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Abstract

As one of the commonly used folk psychological concepts, self-deception has been

intensively discussed yet is short of solid ground from cognitive neuroscience. Self-

deception is a biased cognitive process of information to obtain or maintain a false

belief that could be both self-enhancing or self-diminishing. Study 1 (N = 152) cap-

tured self-deception by adopting a modified numerical discrimination task that pro-

vided cheating opportunities, quantifying errors in predicting future performance (via

item-response theory model), and measuring the belief of how good they are at solv-

ing the task (i.e., self-efficacy belief). By examining whether self-efficacy belief is

based upon actual ability (true belief) or prediction errors (false belief), Study

1 showed that self-deception occurred in the effortless (easier access to answer cues)

rather than effortful (harder access to answer cues) cheating opportunity conditions,

suggesting high ambiguity in attributions facilitates self-deception. Studies 2 and

3 probed the neural source of self-deception, linking self-deception with the meta-

cognitive process. Both studies replicated behavioral results from Study 1. Study

2 (ERP study; N = 55) found that the amplitude of frontal slow wave significantly dif-

fered between participants with positive/self-enhancing and negative/self-

diminishing self-deceiving tendencies in incorrect predictions while remaining similar

in correct predictions. Study 3 (functional magnetic resonance imaging study;

N = 33) identified self-deceiving associated activity in the anterior medial prefrontal

cortex and showed that effortless cheating context increased cheating behaviors that

further facilitated self-deception. Our findings suggest self-deception is a false belief

associated with a distorted metacognitive mental process that requires ambiguity in

attributions of behaviors.
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1 | INTRODUCTION

Human beings can be relatively accurate in judging their cognitive

processes, known as metacognition (Metcalfe, 1996; Metcalfe &

Shimamura, 1994). However, when accurate perception and judg-

ments of the world fail to fit with our internal needs, self-deception

may appear. Self-deception describes a situation where an individual

actively misrepresents reality to one's mind with a desired false belief

(Trivers, 2000), though he/she could have come to an evidence-based

true belief if without biased mental processing (Mele, 1997).

Researchers used cheating paradigms where cheating opportuni-

ties were provided to foster false beliefs and self-deception was oper-

ationally defined as a false conception of one's task performance (Zoe

Chance et al., 2015; Zoë Chance et al., 2011; Ren et al., 2018; Zhong

et al., 2019). Despite increasing empirical research on self-deception

in recent years (Ren et al., 2018; Schwardmann & van der

Weele, 2019; Smith et al., 2017; van der Leer & McKay, 2017), it still

lacks consensus on its operational definitions, antecedents of self-

deception, and knowledge of the cognitive process. First, self-

deception is a kind of false belief showing the discrepancy between

the internal representation (e.g., the belief one holds about own ability

to complete a particular task, that is self-efficacy belief) and the reality

(e.g., actual performance in a task) in ambiguous contexts. For exam-

ple, a self-deceiving belief is like the belief of being capable to solve a

brain-teaser test all by oneself while ignoring the fact that one man-

aged to solve the test mainly due to cheating. The belief and the real-

ity are needed to be validly measured, quantified, and directly

compared with each other to confirm if the internal representation is

false. Besides, the source of false belief is needed to be probed to

identify its associated cognitive processes.

Second, self-deception could be either self-enhancing or self-

diminishing, showing a bidirectional nature. False beliefs could be

pleasant as well as disagreeable (Davidson, 1987; Demos, 1960) like

self-handicapping (Arkin & Baumgardner, 1985) and defensive

pessimism (Norem, 2002), protecting oneself via negative thinking or

self-handicapping behaviors. Even in optimists, a retroactive pessi-

mism strategy is sometimes used to regulate their mood when they

face failures (Sanna & Chang, 2003). What's more, overestimation of

one's performance, overconfidence, and self-enhancing behaviors

found in the previous study about self-deception (Zoë Chance

et al., 2011; Schwardmann & van der Weele, 2019) are not universal

(Muthukrishna et al., 2018) and could not be equally applied to

non-Western samples (Henrich et al., 2010; Lee et al., 2010; Schward-

mann & van der Weele, 2019). Meta-analyses showed that self-

serving biases are more pronounced in Westerners than that in East

Asians and some other non-Westerners (Heine & Hamamura, 2007;

Mezulis et al., 2004), whereas self-criticism is more prevalent in East

Asians (Heine et al., 2000). Therefore, as a distorted belief, self-

deception does not always associate with a positive view of oneself

(Funder, 2011; Trivers, 2013) as suggested in previous studies (Zoë

Chance & Norton, 2015; Zoë Chance et al., 2011; Schwardmann &

van der Weele, 2019; van der Leer & McKay, 2017).

Third, the circumstances that would allow for false internal repre-

sentation should be clarified. High ambiguity in attributions or

interpretations that allows for distortions of reality would make self-

deception feasible as suggested by previous theories and research

(Sloman et al., 2010; Zhong et al., 2019). Self-deception was more

often observed when the unsupported evidence for false belief is

vague (Sloman et al., 2010; Zhong et al., 2019). When the feedback

on the task uses precise terms rather than vague terms (Sloman

et al., 2010) or the answer keys are not easily accessible (Zhong

et al., 2019), participants would then be less likely to distort reality.

Previous functional magnetic resonance imaging (fMRI) studies of

deception usually focus on individuals' dishonest behaviors in the

sense of deceiving others, including but not limited to telling lies to

others or cheating in a game (Speer et al., 2020; Yin et al., 2017; Yin &

Weber, 2019), with deceiving oneself less explored. As we introduced

above, to capture the biased mental process in self-deception, con-

texts should allow ambiguous interpretations or attributions. In this

sense, cheating tasks that offer individuals cheating opportunities to

elevate their perceived performance, are one of the qualified options.

By applying cheating tasks in self-deception studies, previous studies

tested participants' task performance and predictions in solving gen-

eral knowledge tests (Zoe Chance et al., 2015; Zoë Chance

et al., 2011; Ren et al., 2018; Zhong et al., 2019). The mismatch

between actual ability and predictions suggests the occurrence of

self-deception. However, general knowledge tests suffer from the

problem of individual variations and might bring up overconfidence

(Yates et al., 1997). Besides, using predictions of future performance

as a measurement of efficacy belief might not be a true reflection of

their beliefs due to the possibility that participants might intentionally

match their predictions to their elevated performance for covering

cheating. Last, previous studies did not explicitly investigate the

essential factors underlying cheating tasks that make them qualified

enough to capture self-deception in tasks that are unrelated to gen-

eral knowledge. Circumstances that would allow for false internal rep-

resentation should be clarified. Manipulating the degree of ambiguous

attributions of elevated perceived performance in cheating tasks

could help us verify if ambiguous contexts are necessary for self-

deception.

The self-deception task we used in the current study combined

the advantages of previous cheating and self-deception studies and

revised parts that might bring confounding factors. We combined and

revised the cheating task (Zoë Chance et al., 2011) and the numerical

discrimination task (Fleming et al., 2014; Halberda et al., 2008) to

capture self-deception in three studies. Perceptual discrimination

tasks, such as a numerical distinguishing task, are relatively consistent

in performance across species and development (Feigenson

et al., 2004) and are previously used to investigate individuals' meta-

cognition (Fleming & Lau, 2014). More importantly, compared to gen-

eral knowledge, individuals have little experience or anticipations

about their performance on the dot discrimination task, excluding

potential confounds brought by preexisted self-efficacy belief.

Besides, by applying two-alternative forced-choice perceptual tasks,

patients with lesions in the medial prefrontal cortex (mPFC) had a

selective deficit in perceptual metacognitive accuracy (Fleming &

Lau, 2014). These findings suggest it is a valid experimental design to

investigate self-deception.
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In addition to the modified task, we applied a psychometric

modeling approach (Figure 1) to quantify individuals' actual ability and

prediction errors in binary decision tasks to clarify the internal con-

nections between quantified variables and self-deception. The key

ideas behind the statistical modeling are that two types of prediction

errors should be partitioned from each other: (1) one that can be cap-

tured in the classic metacognitive task by comparing participants' pre-

diction of their future performance and their actual performance, and

(2) one that is potentially associated with self-deception and can only

be identified in a cheating opportunity context where participants are

provided with opportunities to adjust their evaluation processes. Last,

we manipulated the difficulty of peeking at answer keys and allowed

the verification of high ambiguity context facilitating self-deception.

By separating these two types of errors induced by the ambiguity of

attributions and finding relations among ability, prediction errors, and

self-efficacy belief, we could identify false belief and its sources.

In Study 1, we would like to test if ambiguity facilitates the occur-

rence of self-deception and show the bidirectional nature (i.e., self-

enhancing and self-diminishing) of self-deception. Participants were

placed in a context that allows for more distortions in attributions

(high ambiguity) or that allows for fewer distortions (low ambiguity).

More specifically, in the experiment participants reported the display-

ing quadrant with the most dots while the correct answer was shown

in the bottom right corner. In the effortless cheating opportunity con-

dition, the answer cue was presented graphically in the upright posi-

tion. Since the more salient the accessible information an individual

has against the false belief, the harder it is to apply self-deception and

maintain the belief (Mele, 1997); therefore, the easy access to answer

keys makes cheating behaviors less obvious, allowing ambiguous attri-

butions of cheating behaviors and perceived performance. On the

contrary, in the effortful cheating opportunity condition, the answer

cue was written in Chinese and shown upside down (Zhong

et al., 2019) to reduce attribution ambiguity of cheating behaviors.

Effortful access to answer cues makes individuals more aware of their

cheating behaviors and leaves less room for ignoring the contributions

of cheating to their performance. By applying the psychometric

modeling approach, we could quantify individuals' real-time prediction

errors that were later tested if they would be the source of self-

efficacy belief. According to previous findings (Sloman et al., 2010;

Zhong et al., 2019), in the effortful cheating context, we expected to

see participants' self-efficacy beliefs would be largely based on their

actual task ability, suggesting the ground of self-efficacy belief is valid.

But in the effortless cheating context, participants' self-efficacy beliefs

would not be related to their actual task ability, so the self-efficacy

belief is false and not reality-based, suggesting self-deception occurs.

In Studies 2 and 3, we used electroencephalography (EEG) and

fMRI techniques to probe the cognitive processes and investigated if

alterations in metacognition-related neural activity contribute to false

belief formation: amplitude alterations in the frontal slow waves

(Forester et al., 2020; Geangu et al., 2013; Kamp et al., 2017; Kamp &

Zimmer, 2015; Liu et al., 2017; Meinhardt et al., 2011) and activation

patterns in the mPFC (Fleming et al., 2014; McCurdy et al., 2013;

Müller et al., 2016; Tsalas et al., 2018), confirming the neural source

of self-deception and linking metacognition with self-deception. The

aim of Study 2 (ERP study) was to capture the similarities and

differences between neurocognitive processes of making correct

predictions and incorrect predictions in individuals with different self-

deceiving tendencies. According to previous research, the frontal slow

wave was associated with internal mental representation (Geangu

et al., 2013; Meinhardt et al., 2011), and its amplitude during encoding

reflects subsequent memory retrieval (Forester et al., 2020; Kamp

et al., 2017; Kamp & Zimmer, 2015; Liu et al., 2017). Besides, decep-

tion was observed to be closely associated with P3 components in the

parietal region (Leue & Beauducel, 2019; Rosenfeld, 2019; Scheuble &

Beauducel, 2020; Suchotzki et al., 2015). Therefore, we mainly focus

on the frontal slow wave and parietal P3. The P3 component over

parietal sites was expected to be correlated with individuals' cheating

extent. Meanwhile, the slow wave component over the frontal region

F IGURE 1 Process tree illustrations
of beliefs shifted in the conditions that
differ in the ambiguity of attributions.
Individuals' ability to solve a test item i as
well as prediction errors contribute to
their future performance prediction (pi
and �pi) of a test item i. (a) In a low
ambiguity context, individuals' belief of
self-efficacy relies more on their actual
ability despite the existence of errors.
(b) But in the high ambiguity context, the
relatively low cognitive awareness of
cheating allows for distorted
interpretations or attributions of cheating
behaviors. Additional errors turn into a
systematic bias that contributes to the
formation of a false belief of self-efficacy
via alterations in metacognition.
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would differentiate the mental process between individuals with posi-

tive and negative prediction errors.

Considering the low spatial resolution of the ERP study, in Study

3 we applied fMRI to provide better localizing information and

expected to observe the association between self-deception and the

metacognition-associated region: the anterior mPFC. With regard to

the neural basis of metacognition, the mPFC has been substantially

found to be associated with self-related processes (Hughes &

Beer, 2013; Kelley et al., 2002; Meyer et al., 2012; Qin et al., 2020;

Wagner et al., 2012). Previous ERP studies found that frontal slow

waves reflect the differences between a metacognitive task and a

control cognitive task (Müller et al., 2016; Tsalas et al., 2018). The

prefrontal cortex, especially the mPFC, contributes consistently to

the processing of metacognitive information (Metcalfe &

Schwartz, 2016). Both gray matter and lesion studies showed that the

mPFC contributes to metacognition. The volume of frontal polar

regions correlated with visual metacognitive efficiency (McCurdy

et al., 2013), and the anterior prefrontal cortex selectively contributes

to perceptual metacognitive accuracy (Fleming et al., 2014). Lesions

in the mPFC lead to impairments in retrieving self-knowledge with

other-related knowledge preserved (Marquine et al., 2016), support-

ing the critical function of the medial PFC in sustaining self-related

knowledge. More related to self-deception, a study of self-deception

showed that both self-deception and impression-management involve

the mPFC (Farrow et al., 2015). However, the experiment investi-

gated self-deception by asking participants to fill out questionnaires

(Balanced Inventory of Desirable Responding test) in the scanner

(Farrow et al., 2015) and was lack of ecological validity. Nevertheless,

the results implied its critical role in not only metacognition but also

self-deception and suggested self-deception is fundamentally a

flawed metacognitive process and might share similar neural mecha-

nisms with metacognition. Therefore, we expected to observe predic-

tion errors during false belief generating progress are specifically

associated with the amPFC activity. Besides, previous fMRI studies of

individual differences in deception showed that reward processing

related caudate (Corlett et al., 2022; D'Astolfo & Rief, 2017; Delgado

et al., 2000; Glimcher & Fehr, 2014; Hikosaka, 2002; Pisauro

et al., 2017; Schultz et al., 1997; Zald & Treadway, 2017) is associated

with participants' dishonest levels (Yin et al., 2021; Yin &

Weber, 2019). We would also like to replicate the results of

associating reward related region and cheating behaviors. In addition,

in Study 3, with the help of the instrumental variable method

(a nonexperimental causal inference approach that could test causal-

ity in observational social studies), we investigated the causal rela-

tionship between individuals' cheating extent and prediction errors,

supporting that cheating behaviors provide a motive for self-

deception.

1.1 | Study 1: Self-deception in the effortless
cheating opportunity context

In Study 1, we combined and revised the cheating task (Zoë Chance

et al., 2011) and the numerical discrimination task (Fleming

et al., 2014; Halberda et al., 2008) (Figure 2) with effortful and effort-

less cheating opportunities as the between-subjects variable. We

would like to test if self-deception occurs in the effortless cheating

opportunity condition, that is individuals' self-efficacy belief is based

on additional prediction errors rather than their actual ability. We

applied the following settings in the task: (1) to reduce the probability

of participants intentionally matching their predictions to their ele-

vated performance for covering cheating, participants were informed

that they could earn a bonus if their predictions align with their actual

performance; (2) to capture participants' internal representation of

their ability, participants were asked to report their self-efficacy of the

task (how much they are good at solving the dot discrimination task)

and we tested the relation between their self-report self-efficacy

belief and their actual ability/prediction errors estimated by the statis-

tical model. Through checking the relations among self-report self-

efficacy, actual ability, and prediction errors in two conditions, we

tested the hypothesis that participants' belief of efficacy is generated

based on actual ability in the effortful cheating opportunity condition

but on prediction errors in the effortless condition.

2 | METHODS

2.1 | Participants

A statistically significant medium effect (between-subject design)

(i.e., effect size d = .50, p = .05) would require 146 participants to

attain 85% power by using G*Power (Faul et al., 2009). Then, 167 par-

ticipants (103 females; college students; mean ± SD age = 19.76

± 1.81 years, ranging from 17 to 25 years) were recruited for Study

1. All participants had normal or corrected-to-normal vision and

reported no prior history of psychiatric or neurological disorders. Par-

ticipants all gave informed consent according to the Declaration of

Helsinki (BMJ 1991; 302:1194) before the experiment. Data from

15 participants were excluded: 14 participants misunderstood the

instruction and one participant had an eyesight problem. All following

data analyses were based on the data of the remaining 152 partici-

pants (96 females, mean ± SD age = 19.77 ± 1.83 years, ranging from

17 to 25 years). All three experiments were approved by the Institu-

tional Review Board at the authors' affiliation. Participants all gave

written consent before the experiment.

2.2 | Pilot studies

A revised numerical discrimination task was used (Halberda

et al., 2008), in which participants were required to select the display-

ing quadrant with the most dots (Figure 2). Each trial was drawn from

one of three ratio bins where the ratio of the smallest to the largest

set was 1.50 ± 0.02 (easy bin: 15 trials; SD: 0.009; dot numbers range

from 41 to 80); 1.10 ± 0.02 (medium bin: 50 trials; SD: 0.006; dot

numbers range from 56 to 80); and 1.02 ± 0.02 (hard bin: 50 trials;

SD: 0.007; dot numbers range from 61 to 80), as determined by the

Pilot Study 1 (see Supplementary Material). In addition, to test the
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potential practice effect of the task, we performed Pilot Study 2. No

significant differences were found between participants' accuracy

before (mean ± SD: 50.80% ± 12.10%) and after practicing (mean

± SD: 55.16% ± 8.77%; t(13) = �1.23, p = .24, CI = [�12.06%,

3.34%], Cohen's d = �.41), indicating practicing would not enhance

participants' performance.

F IGURE 2 The experimental paradigm. (a) Illustrations of the numerical discrimination task. Participants specified the quadrant with the most
dots and were allowed to peek at the answer cues but were instructed to complete the task all by self-effort. In the effortless cheating
opportunity condition, the answer cue was presented graphically in the upright position (cue phase). In the effortful cheating opportunity
condition, the answer cue was written in Chinese and shown upside down. Participants then received feedback and predicted whether they could
correctly solve the task with the same difficulty as the previous trial yet where the answer cue was absent (prediction phase). (b) Illustrations of
answer cue and no-answer cue sessions. The illustrations are the simplified version of the effortless cheating condition in Figure 2a. For assessing
participants' actual ability, they also completed the same task but without answer cues (testing phase, in gray) after the (no) answer cue sessions.
Participants completed the answer cue session first and the no-answer cue session 1 week later.
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2.3 | Procedure

Study 1 applied a between-subject design with effortful or effortless

cheating opportunities as a between-subjects variable (Figure 2a).

Before the experiment, all participants read instructions and com-

pleted a questionnaire to check if they understand the experiment.

They were told that perception judgment in the test is a stable ability

that cannot be enhanced by a short-time practice as we have tested

in Pilot Study 2. Next, participants completed a practice session (5 tri-

als) and were then assigned to one of two conditions, resulting in

77 participants in the effortless cheating opportunity condition, and

75 participants in the effortful cheating opportunity condition (please

see Table 1 for demographic information).

The experiment was performed in two successive sessions

(Figure 2b), that is, an answer cue session and a no-answer cue ses-

sion. In the answer cue session, participants completed the numerical

discrimination task with correct answers shown in the lower right cor-

ner (simultaneously presented with dot figures). Participants were told

that they could peek at the answers but should avoid so and rely on

their effort. In the effortless cheating opportunity condition, the

answer cue was presented graphically in the upright position

(Figure 2a, upper panel). In the effortful cheating opportunity condi-

tion, the answer cue was written in Chinese and shown upside down

(Zhong et al., 2019) (Figure 2a, lower panel), making participants more

aware of cheating behaviors if any, and would be harder to rule out

the consideration of cheating behaviors while forming self-efficacy

belief.

During the cue phase, the chosen quadrant turned red on the bor-

der for 500 ms. After a random interval of 2–6 s, participants received

feedback for their responses. They were also asked whether they can

choose correctly if the answer is absent and responded with a button

selection of “can” or “cannot.” After 115 trials in the first part, for

assessing real ability, participants proceeded into the second part and

completed the same set of 115 trials of the numerical discrimination

task but without answer cues. In the end, they were asked to rate

their efficacy on the task based on a 7-point scale (1: not at all; 7: very

good at the task). In all trials, participants could earn 0.2 Yuan for each

correct answer in the numerical discrimination task. If their prediction

errors in the prediction phase were less than 10%, they earn a bonus

of 10 Yuan. This manipulation was aimed to prevent participants from

intentionally matching their prediction to their peeking performance

for covering cheating. To estimate individuals' prediction errors in the

prediction phase without cheating opportunities, we invited partici-

pants to attend a follow-up session (no-answer cue session,

Figure 2b) 1 week later and completed the same task again, except

that answer cues were not provided at all. Participants were paid

according to their performance.

2.4 | Model estimation

In Figure 1, we briefly summarized the process tree of belief acquisi-

tion in the task where participants perform a test, get trial-by-trial

feedback, and provide a trial-by-trial prediction of their future perfor-

mance. To estimate individuals' actual ability and errors, the Rasch

model from item response theory (IRT) (Embretson & Reise, 2000)

was used. In the model, the probability of correctly solving the test

depends on both item difficulty (i.e., the difficulty of numerical dis-

crimination task, represented by the ratio of the numbers of dots in

four figures; “item difficulty” in Equation (1)) and an individual's ability

to solve the numerical task (i.e., “ability” in Equation (1)).

Pðchoosing the correct answerÞ
¼ exp ability� item difficultyð Þ
1þ exp ability� item difficultyð Þ

¼ ilogit ability� item difficultyð Þ
ð1Þ

In the prediction of future performance, the Rasch model is

adjusted to quantify errors due to metacognitive limitations. Specifi-

cally, in the model, errors were introduced in the model of future per-

formance prediction (i.e., “errors” in Equation (2)), in addition to item

difficulty and an individual's actual ability.

Pðprediction of choosing the correct answerÞ
¼ ilogit ability� item difficultyþerrorsð Þ ð2Þ

To capture self-deception, we manipulated the ambiguity by providing

cheating opportunities and accessibility of answer keys that were

introduced in previous self-deception studies (Zoe Chance

et al., 2015; Zoë Chance et al., 2011; Ren et al., 2018; Zhong

et al., 2019). Individuals who cheated in the task appear to have a

higher level of ability and thus higher probabilities of correct

TABLE 1 Descriptive statistics in three studies

Measure

Study 1 Study 2 Study 3

Effortful
condition (n = 75)

Effortless
condition (n = 77)

Group comparison

results

ERP
study (n = 55) fMRI study (n = 36)

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Age (years) 19.95 (1.31) 19.60 (2.21) t(150) = 1.18, p = .239 20.45 (1.91) 20.19 (1.43)

Sex, Male (n, %) 25 (33.33) 31 (40.31) χ2 = .78, p = .404 23 (41.8) 21 (58.3)

PVSH 7.25 (2.81) 7.51 (3.14) t(150) = .52, p = .602 7.53 (2.51) 7.39 (4.22)

Abbreviation: PVSH, personal value scale-honesty.
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responses. As a result, the spurious elevated performance induced by

cheating should be included in the model for correct responses

(i.e., “cheating” in Equation (3)).

Pðchoosing correct answers in the cheating opportunity contextÞ
¼ ilogit ability� item difficultyþcheatingð Þ ð3Þ

The cheating opportunity context leaves room for biased processes of

information and brings variations in Equations (1) and (2): first, the

probability of correctly solving the test not only depends on item diffi-

culty and an individual's ability but also on the fact that whether the

individual cheats (Equation (3)); second, cheating behaviors interfere

the predictions of future performance, inducing additional errors

(i.e., “additional errors” in Equation (4)). By introducing the contribu-

tion of cheating and additional errors into the models, the biased

extent of the information process can be quantified.

Pðprediction of choosing the correct answer in the cheating contextÞ
¼ ilogit ability� item difficultyþerrorsþadditional errorsð Þ

ð4Þ

The four equations above are the brief frame for our model build-

ing. Hereafter, we illustrated the details of the model. Extending the

one-parameter logistic IRT (1PL-IRT) (Allen & Yen, 2001), we esti-

mated an individual's (i) ability of numerical discrimination (abbrevia-

tion: A), (ii) cheating level (abbreviation: C), (iii) prediction error in the

cheating opportunity context (answer cue session; abbreviation: PEC),

and (iv) the prediction error in the noncheating opportunity context

(no-answer cue session; abbreviation: PEN). The 1PL-IRT modeled the

probability of choosing one of two options (correct or incorrect; can

or cannot) in a trial by the ilogit function of item parameters

(i.e., describing items' characters, such as difficulty levels) and person

parameters (i.e., describing individuals' characters, such as A, C, PEC,

PEN). In the traditional 1PL-IRT model, only the item difficulty param-

eter was considered and person parameters were constructed as sin-

gle latent traits.

πNoCueSessijNCP ¼ ilogit �djþAi

� � ð5Þ

πNoCueSessijPP ¼ ilogit �djþAiþPENij

� � ð6Þ

πNoCueSessijTP ¼ ilogit �djþAiþTENoCueSessi

� �
ð7Þ

In the no-answer cue session, our model for the responses of partici-

pant i in trial/item j was Equation (5) that is corresponding to

Equation (1) (NoCueSess: no-answer cue session; NCP: no cue phase;

PP: prediction phase; TP: testing phase), where πNoCueSessijTP was the

probability of a correct response to item j for participant i in the test-

ing phase; dj ¼ σdd
�
j was the scaled item difficulty for item j (the

unscaled item difficulty d�j was the centered difficulty ratio within a

single trial and σd was the scale factor)1 and Ai was the ability of par-

ticipant i to endorse an item. “ilogit” was the function used to

associate the probability of a correct response with item and person

parameters (Allen & Yen, 2001).

In the prediction phase of the no-answer cue session, we asked

participants to predict their future performance in the same task with-

out answer cues. In addition to ability, the prediction error parameter

(abbreviation: PEN) was included to estimate prediction errors that

participants had in the noncheating opportunity context. Therefore,

we extended the standard 1PL-IRT model-to-model participants'

responses to items (Equation (6), corresponding to Equation (2)),

where πNoCueSessijPP was the probability of a correct prediction to item j

for participant i in the prediction phase of the no-answer cue session.

In the testing phase of the no-answer cue session, we performed

a pilot study (Pilot study 2; please see Supplementary Methods for

more details) and found no practice or fatigue effects exist at the

group level, but these effects might still vary across participants and

influence the model fit. Therefore, the model was similar to

Equation (5) except that we considered the possibility of practice or

fatigue effects (time effect, abbreviation: TE).

πCueSessijCP ¼ ilogit �djþAiþCij

� � ð8Þ

πCueSessijPP ¼ ilogit �djþAiþPENijþPECij

� � ð9Þ

πCueSessijTP ¼ ilogit �djþAiþTEi
� � ð10Þ

To build the model for the answer cue session, we extended the

model for the no-answer cue session. Often the case, individuals

would endorse an item according to their ability. But in the answer

cue session, participants had the opportunity to cheat. Therefore, in

addition to their ability, cheating (i.e., C) should be considered an influ-

ential factor. The standard 1PL-IRT model (Equation (5)) was extended

to model participants' cheating extent (Equation (8), corresponding to

Equation (3)) (CueSess: answer cue session; CP: cue phase; PP: predic-

tion phase; TP: testing phase), where the cheating parameter Cij repre-

sents participant i's tendency to cheat in item j. A higher mean value

of C indicates a higher cheating extent in the task.

In the prediction phase of the answer cue session, besides PEN,

we would like to estimate the additional prediction errors caused by

cheating behaviors. Therefore, in addition to participants' prediction

errors in the noncheating opportunity context PENij

� �
, another param-

eter prediction error was included PECij

� �
. In Equation (9) (corre-

sponding to Equation (4)), PECij represented participant i's degree of

biased prediction in item j. A positive mean value of PEC showed that

participants overestimated their future performance, whereas a

1In the original Rasch model, because both ability and item difficulty are latent variables and

their measurement scales are unknown, the model is mathematically nonidentified

(Swaminathan & Gifford, 1982). To help identification, the mean of ability or item difficulty

was fixed at zero, leaving the mean of the other latent variable and the variances of the two

variables freely estimated. Following the original model specification, we freely estimated the

mean of ability, the variances of ability and difficulty while fixing the mean of difficulty in our

extended model. Because the raw item difficulty (i.e., the ratio of the number of dots in the

figure with more dots and the number of dots in three other figures with same less dots) has

its own objective measurement scale (i.e., mean and variance), the scaling factor was used to

“freely estimate” the variance of difficulty in the model.
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negative value of PEC indicated that they underestimate their future

performance. The model for the testing phase (Equation 10) in the

self-deception task was the same as Equation (7).

The Bayesian method was used to fit the model. Convergence

was checked using the Geweke diagnostic method (Geweke, 1991).

Estimation was done using OpenBUGS (Lunn et al., 2009) via the

interface R package R2OpenBUGS (Sturtz et al., 2005). To evaluate

model fit, posterior predictive checking was used (Gelman et al., 1996).

3 | RESULTS

3.1 | Cheating behaviors increased in the effortless
condition

No significant differences were found between the two groups in age,

gender, and personal value scale-honesty (Scott, 1965) (Table 1;

example items: “Never cheating or having anything to do with cheat-

ing situations, even for a friend.”; the Cronbach's alpha was .71

[effortless cheating opportunity condition], and .64 [effortful cheating

opportunity condition]). In both effortless and effortful cheating

opportunity conditions, participants' accuracies in the cue phase were

significantly higher than that in the testing phase and no-answer cue

session (ps < .001; Table S1), suggesting both groups cheated in the

cue phase. Accuracies in the cue phase (Figure 3a) and cheating level

(Figure 4) in the effortless condition were significantly higher than

those in the effortful condition (ps < .01; Table S2), indicating that

effortless cheating opportunities increased cheating behaviors.

3.2 | Self-deception occurred in the effortless
condition

The posterior predictive p value (PP p) was computed based on an

approximate chi-square statistic. The model yielded a PP p value of

.399 and .239 for the effortless and effortful conditions respectively,

indicating a good model fit when fitting both data sets. For more

details about model estimation, please see Supplementary Material.

Here, we provided the operational definition of self-deception in

terms of our estimated parameters. PEC measures the discrepancy

between actual ability and predicted task performance in the cheating

opportunity context. In the contexts where cheating opportunities are

provided, ambiguous attributions of behaviors are possible and leave

room for distortions that could develop false beliefs. First, tasks that

offer individuals cheating opportunities create contexts that allow

ambiguous interpretations or attributions. Second, the more salient

the accessible information an individual has against the false belief,

the harder it is to apply self-deception and maintain false belief

(Mele, 1997). Therefore, we hypothesized that ambiguity of attribu-

tions (the effortless cheating opportunity condition) would turn PEC

to a systematic bias, form a false belief, and therefore, imply the

occurrence of self-deception through checking if there is a significant

positive correlation between self-report efficacy and PEC. PEC in the

effortless cheating opportunity condition would also present a

bidirectional nature, and we expected that PECs would not be signifi-

cantly from zero at the group level.

We compared results from two groups and results showed that

the two groups of participants did not show significant differences in

both actual ability A and PEC (ps > .13; Figure 4, Table S2), indicating

that (1) two groups of participants have a similar level of ability in

solving the task; and (2) the manipulation of ambiguity in attributions

did not influence participants' prediction errors in the cheating oppor-

tunity context at the group level as expected, showing the bidirec-

tional nature of PEC. Participants' self-report efficacy was positively

correlated to their ability (r = .33, p = .004; Table S3) and perfor-

mance of the no-answer cue session in the effortful condition

(r = .29, p = .012) but not in the effortless condition (ability: r = .14,

p = .220; performance of no-answer cue session: r = .14, p = .237). In

the effortless condition, participants' belief about their efficacy was

positively correlated to estimated prediction errors in the cue phase

F IGURE 3 Results in Study 1. (a) In both effortless (red) and
effortful (green) conditions, participants' performance in the cue
phase was significantly better than that in the testing phase and the

performance of the no-answer cue session. Participants' PEC (b), but
not ability A (c), significantly predicted self-report efficacy in the
effortless condition. Participants' ability A (e), but not PEC (d),
significantly predicted self-report efficacy in the effortful cheating
opportunity condition. PEC, prediction error in the cheating
opportunity context. Error bars: SE
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(PEC) (r = .27, p = .018) but not in the effortful condition (r = .07,

p = .538; Table S3), while PEC did not differ between the effortful

and effortless conditions (t(150) = �1.06, p = .291, 95%CI [�.30,

.09], Cohen's d = �.17, Table S2). Table S3 provided a correlation

matrix among efficacy, PEC, PEN, ability (A), cheating extent (C), and

performance of the no-answer cue session.

In the regression models, we included ability, PEC, and cheating

extent as independent variables and belief of efficacy as dependent

variable and observed that (1) participants' PEC but not ability signifi-

cantly predicted self-report efficacy in the effortless cheating oppor-

tunity condition (PEC: β = .32, t(73) = 2.80, p = .007, Figure 3b; A:

β = .21, t(73) = 1.87, p = .066, Figure 3c); (2) participants' actual abil-

ity but not PEC significantly predicted self-report efficacy in the

effortful cheating opportunity condition (PEC: β = .10, t(71) = .92,

p = .359, Figure 3d; A: β = .33, t(71) = 2.91, p = .005, Figure 3e;

Table 2). Therefore, in the effortful condition, participants' belief

about their efficacy was based on their actual ability, but it is not the

case in the effortless condition. Participants generated false beliefs of

self-efficacy in the effortless condition.

4 | DISCUSSION

By applying a perceptual discrimination task in which individuals have

little experience and anticipations about their performance, the find-

ings from Study 1 suggested that participants generated false beliefs

of efficacy in the effortless cheating opportunity condition, and the

false belief arose from the prediction errors accumulated during the

whole task. The results confirmed that self-deception is feasible when

contexts allow ambiguous attributions (Sloman et al., 2010; Zhong

et al., 2019). Besides, PEC did not differ from 0 in both groups (effort-

ful: t(74) = .19, p = .853, 95%CI [�.14, .17]; effortless: t(76) = �1.46,

p = .147, 95%CI [�.21, .03]), suggesting that overconfidence is not a

dominant trend in either the effortless or effortful conditions.

F IGURE 4 Estimated parameters of variables in effortless and effortful conditions in Study 1. Estimated parameters of cheating extent (C; left
panel), ability (A; middle panel), and prediction errors in the cheating opportunity context (PEC; right panel) in the effortful (green) and effortless
conditions (red) were displayed. Significant differences were found between the two groups in C but not in A and PEC. (***: p < .001)

TABLE 2 Linear regression results in three studies

Study 1: Behavioral experiment Study 2: ERP experiment Study 3: fMRI experiment

Effortful condition Effortless condition Effortless condition Effortless condition

β [95% CI] p β [95% CI] p β [95% CI] p β [95% CI] p

DV: Efficacy belief

Ability .33** [.89, 4.79] .005 .21 [�.09, 2.82] .066 �.12 [�2.60, .94] 0.349 .06 [�1.98, 2.82] .723

PEC .10 [�.19, .51] .359 .32** [.19, 1.12] .007 .33* [.10, .84] 0.013 .35* [.01, .94] .045

C �.09 [�.20, .08] .415 �.01 [�.10, .08] .897 .20 [�.03, .23] 0.123 �.001 [�.14, .14] .995

R2 .07 .06 .19 .12

DV: Cheating extent

Ability �.01 [�3.54, 3.21] .923 �.11 [�5.11, 1.84] .352 �.05 [�4.20, 2.82] 0.693 �.14 [�8.25, 3.30] .376

abs(PEC) .26* [.09, 2.08] .034 .23* [.06, 3.62] .043 .45*** [.81, 2.84] 0.001 .42* [.48, 3.70] .013

R2 .07 .06 .21 .19

Note: PEC: prediction errors in the cheating opportunity context; C: cheating extent. Coefficients in bold are statistically significant (p < .05).

*p < .05.**p < .01.***p < .001.
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The tendency of overestimating or underestimating their future

performance is found to vary among individuals. However, individual

differences in prediction errors we observed in Study 1 might be due

to random errors, that is the overestimation or underestimation of

one's performance is the result of participants' random prediction mis-

takes rather than a characteristic tendency of overestimation or

underestimation. If that would be the case, when we capture the asso-

ciated neural process, we would not observe significant differences

between participants who made positive or negative prediction errors.

4.1 | Study 2: ERP study

To probe the cognitive processes and investigate if alterations in

metacognition-related neural activity contribute to false belief forma-

tion, we conducted an EEG experiment in Study 2, especially focusing

on amplitude alterations in the frontal slow waves. Since the results of

Study 1 confirmed that the effortless cheating opportunity condition

facilitates the occurrence of self-deception, in Study 2, we collected

EEG data while participants were completing the task in the effortless

condition. Besides, an alternative explanation of the findings observed

in Study 1 can be further examined in Study 2. If the additional predic-

tion errors are random mistakes, when we capture the associated neu-

ral process, significant differences would not be observed between

participants who made positive or negative prediction errors.

According to previous research, we especially focused on the

frontal slow wave (Forester et al., 2020; Geangu et al., 2013; Kamp

et al., 2017; Kamp & Zimmer, 2015; Liu et al., 2017; Meinhardt

et al., 2011) and expected to observe that the frontal slow wave dif-

ferentiates the mental process between participants with positive and

negative PEC. Besides, a meta-analysis study about deception found

consistent associations between P3 amplitude and concealed knowl-

edge (Leue & Beauducel, 2019). Our previous EEG study about neural

responses to lies and truth conveyed by in-group and out-group mem-

bers showed P3 amplitude sensitive to out-group lies and truth but

insensitive to in-group lies and truth (Mei et al., 2020). Besides, indi-

viduals' honesty traits modulate the P3 amplitude toward in-group lies

and truth: participants with higher honesty traits scores showed

higher P3 amplitude in the contrast of in-group lies versus truth. Con-

sidering the strong association between P3 component and dishon-

esty (Leue & Beauducel, 2019; Rosenfeld, 2019; Scheuble &

Beauducel, 2020; Suchotzki et al., 2015), the parietal P3 was expected

to be correlated with individuals' cheating levels.

5 | METHODS

5.1 | Participants

The ERP experiment recruited 61 adults (34 females; mean age

± SD = 20.36 ± 1.87 years, ranging from 18 to 27 years). All partici-

pants were right-handed and had normal or corrected-to-normal

vision. No participants had a history of neurological, major medical, or

mental disorders. All participants gave written consent after they were

informed about the procedure. Six participants for excessive eye

blinks and eye movements were excluded from further analyses due

to artifacts (Bengson et al., 2012; Karch et al., 2009; Kober &

Neuper, 2011; Marklund et al., 2019), remaining 55 participants

(32 females, mean ± SD age = 20.45 ± 1.91 years, ranging from 18 to

27 years) in the final analyses.

5.2 | Procedure

The task and procedure were identical to the effortless condition of

Study 1, except that the intervals were random from 1 to 1.5 s. The

Cronbach's alpha of PVSH in Study 2 was .60. The electroencephalo-

gram (EEG) was recorded during the answer cue session which

included 230 trials (30 easy trails, 100 medium trials, and 100 difficult

trials) in each phase. The no-answer cue session included 120 trials in

each phase, which also covered three levels of difficulty (40 trials for

each level). Participants could earn 0.2 Yuan for each correct answer.

If their prediction error in the prediction phase is less than 10%, they

can earn a bonus of 20 Yuan.

5.3 | EEG recording

The stimuli were presented and behavioral data were collected by Pre-

sentation (21.0 software, https://www.neurobs.com/). EEG was

acquired using BrainAmp amplifiers with 64 active electrodes

(NeuroScan, Inc., Herndon, VA, USA) placed on standard positions

according to the extended International 10/20 system. Horizontal

electro-oculogram was recorded from an electrode placed at the outer

canthi of the right eye. Vertical electro-oculogram was recorded from an

electrode placed above the left eye. All inter-electrode impedance was

maintained at <5 kΩ. EEG and EOG signals were amplified with a band-

pass from 0.01 to 100 Hz and continuously sampled at 500 Hz/channel.

For all off-line analyses, EEGLAB (https://sccn.ucsd.edu/eeglab/)

was used. The first step in the data preprocessing was the correction

of ocular artifacts using independent component analysis of the con-

tinuous data. The ocular-artifact-free EEG data were low-pass filtered

below 30 Hz and high-pass filtered above 0.05 Hz (Cui et al., 2018).

Separate EEG epochs of 1600 ms (including a baseline of 100 ms)

were extracted offline for the stimuli in the cue phase. The 100 ms

interval before the stimuli onset was defined as the prestimulus base-

line. Segments were baseline corrected (�100 to 0 ms) and artifacts-

free segments for correct responses were averaged separately for

each participant. All trials in which EEG voltages exceeded a threshold

of ±75 μV during the recording epoch were excluded from data analy-

sis. In addition, the remaining data were corrected for ocular artifacts

(blinks and eye movements). ERPs were exported as mean amplitudes

in specific time windows for statistical analysis as described below.

5.4 | Model estimation and statistical analysis

The procedure of model estimation in Study 2 was the same as that in

Study 1. Statistical analyses of the ERP data were conducted on ERP
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mean amplitude obtained within the time windows relative to a

100 ms prestimulus baseline. In the statistical analyses of ERP data,

first, we focused on the mean amplitudes of the P3 (350–700 ms) in

the parietal regions (Leue & Beauducel, 2019). The mean amplitudes

of P3 were measured at the parietal electrodes (CP1, CP2, CP3, CP4,

CP5, CP6, P1, P2, P3, P4, P5, P6, P7, and P8) (Katyal et al., 2020; Mei

et al., 2020; Watson et al., 2007). The amplitudes of the P3 compo-

nent during the cue phase were obtained from correct trials during

which cheating behaviors mainly occur. To probe whether the P3

component reflects individual differences in cheating, we conducted

regression analysis with the P3 amplitude, ability (A), and prediction

error (PEC) as the independent variable, and cheating extent (C) as the

dependent variable.

Next, we focused on the slow wave (500–1000 ms) in the frontal

regions. The slow wave was measured at the frontal electrodes (AF3,

AF4, FP1, FP2, FPz, F1, F2, F3, F4, F5, F6, F7, F8, and FZ) (Pazhoohi

et al., 2020; Watson et al., 2007). The amplitudes of the slow wave

component during the cue phase were extracted from the correct tri-

als with correct prediction and the correct trials with incorrect predic-

tion, respectively. If the prediction conflicted with actual performance

on the same item during the testing phase, it would be an incorrect

prediction. To probe if the slow wave component reflects individual

differences in self-deception, we first conducted a regression analysis

with the slow wave amplitude, ability (A), and cheating extent (C) as

the independent variable, and the self-deception index (PEC) as the

dependent variable. Next, participants were divided into two groups

with positive and negative PEC. A 2 (PEC: positive vs. negative) � 2

(prediction type: incorrect prediction vs. correct prediction) repeated

measurement ANOVA was performed.

6 | RESULTS

6.1 | Behavioral results

The model yielded a PP p value of .519 for Study 2, indicating a good

model fit. Study 2 replicated the findings of the effortless condition in

Study 1. Participants' accuracies in the cue phase are significantly

higher than that in the testing phases and no-answer cue session

(ps < .001; Figure 5a; Table S1). Participants' self-report efficacy did

not significantly correlate with their ability (r =�.16, p = .243;

Table S3) and performance in the no-answer cue session (r =�.23,

p = .097), but significantly correlated with PEC (r = .36, p = .007).

Ability did not significantly predict self-efficacy (Figure 5b). While

controlling for participants' cheating extent and ability, PEC signifi-

cantly predicted self-report efficacy (β = .33, t(51) = 2.56, p = .013;

Figure 5c; Table 2).

6.2 | ERP results

Significant negative correlations were found between the cheating

extent and the amplitude of P3 in the parietal sites (r = �.27,

p = .045; Table S4). The P3 amplitude significantly predicted cheating

extent while controlling for participants' PEC and ability (β = �.27, t

(51) = �2.04, p = .046; Figure 6a; Table 3). The finding of the associa-

tion between parietal P3 and cheating is consistent with previous

findings (Leue & Beauducel, 2019).

Participants were divided into a high cheating extent group

(C > group mean: 2.41) and a low cheating extent group (C < 2.41).

Participants in the low cheating extent group elicited greater positive

amplitude of P3 (mean ± SD = 2.12 ± 2.03) than that in the high cheat-

ing extent group (mean ± SD = 1.11 ± 1.47) in the parietal sites during

the cue phase (F(1, 53) = 4.09, p = .048, η2 = .072; Figure 6b,c).

The amplitude of frontal slow wave in incorrect predictions was

significantly correlated with PEC (r = .33, p = .014), while the ampli-

tude of frontal slow wave in correct predictions trials were not signifi-

cantly correlated with PEC (r = .09, p = .512; Table S4). Besides, the

amplitude differences of frontal slow wave between the incorrect and

correct predictions correlated with PEC (r = .31, p = .020). After con-

trolling for participants' cheating extent and ability, we still observed

the amplitude differences of frontal slow wave significantly predicted

PEC (β = .30, t(51) = 2.24, p = .029; Figure 7a; Table 3). The results

of a 2 (self-deception group: positive vs. negative) � 2 (prediction out-

come: incorrect vs. correct) repeated measurement ANOVA showed

that the main effect of group (F(1, 53) = 1.32, p = .256, η2 = .024)

F IGURE 5 Behavioral results in Study 2. (a) Participants' performance in the cue phase was significantly better than that in both the testing
phase and no-answer cue session. Participants' ability (b) cannot predict self-report efficacy but PEC (c) significantly predicts efficacy after
controlling cheating extent. PEC, prediction error in the cheating opportunity context. Error bars: SE
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and prediction type (F(1, 53) = .99, p = .325, η2 = .018) were not sig-

nificant. The interaction was significant (F(1, 53) = 9.97, p = .003,

ηp
2 = .158). The post hoc analyses revealed significant amplitude dif-

ferences of frontal slow wave in the incorrect prediction between par-

ticipants with positive PEC (mean ± SD = .50 ± 1.56) and participants

with negative PEC (mean ± SD = �.50 ± 1.68; F(1, 53) = 4.96,

p = .03, η2 = .086). No significant amplitude difference in the correct

prediction was found between two groups (positive PEC: mean

± SD = .13 ± 1.58; negative PEC: mean ± SD = .20 ± 1.44; F

(1, 53) = .03, p = .866, η2 = .001; Figure 7b,c).

7 | DISCUSSION

The behavioral results of Study 2 replicated the results in the effort-

less condition of Study 1, that the prediction errors turn to a system-

atic bias to support a false belief of self-efficacy. In addition, we found

consistent evidence that the P3 component in parietal sites was nega-

tively associated with individuals' cheating extent (Leue &

Beauducel, 2019). The association between parietal P3 amplitude and

cheating levels might reflect the weak intentional process since P3 is

an index of attention and working memory (Mendes et al., 2022). Par-

ticipants with high cheating levels might spend less effort to solve the

numerical discrimination task and the weak involvement in the task

might lead to a smaller P3 amplitude. Nevertheless, despite P3 might

not be specific to deception in our task per se, it did reflect the char-

acteristic features of dishonest participants while completing the task.

More importantly, the findings of frontal slow wave components

suggested that the individual differences in PEC were not due to the

alternative explanation of random prediction mistakes. The metacog-

nitive neural processes while making correct predictions were similar

between the two groups while the process of incorrect predictions

showed distinct patterns, supporting the notion that self-deception

could be bidirectional (Trivers, 2013).

7.1 | Study 3: fMRI study

The results in Study 2 suggest a possible connection between the

metacognitive process and self-deception since individual differences

in PEC are associated with different internal representations

reflected by the frontal slow wave. Considering the low spatial reso-

lution of the ERP study, in Study 3, we applied fMRI to provide better

localizing information and we expected to observe the association

between self-deception and the metacognition-associated region,

especially the anterior mPFC. Besides, the causality between the

extent of cheating and additional prediction errors was also tested by

applying an instrumental variable method, a promising method to test

causality in observational social studies (Angrist & Krueger, 2001;

Antonakis et al., 2010; Bollen, 2012; Maydeu-Olivares et al., 2020).

We expected that a higher extent of cheating leads to a higher extent

of prediction errors, which provides motives for self-deception and

contributes to the generation of individuals' false self-efficacy

beliefs.

F IGURE 6 ERP results associated
with the cheating extent in Study
2. (a) The P3 amplitude in the parietal
sites significantly predicted cheating
extent while controlling for participants'
PEC and ability. (b) Participants in the low
cheating extent group showed greater
parietal P3 than participants in the high
cheating extent group. (c) Time-course of

the P3 component in the parietal sites
during the cue phase. PEC, prediction
error in the cheating opportunity context.
*p < .05. Error bars: SE
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8 | METHODS

8.1 | Participants

In the fMRI experiment, 36 right-handed healthy participants

(15 females; mean age ± SD = 20.19 ± 1.43 years, ranging from 18 to

24 years) were recruited. All participants had normal or corrected-to-

normal vision and reported no prior history of psychiatric or neurolog-

ical disorders. They all gave informed consent before the experiment.

We excluded two participants for excessive head movements (>3 mm

in translation or >3� in rotation) and one for program malfunction, the

fMRI analyses included 33 participants (13 females, mean ± SD

age = 20.18 ± 1.47 years, ranging from 18 to 24 years) but the

behavioral analyses still included 35 participants (15 females, mean

± SD age = 20.17 ± 1.44 years, ranging from 18 to 24 years).

8.2 | Procedure

The task and procedure were similar to Study 2. The Cronbach's alpha

of PVSH in Study 3 was .84. Functional MRI scanning was performed

during the answer cue session which included 115 trials in each phase.

The no-answer cue session included 30 trials in each phase, which also

covered three levels of difficulty (10 trials for each level). Participants

could earn 0.5 Yuan for each correct answer. If their prediction error in

the prediction phase is less than 10%, they can earn a bonus of 30 Yuan.

TABLE 3 Linear regression results in Study 2

Measure

Cheating extent PEC

β [95% CI] p β [95% CI] p

Ability �.14 [�5.63, 1.83] .312 .04 [�1.46, 1.11] .789

PEC �.12 [�.44, 1.12] .384

Amplitude of P3 in parietal sites �.27* [�.69, �.01] .046

Cheating extent .09 [�.06, .12] .512

Amplitude differences of frontal slow wave (incorrect–
correct)

.30* [.02, .35] .029

R2 .11 .11

Note: PEC: prediction errors in the cheating opportunity context. Coefficients in bold are statistically significant (p < .05).

*p < .05.

F IGURE 7 ERP results associated
with prediction error in cheating
opportunity context (PEC) in Study
2. (a) The amplitude difference of the
frontal slow wave (incorrect vs. correct
prediction) significantly predicted PEC
while controlling for participants'
cheating extent and ability. (b) A
significant amplitude difference in
incorrect predictions was found
between the two groups, while the
amplitude of frontal slow wave did not
show significant differences in correct
predictions between the two groups.
(c) Time-course of the frontal slow
wave component during the cue
phase. PEC, prediction error in
cheating opportunity context. *p < .05.
Error bars: SE
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8.3 | Data acquisition

Using a 3.0-Tesla Siemens Trio Tim MRI scanner, structural

(T1-weighted MPRAGE sequence, TR = 1900 ms; TE = 2.52 ms; flip

angle = 9�; slice thickness = 1 mm; pixel bandwidth: 170 Hz;

256 � 256 acquisition matrix) and functional (T2*-weighted EPI

sequence, TR = 2500 ms; TE = 30 ms; flip angle = 90�; 37 slices; slice

thickness = 3 mm; pixel bandwidth: 2232 Hz; spacing between slices:

3.99 mm; 64 � 64 acquisition matrix; voxel = 3 � 3 � 3 mm3; acqui-

sition orientation: AC-PC) images were acquired from each

participant.

8.4 | Model estimation and fMRI data analyses

The procedure of model estimation in Study 3 was the same as that in

Study 1. SPM12 (Welcome Department of Cognitive Neurology,

London, UK; http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) was

used for MRI data analysis. For each participant, the anatomical image

was co-registered to the mean EPI image, segmented, and normalized

into the MNI space with a 3 mm isotropic resolution. Functional

images were realigned, corrected for slice timing, normalized into the

MNI space, spatially smoothed (FWHM = 8 mm) (Mikl et al., 2008),

and high-pass filtered at 1/128 Hz.

The statistical analyses of the fMRI data were based on two gen-

eral linear models. The canonical hemodynamic response function was

used to model the fMRI signal. GLM 1 probes the neural responses

during the trials where individuals provided correct responses.

Despite cheating trials could not be isolated from our data, cheating

behaviors increased in those participants with a higher cheating

extent in the trials with correct responses. Therefore, we could still

probe the individual differences in neural responses while providing

correct responses in the cue phase by focusing on trials with correct

responses. Two regressors of interest were defined, which contained

the onsets of trials with correct responses in the cue phase. The

onsets of the other events (i.e., trials with correct responses in the

prediction phase, trials with no response, and trials with wrong

answers) were regarded as variables of no interest. For the second-

level analysis, the estimated cheating extent C was entered into a

group-level regression analysis.

GLM 2 was set up to investigate self-deception associated neural

responses. Considering multiple rounds of the task are required to be

completed, participants knew in advance that they were going to

make predictions right after completing the numerical discrimination

task and would prepare in advance. Therefore, we expected that the

actual preparation process of making a prediction would be present in

the cue phase. Besides, we did not compare the cue phase with the

testing phase since during the testing phase participants were not

instructed to make any predictions so the process of prediction would

be absent. To capture the process of prediction decision-making, GLM

2 is designed to focus on the cue phase rather than the prediction

phase. Two types of onsets are of interest: trials with incorrect predic-

tion and trials with correct prediction in the cue phase. Trials with

incorrect predictions refer to those trials where participants' predic-

tions about future performance were different from their actual per-

formance. By linking the differences between incorrect versus correct

predictions and participants' PEC levels, we expect to observe individ-

uals with different PECs would show distinct activated patterns in the

metacognitive region, that is, the anterior mPFC. Onsets of other

events (i.e., trials in the prediction phase and trials with no response)

were regarded as trials of no interest. For the second-level analysis,

we ran paired t-tests on the contrast of incorrect predictions versus

correct predictions. To investigate the neural representations of self-

deception, the estimated PEC was entered into a group-level regres-

sion analysis. Without additional statements, results were whole-brain

voxel-level height threshold at p < .001 and survived after cluster-

level family-wise error (FWE) correction, p < .05 (performed by SPM's

cluster correction function testing if the given cluster is FWE p < .05

for cluster-level inference).

8.5 | The instrumental variables regression model

We used a nonexperimental causal inference method which has been

widely used in areas of economics or epidemiology, the instrumental

variables regression (IVR) model (Maydeu-Olivares et al., 2020) to

estimate the causal effect between cheating extent and self-deceiving

extent (absolute value of PEC). Two constraints for instrumental vari-

ables (Z1 and Z2) to ensure valid causal inference (Bollen, 2012) are

(1) instruments should not be directly correlated with the error of the

dependent variable Y and should not have direct effects on Y, and

(2) instruments should be strongly correlated with the independent

variable X. Therefore, we extracted caudate activity that has been

found in previous deception studies (Yin et al., 2021; Yin &

Weber, 2019) as instrumental variables. The IVR model was estimated

using the structural equations modeling program by Mplus (Muthén &

Muthén, 2017). In the model, we specified cheating extent (i.e., C) as

the independent variable X, with bilateral anatomical caudate activity

(caudate masks were generated from the AAL atlas [Tzourio-Mazoyer

et al., 2002] in the WFU Pickatlas Tool [Maldjian et al., 2003]) in the

cue phase (Z1) and prediction phase (Z2) as two instrumental vari-

ables, and self-deception extent (i.e., abs(PEC)) as the dependent vari-

able Y. We allowed for a correlation among the errors of X and Y to

account for endogeneity, and two instrumental variables had no direct

relationship with Y. A bootstrap procedure with 5000 iterations was

constructed to test the causal influence of cheating extent on the

self-deceiving extent.

9 | RESULTS

9.1 | Behavioral results

The model yielded a PP p value of .349 for the fMRI experiment, indi-

cating a good model fit. Study 3 replicated all the findings of the

effortless condition from Studies 1 and 2. First, participants'
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accuracies in the cue phase are significantly higher than that in the

testing phases and no-answer cue session (ps < .001; Figure 8a;

Table S1). Second, participants' self-report efficacy did not correlate

with their ability A (r = .02, p = .930; Table S3) and performance of

no-answer cue session (r =�.14, p = .439). Third, participants' belief

about their efficacy positively correlated with PEC (r = .35, p = .042).

After controlling participants' cheating extent (C) and ability (A), we

still observed that participants' PEC significantly predicted self-report

efficacy in the effortless condition (β = .35, t(31) = 2.09, p = .045;

Figure 8c; Table 2). Besides, regarding PEN, among all three studies,

we found: (1) no significant correlations were observed between esti-

mated PEC and PEN, suggesting the relatively independent nature of

the two types of errors and (2) PEN did not correlate with efficacy rat-

ings in the effortless condition, suggesting PEN's weak contribution to

the formation of efficacy belief (Table S3).

9.2 | Neuroimaging results

To probe the individual differences of neural responses in trials with

correct responses and investigate if participants with higher cheating

extent respond differently while providing correct responses, we per-

formed the regression analysis in those correct response trials with an

estimated cheating extent C as a covariate. Significant negative corre-

lations between the cheating extent and caudate activity in the cue

phase were found (peak MNI coordinates: �15, 11, 11; 21, 14, �4;

Figure 9a; Table 4). As expected, by contrasting incorrect versus cor-

rect predictions, we found that the PEC negatively correlated with

activity in the anterior mPFC (amPFC; peak MNI coordinates: 9, 62,

11; Figure 9b; Table 4; right superior temporal gyrus; peak MNI coor-

dinates: 51, �40, 8; left superior temporal gyrus; peak MNI coordi-

nates: �48, 11, �16; and right insula; peak MNI coordinates: �39,

�19, �22; Figure S1).

9.3 | The instrumental variables regression model

The two instrumental variables showed a multiple R2 of .438 in the

regression model using caudate to predict cheating extent C,

indicating a strong correlation between instruments and the indepen-

dent variable, according to Cohen's (2013) benchmarks for R2 effect

sizes (i.e., .26 for large effect sizes). They separately predicted cheat-

ing extent C (caudate activity in the cue phase: b = �.426, p = .002;

caudate activity in the prediction phase: b = �.356, p = .044). These

results indicate a low risk of weak instruments. Next, the overall

model fit was good (χ2(1) = .16, p = .69), suggesting that the

F IGURE 8 Behavioral results in Study 3. (a) Participants' performance in the cue phase was significantly better than that in both the testing
phase and the performance of the no-answer cue session. Participants' ability (b) cannot predict but PEC (c) significantly predicts self-report
efficacy in the fMRI experiment even after controlling cheating extent. PEC, prediction error in the cheating opportunity context. Error bars: SE

F IGURE 9 Cheating and self-deception associated neural activity.
(a) Results of regression analysis in the contrast of trials with correct
responses in the cue phase (vs. baseline) with estimated C as a
covariate. Significant activation was found in the bilateral caudate in
the cue phase. (b) Results of regression analysis in the contrast of
incorrect prediction versus correct prediction in the cue phase with
estimated PEC as a covariate. Significant activation was found in the
amPFC. Parameter estimates were extracted from the whole
activated clusters (voxel-level threshold p < .001 uncorrected, cluster-
level p < .05, FWE corrected). amPFC, anterior medial prefrontal
cortex; C, cheating extent; PEC, prediction error in the cheating
opportunity context.
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instrumental variables were not directly related to the (error of the)

dependent variable. The results together support that the two candi-

date instruments were qualified. Causal inferences were then made

based on the consistent estimate of the path from cheating extent to

self-deceiving extent, which was b = .421 (Figure 10; bootstrap

biased corrected 95% CI = (.081, .738)), suggesting a significant causal

influence of cheating extent on the self-deceiving extent.

10 | DISCUSSION

Individuals with different cheating extents showed distinct caudate

responses while providing correct responses. Although we could not

identify cheating trials from participants' responses, higher cheating

extent suggests higher proportions of providing correct responses in

comparison with their actual ability. Providing more correct responses

would lead to higher monetary rewards. However, the decreased

activity in the caudate might reflect dishonest individuals' devaluation

of dishonest gains, consistent with the previous findings and sugges-

tions from the study which could explicitly distinguish cheating trials

in each individual (Yin & Weber, 2019).

The metacognitive neural processes of making incorrect predic-

tions showed distinct patterns between participants with positive and

negative PEC and among participants with different levels of PEC,

supporting the notion that self-deception could be bidirectional

(Trivers, 2013). A positive and negative PEC indicates the overall ten-

dency of overestimating and underestimating future performance,

respectively. In GLM 2, incorrect predictions consist of both overesti-

mating and underestimating errors. Incorrect predictions for partici-

pants with positive PEC include more overestimating errors but for

those with negative PEC include more underestimating errors. When

participants were making predictions, they did not know in advance if

their predictions were correct or not, and therefore, the amPFC would

less likely to respond to the correctness of predictions. More impor-

tantly, self-report efficacy after the experiment did show a significant

positive correlation with PEC (but not with PEN), suggesting that they

were forming the belief of self-efficacy from PEC. The activity of the

metacognition-associated region amPFC reflects the direction of par-

ticipants' false belief of their ability: the higher the amPFC activity,

the higher the tendency of overestimating.

11 | GENERAL DISCUSSION

Self-deception describes the dynamic process of abstaining and main-

taining a false belief state that can be detected from the perspective

TABLE 4 fMRI results in Study 3

Brain area L/M/R Cluster T value

MNI coordinates

x y z

GLM 1

Correct responses

Putamen R 95 4.89 21 14 �4

Caudate L 85 4.15 �15 11 11

GLM 2

Incorrect > correct predictions

Superior temporal gyrus R 59 5.65 51 �40 8

Anterior medial prefrontal cortex R 212 5.17 9 62 11

Superior temporal gyrus L 76 5.02 �48 11 �16

Insula L 92 4.80 �39 �19 �22

Incorrect < correct predictions

None

Abbreviation: fMRI, functional magnetic resonance imaging.

F IGURE 10 Path diagram of the

instrumental variables model for the
causality of cheating extent on the self-
deceiving extent (abs(PEC)). C, cheating
extent; abs(PEC), the absolute value of
prediction error in the cheating
opportunity context.
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of the generalized other (J. Mitchell, 2000) or by oneself at a later

impartial examination (Mele, 2001). Study 1 tested if the ambiguity of

attributions facilitates the occurrence of self-deception and self-

deception shows a bidirectional nature (i.e., self-enhancing and self-

diminishing). By focusing on the effortless cheating condition that was

confirmed to facilitate self-deception in Study 1, Study 2 (ERP study)

captured the similarities and differences between neurocognitive pro-

cesses of making correct and incorrect predictions in individuals with

different self-deceiving tendencies. By providing a better spatial reso-

lution, Study 3 (fMRI study) investigated the relationship between

self-deception and the metacognition-associated region: the anterior

mPFC. The results of three studies captured self-deception in the

effortless cheating opportunity context, probing the cognitive process

and neural basis of false belief.

In Study 1, we quantified individuals' ability, prediction errors,

and cheating level, and examined participants' belief of self-efficacy in

effortless and effortful cheating opportunity contexts. Our results in

Study 1 support that (a) easy access to answer cues creates high ambi-

guity in interpreting cheating behaviors, reduces barriers for cheating

behaviors, allows individuals to interpret their cheating behaviors

more flexibly, and leaves more room for distortions in belief

generation; and (b) biased judgment in self-deception could be both

self-enhanced or self-diminished. First, the results showed that

participants in the high ambiguity condition (i.e., effortless cheating

opportunity condition) generated false belief of efficacy that was not

grounded on their actual ability like participants in the low ambiguity

condition did. Besides, by investigating participants' performance and

belief in the effortless cheating opportunity condition, Studies 2 and

3 replicated the behavioral findings from Study 1: participants' predic-

tion errors rather than their ability significantly predicted self-report

efficacy, confirming that participants generated false belief in the

effortless cheating opportunity condition. Compared to an effortful

cheating opportunity context, an effortless cheating opportunity con-

text increased the flexibility of interpreting one's cheating behaviors

(Sloman et al., 2010; Zhong et al., 2019) and therefore, facilitates the

process of turning cheating-induced errors into a systematic bias

toward false beliefs of self-efficacy.

Second, self-deception could be self-enhanced or self-diminished.

Previous studies suggested that self-deception might arise from the

motivation of seeing the self and the world positively (Zoë Chance &

Norton, 2015; Zoë Chance et al., 2011; Schwardmann & van der

Weele, 2019; van der Leer & McKay, 2017). For example, a previous

behavioral study found that individuals who cheated on tests were

more engaged in self-deception, believing that the good performance

was due to their intelligence (Zoë Chance et al., 2011). In our study,

although participants' performance was significantly better in the

answer cue phase than that in the no-answer cue session, suggesting

a significant proportion of cheating, overestimation of future perfor-

mance was not observed at the group level. Despite overconfidence

being a kind of false belief, self-deception is not necessarily equal to

an unrealistic positive view of oneself or the world (Trivers, 2013).

Cultural differences in self-serving biases and self-criticism might also

contribute to our current findings (Heine et al., 2000; Heine &

Hamamura, 2007; Mezulis et al., 2004).

Results in Study 2 revealed that the differences in generating

incorrect predictions are represented in the frontal slow wave that

distinguished between participants with positive (i.e., overestimation

of their ability) and negative (i.e., underestimation of their ability) self-

deception. Recent studies showed that other analyses method like

time-frequency decomposition could help inform brain dynamics of

cognitive function (Bridwell et al., 2018), but the analyses in Study

2 still focus on components of interest derived from averaging data

across trials since it is more consistent with findings from previous

related studies. Late components have been consistently found in

metacognition (Müller et al., 2016), distinguishing the continuity of

the self over time (Rubianes et al., 2021), and self-knowledge (A. F. N.

Tanguay et al., 2021; A. N. Tanguay et al., 2018). More specifically,

late slow waves represent internal mental representation (Meinhardt

et al., 2011) and differ between false and true beliefs (Geangu

et al., 2013). In our study, participants' generation of task-specific

self-efficacy happens during completing the task. The judgment of

self-efficacy would involve the recollection of the previous experi-

ence, that is, performance in the task. The encoding process during

the task is essential for building post hoc confidence in completing

the task. Previous studies found that frontal slow wave during encod-

ing indexes the contribution of elaborative or associative processes to

the episodic encoding that leads to retrieval success (Forester

et al., 2020; Kamp et al., 2017; Kamp & Zimmer, 2015; Liu

et al., 2017). It plays a role in reflecting the impact of affective attitude

on the episodic encoding process (Forester et al., 2020). The signifi-

cant amplitude differences of frontal slow wave in incorrect prediction

trials between two groups rather than that in the correct prediction

trials suggest different encoding processes that might lead to subse-

quent retrieval success or failure in the judgment of self-efficacy. A

more positive frontal slow wave suggests participants with positive

self-deception encoded elevated performance in a deeper sense that

might further facilitate subsequent retrieval and the involvement of

the experienced elevated performance in the judgment of self-efficacy

after the task. That is, the contribution of cheating-induced perfor-

mance enhancement to the later self-efficacy judgment is larger in

participants with positive self-deception than those with negative

self-deception.

Providing a better spatial resolution, the fMRI results in Study

3 showed that prediction errors that contribute to false belief in the

high ambiguity condition were associated with the metacognition-

related amPFC activity, confirming the neural source of false belief

generation and suggesting self-deception includes a self-related top-

down process. The metacognitive process is thinking about and moni-

toring one's cognitive process and self-referential belief thoughts

(D'Argembeau et al., 2007; J. P. Mitchell et al., 2005; Northoff

et al., 2006; Sheline et al., 2009). The critical implication of the medial

PFC in self-related processing has been extensively shown in previous

research (D'Argembeau et al., 2008; Denny et al., 2012; Moran

et al., 2006; Northoff et al., 2006; Sui & Gu, 2017; Wagner

et al., 2012). Alterations in the medial PFC activity can be observed

while participants are processing self-related materials (de Greck

et al., 2008; Moran et al., 2006) and protecting positive self-views

internally or externally (Van de Groep et al., 2021). A previous study
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investigated a patient with a lesion in the mPFC and found that he

showed impairment in retrieving self-knowledge with other-related

knowledge preserved (Marquine et al., 2016). A resting-state fMRI

study found the ventromedial prefrontal cortex and medial orbitofron-

tal cortex are associated with processes of self-updating via self-

representation and self-relevance attribution (Murray et al., 2015).

The self-referential process is a key psychological mental process that

is required not only in the self-deceiving process but also in the pro-

cess of deceiving others (Speer et al., 2020; Yin & Weber, 2019). In

Study 3, however, we only observed its connection with prediction

errors that contribute to generating false beliefs but not cheating. The

amPFC might be involved in reflecting the self-deceiving process

rather than the cheating process in the task. The amPFC integrates

reward-related and comparison-related components of social feed-

back and contributes to individual differences in self-related positive

updating (Korn et al., 2012). Note that when we compared correct

response trials with incorrect response trials, no significant results

were found even under a lenient threshold in both the cue phase and

prediction phase. This might suggest that the function of the amPFC

is not necessarily linked up with deception even in the cheating

opportunity task, that is the amPFC bears the character of highly

dynamic switching of functionality.

In Study 3, we further identified cheating-associated neural activ-

ity in the caudate. A previous fMRI study focused on individual differ-

ences in lying and reported that lying-associated activity in the

caudate and ventromPFC negatively correlated with participants' dis-

honest levels (Yin & Weber, 2019). Furthermore, a recent resting-

state fMRI study about honesty variations in children and adults

found reduced functional connectivity between the caudate and

mPFC in more dishonest individuals (Yin et al., 2021). These previous

studies suggest a high involvement of caudate-amPFC activated and

interconnected neural patterns in reflecting individuals' (dis)honesty

variations. Our Study 3 also found decreased caudate activity with

increased cheating extent, replicating the previous findings in the cau-

date (Yin & Weber, 2019), and further confirming caudate activity's

strong association with dishonesty variations. The caudate is a part of

the striatum and reward system in the human brain (Delgado

et al., 2000; Glimcher & Fehr, 2014; Hikosaka, 2002; Pisauro

et al., 2017; Schultz et al., 1997; Zald & Treadway, 2017). It also

belongs to the network associated with individuals' moral values

(Lelieveld et al., 2016; Shenhav & Greene, 2010). The reduced cau-

date activity suggests a reduced subjective value caused by cheating

(Yin & Weber, 2019). Furthermore, by using caudate response pat-

terns as instrumental variables in the IRV model, we explored the cau-

sality between the extent of cheating and additional prediction errors.

We found that a higher extent of cheating leads to a higher extent of

additional errors that contributes to the generation of individuals'

false self-efficacy belief. By providing a motive for self-deception,

cheating behaviors contribute to developing false beliefs. Therefore,

people who have more cheating behaviors in a context that allows

ambiguous interpretations or attributions could lead to self-

deception.

12 | LIMITATION

The limitations of our study are twofold. First, the sample size in

Study 3 is relatively small and runs the risk of low generalization. Nev-

ertheless, we believe that the results in Study 3 still be valid to a cer-

tain extent since the behavioral results replicated those in Study

1 and the results in the caudate replicated findings from previous

studies (Yin & Weber, 2019). Second, Studies 2 and 3 only investi-

gated neural processes in the effortless condition with the effortful

condition as the control condition unexplored. Although findings from

Study 1 supported that self-deception happens in the effortless condi-

tion, the neural process in the effortful condition would be still a use-

ful control condition that could have helped us come to a more valid

conclusion.

13 | CONCLUSION

To sum up, effortless cheating opportunities increase cheating behav-

iors and the ambiguity of attributions that facilitate self-deception.

Our study suggests that self-deception is a self-oriented top-down

distorted belief that requires self-deceiving motive and ambiguity in

attributions. Self-deception is a false belief that is built up from multi-

ple minor deviations from the representation of reality and neurally

depends on alterations in the activity patterns in the frontal region,

especially the anterior mPFC.
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