson et al., 2008) stimuli, as well an audi-
tory study by Recasens et al. (2015), have also reported distinct inter-
vals of RS and RE effects, indicating that not only unattended but
even subliminal processing of faces and objects, as well as pure tones,
are associated with both increase and decrease of ERPs. It is notable
that the same pattern of results have been obtained by Henson et al.
(2008), Recasens et al. (2015) and our current study, namely that the
RE effects occur later than RS effects.
A limitation of our study is the relatively short stimulus onset

asynchrony (SOA) of 570 ms. Due to the short SOA, we cannot
fully exclude that the pre-stimulus 100 ms baseline period contained
ERP components from the previous trial. However, it is unlikely
that baseline correction (which consists of subtracting a constant)
could have significantly contributed to the observed sequence of
multiple short intervals of repetition effects.
Scalp-recorded ERPs result from the linear summation of electric

fields generated in the brain; therefore, it is non-trivial to determine
whether changes in a certain ERP component relative to a baseline
period were caused by an increase/decrease of a negative/positive

Table 2. Test statistics for repetition effects. Significant activations are
arranged and numbered according to size. p-Values and statistics are given
for up to three peaks within each activation

Activation
number

Activation
size
(# voxels)

Latency
(ms)

p-Value
(FWE-corr.) F-statistic

Equivalent
Z-statistic

1 7,795 422 0.00180 61.2678 4.81524
440 0.00404 52.1248 4.60680
380 0.03835 31.7057 3.95946

2 4,156 346 0.00363 53.2627 4.63474
346 0.00737 46.0016 4.44467

3 570 102 0.00474 50.4278 4.56392
4 52 298 0.03762 31.8552 3.96560
5 8 112 0.04366 30.7134 3.91801
6 2 108 0.04893 29.8551 3.88109

Note. FWE: family-wise error.
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potential. Based on our current analysis, we cannot unequivocally
disambiguate whether our results are due to RS of negative compo-
nents or RE of positive components; this ambiguity is inherent to all
ERP studies. Nevertheless, several canonical ERP peaks have
known timing and scalp distribution. Here, we interpreted amplitude
changes during the period of these peaks in the most parsimonious
way. For example, a period of decreased ERP overlapping with the
early P1 peak is interpreted as RS of a dipolar source activity in the
extrastriate cortex projecting its positive field over posterior elec-
trodes (Di Russo, Martinez, Sereno, Pitzalis, & Hillyard, 2002; Mur-
phy, Kelly, Foxe, & Lalor, 2012). While our current results provide
objective phenomenological descriptions of repetition effects of
scalp-recorded ERPs, future steps will involve studying repetition
effects with more mechanistically interpretable computational and
biophysically plausible network models (e.g., Garrido et al., 2009).

Supporting Information

Additional supporting information can be found in the online ver-
sion of this article:
Video S1: Statistical Parametric Map (SPM) for repetition effects in
the post-stimulus 50-500 ms interval. Scalp map shows the time-
course of significant clusters (family-wise error corrected for multi-
ple comparisons at the voxel level (p < 0.05 (FWE))), where repeti-
tion effects were found with the exponential model. Rectangular
panels show time-course of effects in saggital and coronal planes
through the 3D scalp space-time volume at scalp positions indicated
by the blue crosshair in the scalp map panel. Color bar shows F-
values of group statistics.
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