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Fluctuations in the detection 
of the HOM effect
Dmitry N. Makarov

Hong-Ou-Mandel (HOM) effect is known to be one of the main phenomena in quantum optics. It is 
believed that the effect occurs when two identical single-photon waves enter a 1:1 beam splitter, one 
in each input port. When the photons are identical, they will extinguish each other. In this work, it is 
shown that these fundamental provisions of the HOM interference may not always be fulfilled. One 
of the main elements of the HOM interferometer is the beam splitter, which has its own coefficients 
of reflection R = 1/2 and transmission T = 1/2 . Here we consider the general mechanism of the 
interaction of two photons in a beam splitter, which shows that in the HOM theory of the effect it is 
necessary to know (including when planning the experiment) not only R = 1/2 and T = 1/2 , but also 
their root-mean-square fluctuations �R

2
,�T

2 , which arise due to the dependence of R = R(ω1,ω2) 
and T = T(ω1,ω2) on the frequencies where ω1,ω2 are the frequencies of the first and second photons, 
respectively. Under certain conditions, specifically when the dependence of the fluctuations �R

2 and 
�T

2 can be neglected and R = T = 1/2 is chosen, the developed theory coincides with previously 
known results.

The HOM effect was first experimentally demonstrated by Hong et al in  19871. HOM interference shows up 
in many instances, both in fundamental studies of quantum mechanics and in practical implementations of 
quantum  technologies2–8. For example, one of the main practical applications of the HOM effect is to check the 
degree of indistinguishability of two incoming photons. When the HOM dip reaches all the way down to zero 
coincident counts, the incoming photons are perfectly indistinguishable, whereas if there is no dip, the photons 
are distinguishable. A HOM interferometer scheme was presented  in1, one of the main elements of which was a 
beam splitter (BS). To observe quantum interference, a BS is chosen close to 1:1 (having coefficients of reflection 
R and transmission T close to 1/2). A theoretical explanation of the HOM effect based on constant coefficients 
R and T and boson statistics of photons is quite  simple9,10. In this interpretation, we are not interested in what 
happens to the incident photons in the BS. For this, they consider BS lossless (hereinafter simply BS) as ideal, 
i.e. with constant coefficients R and T and BS is the source of the other two photons obeying bosonic statistics. 
In this case, the annihilation operators before entering 1 and 2 photons in BS represent â1 and â2 , respectively, 
and after exiting BS is b̂1 and b̂2 . The transformation from one pair of operators to another is generally described 
by the BS matrix (denoted as UBS ) in the form (see, e.g.11,12)

It is easy to see that for R = T = 1/2 , the photons at the output (described by the operator b̂2b̂1 ) only come out in 
pairs from 1 or 2 ports. This analysis is fundamental to understanding the HOM effect and is not subject to any 
additional research. The basic scheme HOM interferometer for arbitrary photons (including quantum entangled 
photons) is shown in Fig. 1. In reality, the pair of photons arriving at the BS do not have a set frequency, but have 
a certain frequency distribution. Nonetheless, in the theoretical description (e.g.1,13–17) of the experimentally 
observed value P (P is the joint probability of detecting photons after exiting the BS on the output ports), the 
frequency distribution does not affect BS matrix UBS , because R and T are constant values. Currently, the well-
known HOM effect theories are based on calculating the value of P within the constant values of R = T = 1/2.

In the work presented the coefficients R and T are variables, which significantly affects the theory of the HOM 
effect. The problem of interaction of two photons in BS is solved analytically, allowing the determination of the 
photon statistics after exiting the BS. Within the general form UBS is a BS matrix similar to Eq. (1), where R and 
T are some functions that depend on the frequencies of incident photons, the interaction time of two photons 
in BS, and on the BS material. This leads to the value of the coincidence counting probability P being calculated 
to take into account the dependence on the frequencies of R and T. It is shown that even in the case of identical 
incident photons and their average values R̄ = T̄ = 1/2 (averaging over the frequencies of incident photons), a 
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zero value of P may not be observed, despite being predicted by the HOM interference theory taking into account 
the constants R and T. Indeed, in the case of constant coefficients, as well as without a time delay between two 
photons, i.e. δτ = 0 or τ = 0 and identical photons, because it is well known that P ∝ (R − T)2 , for R = T = 1/2 
we get P = 01,13. In our case, P ∝ (R − T)2 , which means P ∝ R2 − (R)2 or P ∝ T2 − (T)2 (when R̄ = T̄ = 1/2 ) 
i.e. there is a fluctuation in the reflection and transmission coefficients, had was not earlier taken into account 
in theoretical and experimental studies. It is shown (arbitrary falling photons, including not only Fock state, 
but also taking into account the time delay δτ and τ ) that under certain conditions the coefficients R and T can 
be considered constant, and the results obtained pass into well-known approaches. The theory developed here 
is especially important when planning experiments in the HOM interferometer and analyzing them; because 
the fluctuations of R and T can be very large, the results of such experiments may not be correctly interpreted.

Photons in BS
It is well known that in quantum optics two modes of the electromagnetic field (two input ports) are usually 
considered, since even if 1 port remains unused, it should be considered as an input for vacuum  fluctuations9,10. 
Thus, we will proceed from the fact that we have two ports at the input. Two input and output ports can be in 
the form of freely spreading photons or in the form of waveguides along which photons propagate. If the wave-
guides are connected, then we get BS in the form of a coupled waveguide. It should be added that such systems 
are usually studied using various simplified models, for example, Bose–Hubbar  model18, Jaynes–Cummings 
model (JCM)19, Dicke  model20 and others. We will try to approach this problem based on a complete record of 
the Schrödinger equation of all interacting particles in the system under consideration.

Consider a polyatomic system (e.g. BS) interacting with two photons. We represent the electromagnetic field 
of photons through the transverse vector potential A in the Coulomb gauge divA = 09,10, then the Hamiltonian 
of such a system will be (further, the atomic system of units to be used will be: � = 1; |e| = 1; me = 1, where � is 
Dirac’s constant, e is the electron charge, me is the electron mass)

where Ĥi = ωi âi
+âi is the Hamilton operator for the first ( i = 1 ) and the second ( i = 2 ) photon ( ωi is the fre-

quency, and âi is the annihilation operator of the photon with number i); U(ra) is the atomic potential acting on 
the electron with number a ; p̂a is the electron momentum operator with the number a; Âa = Â1,a + Â2,a , where 
Âi,a =

√

2πc2

ωiVi
ui(âi

+ + âi) is the vector potential in the dipole approximation created by the i photon acting on 
the electron with number a (c is the speed of light, Vi is the modal volume, ui is the polarization of the photon 
with the number i)9,10; and the sum 

∑

a (Eq. 2) is over all electrons polyatomic system. It should be added that 
the dipole approximation gives correct results at photon wavelengths � ≫ 1 i.e. much larger than atomic sizes. 
Furthermore Eq. (2) is more convenient to consider in the form of a differential equation (which was the approach 
taken  in21–23), going from the operators â = 1√

2
(q+ ∂

∂q ), â
+ = 1√

2
(q− ∂

∂q ) to the electromagnetic field variables 
q9,10. As a result, the Hamiltonian of Eq. (2) will be

where βi =
√

4π
ωiVi

 , and the value N =
∑

a(1) is the number of electrons participating in the interaction with 
photons in a polyatomic system. Eq. (3) can be seen to correspond to the equation for coupled harmonic 
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Figure 1.  Schematic representation of the HOM interferometer, where D1,D2 are the first and second 
detectors, respectively; τ is the time delay between 1 and 2 photons and δτ is the time delay caused by the spatial 
displacement of the BS from the equilibrium position.
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oscillators interacting with the electrons of a polyatomic system. A similar system was considered  in24, but 
without taking into account interaction with electrons, we obtain
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C = 2Nβ1β2
√
ω1ω2u1u2 ; Bi = (ωi + Nβ2

i )ωi and Ai = Bi + (−1)iC/2 tan α . Obviously, the value of βi is very 
small in the case of single-photon interaction, see, e.g.25, where β ≪ 1 , even in the case of strong focusing. In 
this case, the quantities D1 and D2 are negligible. This is an obvious fact, since these quantities are responsible 
for various inelastic transitions of electrons in an atom under the action of photons, which are usually negligible 
in lossless BS. As a result, the dynamics of two photons in BS will be described by the wave function

where tBS is the photon interaction time in BS and |�(0)� is the initial state of the photons before entering the BS. 
In the future, to calculate the required quantities, we will need the electric field operators Ê+1 (t1) and Ê+2 (t2) at 
time instants t1 and t2 on the first and second detectors, respectively. To do this, we need to find the evolution (in 
BS, as well as from BS to detectors) of the operators Ê+01(0) and Ê+02(0) of the first and second photons, respectively

where Ĥ0 =
∑2

i=1 ωi/2
{

−∂2/∂q2i + q2i
}

 is the Hamiltonian of photons outside of BS. Because Ê+01(0) ∝ â1 , and 
Ê+02(0) ∝ â2 (see, e.g.9,10), it is more convenient to consider not the electric field operators, but the photon crea-
tion and annihilation operators before entering BS ( ̂a1 and â2 ) and on the detectors ( ̂b1 and b̂2 ). To this end, we 
replace Ê+01(0) → â1, Ê

+
02(0) → â2 and Ê+1 (t1) → b̂1(t1), Ê

+
2 (t2) → b̂2(t2) . Taking into account the time delay δτ 

for the spatial displacement of BS from the equilibrium position and the time delay τ between 1 and 2 photons 
(see Fig. 1)

where φ1,φ2 are some non-essential phases, and the coefficients

From Eq. (7) it can be seen that the matrix BS that is UBS completely corresponds to the matrix (Eq. 1) (needless 
to say, for t1 = t2 = t and for δτ = τ = 0 ). In addition, T and R are symmetric, i.e. if we change the first to the 
second photon ω1 → ω2,V1 → V2, u1 → u2 and vice versa, then, as anticipated, the coefficients will not alter.

Two-photon interference
The next problem, we consider is the probability P1,2 of the joint detection of photons on 1 and 2 detectors (cor-
relation between the two detectors). If our coincidence gate window accepts counts for a time TD , then the rate 
of coincidences P, between detectors 1 and 2 is proportional to (see, e.g.1,13,14)

Let us consider the case where the reaction time τD (time resolution) of the detectors D1 and D2 in the experiment 
is many times slower than other time scales of the problem τD ≫ 1 : in this case TD → ∞ . It should be added that 
the theory presented below is not difficult to generalize to the case of τD ≪ 1 , which is currently implemented 
experimentally (e.g.16,26).

Equation (9) is applicable in the case of monochromatic photons. In reality, they cannot be such and it is 
necessary to take into account the frequency distribution, and in this case the initial wave function of the photons 
will be in the form |�� =

∫

φ(ω1,ω2)â
†
2â

†
1|0�dω1dω2 , where φ(ω1,ω2) is the joint spectral amplitude (JSA) of 

the two-photon wavefunction ( 
∫

|φ(ω1,ω2)|2dω1dω2 = 1 ). Further calculations of P1,2 are similar to those that 
are generally accepted (e.g.13,14), the only difference being that it is necessary to consider the T and R functions 
depending on the frequencies. As a result, we obtain
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where P1,2 is normalized so that with tBS = 0 the probability is P1,2 = 1 (without BS, the probability of joint opera-
tion of the detectors is 100% ), which corresponds to standard normalization in HOM theory. We then obtain

It should be added that if T and R are assumed to be independent of frequencies and T = R = 1/2 , then Eq. 
(11) corresponds to the well-known equation, e.g.27–29. It is also seen that the time delay of δτ and τ is additively 
δτ + τ ; therefore, we denote it by �τ = δτ + τ.

We next consider the case of identical photons at �τ = 0 , in this case φ(ω1,ω2) = φ(ω2,ω1) and 
R(ω1,ω2) = R(ω2,ω1) (because V1 = V2 ), and the quantity

If in (12) we choose T = R = 1/2 , then we get P1,2 = 4(T2 − T
2
) = 4(R2 − R

2
) . In other words, there is a 

mean-square fluctuation of the coefficients of transmission T and reflection R, which leads to a nonzero value 
of P1,2 in the case of identical photons. This conclusion is fundamental in the theory of HOM interference 
and was not previously obtained. Also, from the previously obtained Eqs. (11) and (12) it follows that the 
P1,2(�τ ≫ τc) = 2T2 = 2R2 ( τc is the coherence time), as well as P1,2(�τ ≫ τc) = 1/2(1+ P1,2(�τ = 0)).

Let us present the results of calculating the value of P1,2 for the case

We will be interested in the case applicable for most sources of photons ω02 − ω01 ≪ ω01,ω02 ; ω01/σ1 ≫ 1 ; 
ω02/σ2 ≫ 1 , in this case the normalization constant C = (σ 2

1+σ 2
2+σ 2

p )
1/4

√
πσ1σ2σp

 . The function (13) allows us to analyze 
the value of P1,2 for two cases that are of practical interest. The first case is spontaneous parametric down-con-
version (SPDC), for example, for �p = 2ω0;ω0 = ω01 = ω02; σ1 = σ2 = σ is SPDC of type I, where σp is the 
bandwidth of the pump beam, ω0 and σ are the central frequency and the bandwidth, respectively, for both the 
signal and the idle  beams30. The second case, on the other hand, if we consider σp → ∞ in Eq. (13), then this 
will be the case of Fock states (e.g.15,30). Indeed, in this case, in Eq. (13), the φ(ω1,ω2) function will be factorized, 
which corresponds to Fock states. Substituting Eq. (13) into Eq. (11) we obtain
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R(y) are determined by the Eq. (8), with the only difference being that

If we assume that �g/� ≪ 1 , then T and R become constant values and they can always be selected in the 
experiment T = R = 1/2 . This is true for photon sources where �g ≪ � . Estimates of the value of � are given in 
the conclusion, where it is shown that �g can be of the order of � ; therefore, it is necessary to take into account 
fluctuations of the coefficients R and T. The equation for P1,2 , in our case Eq. (14) for the constants T = R = 1/2 
easily integrates and coincides with the well-known P1,2 = 1/2(1− Be−(�ω/�g )

2

e−1/4(B�g�τ)2) , e.g.15. Next, we 
consider how the value of P1,2 will look like depending on �τ�g (HOM dip) in the case of V1 = V2, σ1 = σ2 for 
different values of �g/� and �ω/�g , but for �tBS such that T = R = 1/2 , see Fig. 2: as �g/� increases, the 
value of P1,2 tends to unity. This can be seen in the general analysis of the Eqs. (8) and (11). Figure 2 also shows 
that when T and R are taken into account from the frequency, P1,2 can significantly differ from the previously 
known theory of HOM interference.

If we assume that photons are completely identical and monochromatic to ε = 0 in Eq. (8) (in reality this 
does not happen), then we get the BS described  in31 (in this work R = sin2(Cz) ; P1,2 = cos2(2Cz) ; φ = π/2 , 
where C = �/(2v) is the coupling constant between adjacent waveguides, z = vtBS , v is wave velocity in a 
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waveguide). In this case, the frequency dependence of the coefficients R and T disappears and it is always possible 
to experimentally select R = T = 1/2 , where there are no fluctuations of these coefficients. In other words, this 
case corresponds to the standard HOM theory. You can see that the theory developed here is general, includ-
ing the one suitable for BS in the form of coupled waveguides. In addition, changing the parameter � , you can 
go to a different type of coupling in the waveguide, including the no coupling waveguide i.e. for � → 0 we get 
T = 1;R = 0 (photons propagate only along their waveguides). It should be added that such a passage to the 
limit was not previously in HOM theory (e.g.31)

Let us imagine in the figure (see Fig. 3) that in the case of identical photons (but not monochromatic), i.e. 
for σ1 = σ2 = σ (in this case �g =

√
2σ ) and �ω = 0;�τ = 0 the results obtained here may differ  from31. If in 

this case we choose �g/� ≪ 1 , then the dependences R and P1,2 are simplified and the results coincide  with31, 
i.e. R = sin2(�tBS/2) ; P1,2 = cos2(�tBS) . From Fig. 3 you can see that with the selected parameters, HOM inter-
ference ( P1,2 ≪ 1 ) can be realized only with �g/� = 1 and one value �tBS ≈ 2 . If we take into account that 
tBS = z/v , then we see that HOM interference is possible only for a certain value of length z. An estimate will 
be given below of the value of � , where we obtain that z should be of the order of micrometers. In the standard 
HOM theory, there are no restrictions on the length z of the waveguide coupling.

It should be added that experiments do not always have good coincidences of P1,2 = P1,2(�τ) with theo-
retical predictions of HOM interference with constant coefficients T = R = 1/2 . In such experimental stud-
ies, additional oscillations of the dependence P1,2 = P1,2(�τ) between the minimum of this function and 
P1,2 = P1,2(�τ ≫ τc) ( τc is the coherence time). These oscillations can have a different nature (e.g.32,33), but 
fluctuations of the coefficients R and T are not studied. We should also add about the observation in the experi-
ment of the studied effect of fluctuations. If the fluctuations are significant, then the visibility of V will be small, 
although the photons can be identical. Therefore, in an experiment without measuring fluctuations they cannot 
be seen. In other words, if the visibility of the studied source is small, then following the standard HOM theory, 
we can conclude that the photons are not identical. In fact, this may not be the case, and photons can be identi-
cal with large fluctuations. Therefore, the presented theory is needed to avoid such errors in the interpretation 
of the HOM effect.

Figure 2.  Dependence of P1,2 on �τ�g (HOM dip). Case (a) corresponds to completely identical photons, and 
cases (b–d) correspond to non-identical photons. The visibility V = V(�g/�) depends on the parameter �g/� 
(the color of the lines corresponds to: red with �g/� = 1 , green with �g/� = 0.5 , brown with �g/� = 0.25 , 
blue with �g/� = 0 ). The case �g/� = 0 and visibility V(0) corresponds to the previously known theory of 
HOM interference with constant coefficients T = R = 1/2.

Figure 3.  (a) The dependence of R depending on �tBS for �g/� = 1; 2; 5; 10 (top–down in figure). (b) The 
dependence of P1,2 depending on �tBS for �g/� = 1; 2; 5; 10 (bottom–up in figure).
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Discussion and conclusion
Thus, the developed theory shows that for a real BS, the coefficients of transmission T and the refraction of R 
depend on the frequency. This dependence can significantly change the well-known theory of HOM interfer-
ence. Under certain conditions, when the dependence on frequencies can be neglected (for example, in the case 
(Eq. 13) for �g/� ≪ 1 ), the coefficients T = R = 1/2 can be selected, and the developed theory is the same as 
that applying to the case of an ideal BS. In the special case of mixed, identical, and separable photons, there is a 
relationship between the visibility V of the HOM dip and the purity P of the input photons when T = R = 1/2
10,17,34–36

where ρ1, ρ2 are the density matrices of some quantum states of 1 and 2 photons, respectively. If we take into 
account the dependence of T and R on frequency, it is easy to see that the dependences of V = Trρ1ρ2 in 
Eq. (16) will no longer apply (see Eq. (11), where T and R are present). This leads to the important conclu-
sion that visibility V with significant fluctuations of the coefficients T and R cannot be used to judge quantum 
interference, and for ρ1 = ρ2 purity P of the input photons. Therefore, when conducting an experiment, it is 
necessary to not only choose T = R = 1/2 , but also minimize fluctuations. It should be added that fluctuations 
in the HOM interference had not been previously measured, because it was believed that the beam divider 
had strictly specified coefficients T and R during the experiment. In the case of HOM interference, the coef-
ficients T = R = 1/2 were selected, which actually correspond to T = R = 1/2 in the experiment. It is quite 
simple to measure fluctuations at T = R = 1/2 , for this it is necessary to measure P1,2 at �τ ≫ τc , because, 
P1,2 = 2T2 = 2R2 (this can be seen from Eq. (11) for R + T = 1 ). If the fluctuations are small, then P1,2 will 
go over to the known value P1,2(�τ ≫ τc) = 1/2 (half of the maximum possible). It is also easy to find vis-
ibility V in the case of identical photons at T = R = 1/2 using Eq. (16) and P1,2(�τ ≫ τc) = 2T2 = 2R2  , 
P1,2(�τ = 0) = 4(T2 − T

2
) = 4(R2 − R

2
) as Vid = 2R

2
/R2 − 1 = 2T

2
/T2 − 1.

A new physical quantity appears in the theory presented, which characterizes BS and its interaction with 
photons (Eq. 8) is � . This value depends on the characteristics of the incident photons: ω1,ω2,V1,V2, u1, u2 , 
and on the characteristics of BS itself N  . The frequency � can be estimated if we consider a pair of photons 
that is quite close in characteristics, i.e. V1 ≈ V2 ≈ V  , as well as ω1 ≈ ω2 ≈ ω0, u1u2 ≈ 1 and assume that the 
overlap of the photon wave packets in BS is ideal (all electrons of atoms with the number N  are in the volume 
V). With such an estimate, it is easy to obtain that �id = 4πn/ω0 , where n = N/V  is the electron concentra-
tion in BS ( �id is � in the case of identical photons). It should be added that for of BS, the frequency �id can be 
represented by the well-known value for plasma frequency ωp , then �id = ω2

p/ω0 , where ωp = 4πne2/me (in the 
CGS system). If we quantify �id for solid materials and the optical frequency ( ∼ 1015rad/s ) range, we get that 
�id ∼ (1014 − 1017)rad/s . Of course, the optical frequency is selected as an example, but is not a defining one. 
The frequency range where fluctuations must be taken into account is much wider. The higher the frequency, 
the greater the contribution made by the fluctuations of R and T. Obviously, a similar estimate is also valid for 
non-identical photons; the order in such an estimate will be preserved i.e. � ∼ �id . In reality, these � values 
have lower values due to non-ideal overlap of the wave packets of photons in the BS. It can be seen that these 
values of � are essential in the theory of HOM interference. For example, from the Eqs. (14) and (15) it can be 
seen that the dependence of T and R on frequencies is determined by the relation �s/� , considering the case of 
optical frequencies of photons with ω0 ∼ 1015rad/s , where �s is usually less by orders of magnitude than ω0 (e.g.1, 
the �s ≈ 2π/τc ≈ 1014rad/s value was obtained) we get what could be �s/� ∼ 1 (this is the second case with 
ω2 − ω1 ∼ � ). It can be seen from �id ∼ 1/ω0 that the developed theory is especially relevant in the case of the 
ultraviolet and X-ray frequency ranges, since �id becomes smaller. The frequency � for optical photons can be 
compared with the spectral line width, for example, for the photon source described in Eq. (13). In other words, 
compare � with σ1; σ2 (for simplicity σ ). Usually, for most photon sources, σ ≪ ω0 , and as we showed above 
� ∼ ω0 . This means that � ≫ σ , which leads to �g/� ≪ 1 , where �g ∼ σ . As mentioned above, if �g/� ≪ 1 
then our theory coincides with the standard HOM theory with constant coefficients R, T. This perfectly explains 
why in the case of BS in the form of prisms, you can usually use the standard HOM theory. In the case when 
� ∼ σ this is no longer the case. Such a case can be realized where the coupling � is quite small, for example, on 
BS in the form of coupled waveguides.

It should be added that the dependence on the frequencies of reflection and transmission coefficients cannot 
be represented as a function of the optical spectral filters, which are often used in experiments e.g.37. Indeed, when 
using frequency filters, the spectral amplitude (JSA) φ(ω1,ω2) is replaced by φ ′

(ω1,ω2) = f (ω1,ω2)φ(ω1,ω2) , 
where f (ω1,ω2) is the function optical spectral filters. As can be seen from Eq. (11), the coefficients R and T = 
1-R, with respect to φ(ω1,ω2) enter non symmetrically, which leads to the above statement. For example, in the 
case of identical photons, using optical spectral filters, the P1,2(�τ = 0) =

∫

|φ ′
(ω1,ω2)|2(T − R)2dω1dω2 , for 

R = T = 1/2 we get P1,2(�τ = 0) = 0 . This has fundamental differences from the case of the dependence on 
the frequencies of the R ant T coefficients, see Eq. (12).
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