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Abstract
Medical image interpretation is an essential task for the correct diagnosis of many diseases. Pathologists, radiologists, physi-
cians, and researchers rely heavily on medical images to perform diagnoses and develop new treatments. However, manual 
medical image analysis is tedious and time consuming, making it necessary to identify accurate automated methods. Deep 
learning—especially supervised deep learning—shows impressive performance in the classification, detection, and segmenta-
tion of medical images and has proven comparable in ability to humans. This survey aims to help researchers and practition-
ers of medical image analysis understand the key concepts and algorithms of supervised learning techniques. Specifically, 
this survey explains the performance metrics of supervised learning methods; summarizes the available medical datasets; 
studies the state-of-the-art supervised learning architectures for medical imaging processing, including convolutional neural 
networks (CNNs) and their corresponding algorithms, region-based CNNs and their variants, fully convolutional networks 
(FCN) and U-Net architecture; and discusses the trends and challenges in the application of supervised learning methods 
to medical image analysis. Supervised learning requires large labeled datasets to learn and achieve good performance, and 
data augmentation, transfer learning, and dropout techniques have widely been employed in medical image processing to 
overcome the lack of such datasets.

Keywords  Deep learning · Convolutional neural network (CNN) · Fast R-CNN · Faster R-CNN · FCN · Mask R-CNN · 
Medical image processing · Supervised learning · U-Net

Introduction

In many cases, accurate diagnoses of diseases rely heav-
ily on image acquisition systems and image interpretation. 
Image acquisition and reconstruction devices (e.g., com-
puted tomography (CT) and magnetic resonance imaging 
(MRI) scanners) have been improved in recent years, and 
they now support the collection of higher resolution medi-
cal images, such as radiological images (e.g., X-ray, CT, 
and MRI scans) and microscopic images (e.g., histological 

photos). Medical image interpretation requires diligence and 
expertise to extract useful information from large amounts of 
data [1, 2] For example, to diagnose cancer, pathologists use 
microscopes to look for changes in the cytology and archi-
tecture of the cell structure, and one sample may contain a 
million cells [3]. If the cells are small, even an experienced 
pathologist may misclassify cancer [4], and delayed or inac-
curate diagnosis increases the mortality rate [1, 5]. There-
fore, there is a great need for accurate automated medical 
image analysis, which requires efficient, effective machine 
learning algorithms.

Automated medical image analysis can reduce the burden 
on pathologists and radiologists; furthermore, it provides 
precise diagnoses and accelerates the diagnostic process. 
Machine learning and deep learning methods are widely 
used for automated medical image processing. Machine 
learning models learn from data, identify patterns, and 
make appropriate predictions or decisions based on those 
data. Machine learning has significantly impacted medical 
research and healthcare delivery. However, the performance 
of machine learning algorithms for image processing relies 
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heavily on feature extraction algorithms and requires an 
expert to select the most useful features for the task.

Machine learning algorithms process images in two 
stages. In the first stage, a hand-crafted feature extraction 
method extracts important features from the image. In the 
second stage, a classifier method is applied to classify the 
image further based on feature extraction. Thus, using 
machine learning algorithms in medical image analysis is 
tedious and time consuming [6, 7].

Deep learning algorithms have been proven to surpass 
machine learning algorithms in medical image analysis tasks 
[7–12]. Deep learning algorithms are capable of extracting 
image features automatically, which makes them more suit-
able for automated medical image analysis and able to pro-
vide accurate diagnoses [8, 11, 13, 14]. For image process-
ing, deep learning algorithms can be used to train models 
for automatic identification of objects by analyzing millions 
of images.

Deep learning can be classified as supervised and unsu-
pervised learning. The supervised learning has yielded 
exceptional results in medical image processing, with perfor-
mance comparable to that of humans [5, 8]. The supervised 
learning requires a ground truth dataset and prior knowledge 
about the output of the dataset. The goal of supervised learn-
ing is to understand the relationship and structure of the 
input dataset to predict the output accurately.

Unlike supervised learning, unsupervised learning allows 
direct learning of a data pattern without the need for labels 
[15]. The unsupervised learning understands and determines 
the inherent structure of a set of data points using statistical 
methods such as clustering algorithms and density estima-
tion [15]. Unsupervised learning algorithms can be used 
not only for classification, detection, and segmentation but 
also for other tasks such as compression, dimensionality 
reduction, denoising, super-resolution, and reconstruction 
of images.

To the best of our knowledge, no comprehensive survey 
on supervised learning techniques for medical image pro-
cessing has been published to date. This article provides a 
survey of the supervised learning techniques used in medi-
cal image processing tasks, including the available medical 
image datasets, evaluation matrices, state-of the-art architec-
tures, and applications of medical image processing.

We conducted an online search of peer-reviewed articles 
from IEEE, ACM, Science Direct, SpringerLink, Wiley, 
PubMed, and Scopus. We conducted the search using the 
following keywords: deep learning, medical image process-
ing tasks, the state-of-the-art of supervised learning tech-
niques, medical image dataset, performance metrics, and 
transfer learning. We included articles that were related to 
artificial intelligence in medical image analysis and super-
vised learning algorithms. We excluded articles that were: 
short (less than 3 pages), secondary or tertiary studies (such 
as literature reviews, surveys, and others), unavailable in 
full-text, or structured as a tutorial or editorial.

The rest of this paper is organized as follows. Section 2 
provides an overview of the medical image processing tasks 
of classification, detection, and segmentation. Section 3 
explores supervised learning architectures and quantitative 
evaluation metrics. Section 4 summarizes the available med-
ical image datasets and the supervised deep learning appli-
cation in medical images processing. Section 5 discusses 
the trends, accuracy, influencing factors, and challenges in 
applying supervised learning to medical image analysis. 
Finally, Sect. 6 concludes this paper.

Medical Image Processing Tasks

Medical image processing tasks can be grouped into classifi-
cation, detection and segmentation tasks (Fig. 1), which are 
usually performed manually by clinicians [5]. Deep learn-
ing can be leveraged to automate time-consuming medical 
image processing and to perform predictive modelling for 
detection of disease such as cancer cells.

In classification, known as a computer-aided diagnosis 
(CAD) [5], objects are categorized into groups or types 
based on specific features. Classification can be binary (e.g., 
benign or malignant) or multi-class (e.g., classifying a lesion 
into multiple types or degrees) [17]. For example, in the 
presence of cancer cells, classification can be performed 
to differentiate between normal and abnormal cells or to 
categorize the cancer cells into multiple grades (e.g., mild, 
moderate, or severe).

Detection involves finding the region of objects in an 
image by drawing bounding boxes. For example, tissue 

Fig. 1   Use of deep learning 
techniques for essential medical 
tasks: a classification, b detec-
tion, and c segmentation [16]
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heterogeneities (anomalous lesions) are detected by draw-
ing bounding boxes [5, 17].

Segmentation is important for precise delineation of 
organs or structures on medical images for accurate diag-
nosis, treatment, or surgical planning [5, 17]. Segmentation 
predicts pixel-wise masks of the objects in an image, labe-
ling them by drawing precise contours. Segmentation can be 
semantic or instance-based. Semantic segmentation is a type 
of pixel-level classification that generates only one mask 
for the whole image. It treats objects belonging to one class 
as a single instance, but it cannot differentiate individual 
instances. Instance segmentation combines object detec-
tion and semantic segmentation [18]—object detection to 
identify a region of interest (ROI) and semantic segmenta-
tion to predict a segmentation mask for each ROI—so it can 
separate individual instances. For example, in the presence 
of cancer cells, the purpose of segmentation is to delineate 
the cell shapes.

Supervised Deep Learning Architectures 
and Performance Metrics

This section discusses the performance metrics and state-of-
the-art supervised deep learning architectures.

Performance Metrics

When applying supervised learning algorithms for image 
processing tasks, performance metrics are needed to evalu-
ate the designed models [19]. Each task has specific metrics.

For classification tasks, the performance metrics count 
the numbers of correct and incorrect predictions based on 
the true positive (TP, a model that correctly predicts the 
positive class), true negative (TN, a model that correctly 
predicts the negative class), false positive (FP, a model that 
incorrectly predicts the positive class), and false negative 
(FN, which incorrectly predicts the negative class) approach 
to calculate accuracy, precision, recall, specificity and 
F-score [19].

The accuracy refers to the proportion of all correct pre-
dictions to the total number of predictions [19]. Top-N accu-
racy represents the rate at which the model correctly predicts 
the positive class in the top-N highest probabilities.

The precision is the proportion of true positive to the 
total number of positive predictions (either correct or incor-
rect predictions) [19]. The precision compute the model’s 
accuracy in classifying samples as positive. The precision 
concerns to correctly classify all positive class and avoid 
misclassifying negative samples as positive. For examples, 
the precision represents how many patients really have can-
cer from all the patients that are predicted as positive for 

cancer, and low precision means high false positives (clas-
sified many negative samples as positives).

The recall (known as sensitivity and true positive rate) 
is the ratio of true positive to the total number of positive 
samples [19]. The recall computes the model’s capability to 
classify positive samples. In contrast to precision, the recall 
considers how accurately classifying all positive samples, 
but it does not consider if a negative sample is incorrectly 
labeled. For examples, the recall shows how many can-
cer patients were predicted as positive from all the cancer 
patients, and high recall means the model predicts most or 
all the positive samples.

In contrast to recall, specificity is the ratio of negative 
samples that were classified as negatives [19]. The specific-
ity measures the model’s ability to classify negative samples. 
For examples, the specificity shows how many non-cancer 
patients were correctly predicted from all the non-cancer 
patients, and high specificity means the model predicts most 
or all the negative samples.

The F-score is a harmonic mean of recall and precision. A 
high value of the F-score indicates the model has high recall 
and precision and low FN and FP rate [3]

Classification performance can be described visually 
using a table (confusion matrix) or graph [receiver-operat-
ing characteristic (ROC) and area under the curve (AUC)]. 
A confusion matrix provides more details about the model 
performance by counting TP, TN, FP, and FN for each class. 
The ROC is a probability curve that shows the trade-off 
between TP rate (recall) and FP rate (1-specificity) at vari-
ous thresholds [19, 20].

The ROC draws the performance of a model without any 
consideration of distribution or class error costs [21]. A 
good model has a ROC curve that reaches the top left corner 
of the ROC curves, while a curve at the lower right corner 
or below the diagonal represents a poor classifier [22]. The 
area under the ROC graph is represented by the AUC, and it 
is used to compare different ROC curves. A good model has 
a large value of the AUC [21]. Figure 2 illustrates the ROC 
curve that compared different supervised deep learning algo-
rithms’ prediction. The inception-ResNetv2 [23] algorithm 
has the highest ROC curve of 76.60%, whereas the lowest 
ROC curve of 71.63% obtained from Inception-v3 [24]. This 
means the inception-ResNet-v2 algorithm outperforms other 
algorithms [22].

For object detection and segmentation tasks, the perfor-
mance metrics are a measure of the difference between the 
proposed and predicted segmentation masks, i.e., between 
the ground truth and prediction bounding boxes. The inter-
section over union (IoU), average precision (AP), mean AP 
(mAP), Jaccard index, Dice coefficient, and Hausdorff dis-
tance are used for detection and segmentation evaluation.

The IoU is used to compute the number of TP, FP, and FN 
for object detection by calculating the overlap ratio between 
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Fig. 2   ROC curves of different deep learning algorithms’ predictions 
[25]

Table 1   Performance metrics for various image processing tasks, including classification, detection, and segmentation

1 TP = True Positive, TN = True Negative, FP = False Positive, and FN = False Negative
2 IoU = Intersection over Union, Bp = Prediction bounding box, and Bp = Ground truth bounding box
3 AP11 = 11-point interpolation, Pinterp(r) = precision replaced with the maximum precision whose recall value is ≥ r where P(r˜) is the precision 
at each recall level r
4 All point interpolation where n is the number of all recall levels, and Pinterp(rn+1) is the precision replaced with the maximum precision whose 
recall value is ≥ rn+1
5 Mean Average Precision where N is the number of classes and (APi) is AP of i class
6 |G ∩ S| is the area of intersection between a set of pixels for ground truth (G) and a set of pixel for prediction segmentation (S), and |G ∪ S| is the 
area of union between (G) and (S)
7 GtoS is the average Hausdorff distance from ground truth to segmentation where StoG is the average Hausdorff distance from segmentation to 
ground truth

Classification Detection Segmentation

Accuracy =
(TP+TN)

(TP+TN+FP+FN)
 1[19]

Precision =
TP

(TP+FP)
 [19]

Recall =
TP

(TP+FN)
 [19]

Specif icity =
TN

(TN+FP)
 [19]

F − score =
2×(Precision×Recall)

(Precision+Recall)
 [19]

IoU =
area(Bp

⋂
Bgt)

area(Bp

⋃
Bgt) 2 [27]

AP11
3 = 1

11

∑
r�{0,0.1,..,1} pinterp(r) [27]

Where  pinterp(r) = max
r̃≥r

p(r̃)  [27]

AP11
4 =

∑
n(rn+1 − rn)pinterp

�
rn+1

�
 [27]

Where  pinterp
(
rn+1

)
= max

∼
rn+1≥r

p(r̃)  [27]

mAP5 = 1

N

∑N

i=1
APi [27]

Jaccardindex =
�G⋂

S�
�G⋃

S� 6 [9]

DiceCoeff icient =
2∗�G⋂

S�
�G�+�S�  [9]

AverageHausdorffDistance =
GtoS+StoG

G+S
∕2 7 [31]

the ground truth and prediction bounding boxes based on a 
threshold [26, 27]. For instance, if the threshold is 0.5, any 
bounding boxes with an IoU > 0.5 are TP. Otherwise, they 
are counted as FP. However, the TN does not use in object 
detection due to the endless number of bounding boxes that 
should not be predicted [27].

Average Precision (AP) is the most common metrics used 
for evaluating object detection [27]. AP is calculated the 

area under the precision and recall curves (PRC) at various 
levels. PRC is similar to ROC, but it describes the trade-off 
between precision and recall [21, 27]. However, the PRC is 
a zigzag curve, making estimating the AUC more challeng-
ing [27]. To remove the zigzag curve, 11-point interpolation 
and all-point interpolation methods are used to calculate the 
AP [27].

11-point interpolation has summarized the curve of pre-
cision and recall by calculating the average of the maxi-
mum precision values at a set of 11 recall levels. Where the 
all-point interpolation would be considered all recall levels 
instead of just including 11 levels [27]. The equation of both 
interpolations is in Table 1.

AP is computed individually for every class. The mean 
AP (mAP) is an object detection metric that is used to cal-
culate the mean of the AP over all classes [27]. mAP with 
high value means the best detection model.

The Jaccard index, Dice coefficient, and Hausdorff dis-
tance are the most applied evaluation metrics for medical 
image segmentation, and they are calculated from the IoU 
at the pixel level [28–30]. Jaccard Index and dice coeffi-
cient are used to measure the similarity between the ground 
truth and predicated segmentation mask with a value range 
between 0 and 1 [30].

Jaccard index is a proportion of the number of similarity 
pixels to the total number of both similarity and dissimilarity 
pixels [28]. The high value of Jaccard and dice coefficient 
indices represents a good segmentation model [30].
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The Hausdorff distance is the most common metric 
applied for medical image segmentation [31]. It is compared 
the ground truth images with the predicated segmentation 
result, and it ranks different segmentation results from best 
to worst [31]. Table 1 shows the mathematical formulations 
of the performance metrics for classification, detection, and 
segmentation.

Supervised Deep Learning Architectures

Convolutional Neural Network

Convolutional neural networks (CNNs) are the most com-
mon architectures used in supervised deep learning tech-
niques. CNNs are the state-of the-art architectures for clas-
sification, detection, and segmentation [2, 8, 11, 13, 32, 33] 
and surpass human performance in image classification [5, 
8]. The reasons for the success of CNNs in various image 
processing tasks are its requirement for fewer parameters 
than needed in a dense network, its ability to extract features 
automatically from a large amount of data, and its character-
istics of local connectivity and parameter sharing.

Local connectivity means that each hidden unit is con-
nected to a patch (subregion) of an input image called a 
receptive field. Parameter sharing refers to a patch sharing a 
set of weights (filter or kernel). In contrast, a dense network 
requires a weight for each unit, and each weight in a layer 
is connected to each neuron in a sequential layer; in other 
words, it is fully connected. This configuration leads to a 
high number of parameters and high computational cost due 
to the calculations of the linear activations of the hidden 
layers. Thus, CNNs reduce both the memory storage and 
parameter requirements compared to dense networks, lead-
ing to increased network efficiency.

A CNN consists of a convolutional layer, rectified linear 
activation function, normalization unit, pooling layer, drop-
out unit, and fully connected layer (Fig. 3).

Convolutional Layer Unit  The convolutional layer is the 
central component of a CNN and can automatically extract 
important features from an input image by applying a con-
volution operation. The convolution operation is a linear 
operation that computes the dot product of a set of weights 
(filter or kernel) and receptive fields to produce an output 
(feature map). The convolutional layer can have more than 
one filter and can produce more than one feature map.

In contrast to a linear neural network, the set of weights in 
a CNN is a multidimensional array (2D for grayscale images 
and 3D for color images) known as a filter or kernel, and 
each filter represents a specific feature. The filter is smaller 
than the input data for repetition on each overlapping filter-
sized patch (receptive field).

The filter starts at the top left of the input data and shifts 
horizontally to the right by the stride length. When the filter 
reaches the top right of the input data, it moves down verti-
cally by the same stride length and starts over from the left 
side of the input data. The process is repeated until the entire 
image is covered and the feature map is computed. Figure 4 
illustrates a convolution operation.

Interaction of the filter with the input image creates a fea-
ture map that is smaller than the input image. For example, 
a filter of size 3 × 3 can reduce an input image of 64 pixels 
to a feature map with 36 pixels (Fig. 4). Padding is a means 
of increasing the size of the feature map; it adds extra pixels 
of value zero around the perimeter of the input image and, 
consequently, each pixel in the image gets a chance to be at 
the center of the filter.

A CNN can have more than one convolutional layer 
stacked together to produce hierarchical features. The out-
put of the first convolutional layer is concatenated with low-
level learned features extracted from a second convolutional 
layer. The combination of low-level features produces mul-
tifeatures that can express the shape. The process continues 
until the very deep layers are more class specific, such as 
faces or animals. Thus, the first convolutional layers extract 
generic functions such as lines, dots, corners, and so on, and 

Fig. 3   CNN architecture
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the deeper layers extract high-level features such as shapes, 
faces, and the entire object [5, 8, 32, 34–38].

Rectified Linear Activation Function Unit Layer  The recti-
fied linear unit (ReLU) layer is the second CNN layer. It was 
introduced by Krizhevsky et al. [39] in 2012 and is an acti-
vation function that sets all negative values to zero. Math-
ematically, it is defined as

The ReLU layer is used to avoid the vanishing gradient 
problem [39], in which a model is unable to propagate use-
ful information from the final layer to the initial layer. An 
S-shaped activation function (e.g., sigmoid and tanh) trans-
fers an input value into a range, e.g., (0, 1) for sigmoid or 
(− 1, 1) for tanh. When the weight is updated in a deeper 

(1)f (x) = max (0, x).

network with an S-shaped function, the derivation of the 
S-shaped function becomes quite small; thus, the network 
is unable to update and converge weights to the first layers.

Normalization Unit  Normalization scales down the activa-
tion features in the limited range (e.g., 0 to 1). It is used 
to restrict the unbound activation functions (e.g., ReLU) 
from increasing the output layers value, and to accelerate 
the learning process of CNN. There are many normaliza-
tion techniques such as local response normalization [39], 
batch normalization [40], weight normalization [41], Layer 
normalization [42], group normalization, and weight stand-
ardization [43]. The first two are the most adapted in deep 
learning [38, 39, 44] and in medical images processing [2, 
6, 11, 13, 34, 35].

Local response normalization was inspired by the neuro-
biology concept of lateral inhabitant that means an excited 
neuron inhibits the activity of its neighbors. Local response 
normalization is applied for local contrast enhancement 
using the local maximum pixel value as excitation activa-
tion for the subsequent layers. Local response normalization 
can be applied after the activation function. Mathematically, 
it is defined as:

where i represents the output of filter (feature map). ax,y is 
the pixel value of the feature map before normalization at 
(x,y) position. N represents the total number of feature maps. 
n is the adjacent length. k, α, and β are hyperparameters.

Batch normalization reduces internal covariate shift by 
standardizing the internal layer’s input for each mini-batch. 
Internal covariate shift refers to the change of the distribu-
tion of the input features with the weight updated in the 
prior layer during the training time. Internal covariate shift 
slows the convergency of deep learning by requiring small 
rate learning (a hyperparameter that determines the amount 
of weights that are updated during training time), cautious 
initialization, and difficult to train deep learning with satu-
rating nonlinearities function [40].

Batch normalization scales down each minibatch based 
on the standard normal distribution, then two trainable 
parameters are applied for scaling and shifting the normal-
ized value. The batch normalization algorithm is represented 
in Fig. 5. Even though the distributions of the input feature 
are changed during training time, they will be changed in the 
same mean and variance with batch normalization.

Batch normalization can be applied after each convolu-
tion layer and before activation function.

(2)
bi
x,y

=
ai
x,y

⎛
⎜
⎜
⎝
K + �

min

�
N−1,

i+n

2

�

∑

j=max

�
0,

i−n

2

�

�
a
j
x,y

�2
⎞
⎟
⎟
⎠

�
,

Fig. 4   Convolution layer extracts features from an input image by cal-
culating the dot product of a 3 × 3 filter and an 8 × 8 input image to 
produce a 6 × 6 feature map. The filter represents a vertical line fea-
ture
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Pooling Layer  After the ReLU layer, there comes pooling 
layer, which reduces the spatial size of the input representa-
tion [5, 45]. Feature maps record the precise locations of the 
input image features, so any shift in the location of a feature 
leads to a different feature representation. The pooling layer 
reduces the spatial size and allows the feature representation 
to be more invariant to translation, enabling the recognition 
of objects more than their precise locations [5, 45].

The pooling layer applies a pooling operation, which is 
like a convolution operation [45]. It computes the dot prod-
uct of a pooling filter and a fixed-shape window of feature 
maps known as a pooling window. The pooling filter shifts 
from the top left of the feature map to the right and from top 
to bottom by the stride length, covering the entire feature 
map. Unlike a convolution filter, a pooling filter does not 
have parameters. Pooling operations can employ average, 
max, and global pooling.

Average pooling computes the average value of the ele-
ments in the pooling window, whereas max pooling calcu-
lates the maximum value of the elements in the pooling win-
dow. Global pooling summarizes an entire feature map in a 
single value (the strongest activation value) [5, 45].

Dropout Unit  Dropout [46] is a regularization technique 
used to solve the overfitting problem by reducing the 
model’s complexity. An overfitting problem occurs when 
training a complex supervised deep learning model (such 
as a CNN) with an unsuitable dataset [11, 34]. Overfitting 
affects model generalization and performance by learning 
noise from the training dataset. Dropout randomly removes 
some activation nodes at each training iteration based on the 
dropout ratio. These dropped out nodes are blocked in the 
forward pass and backpropagation.

Fully Connected Layer  The last CNN layer is the fully con-
nected layer, which is used to predict a label for an image. 
The fully connected layer is a linear layer [5, 47]. A linear 
layer consists of an input layer, one or more hidden layers, 

and an output layer. All linear layers are fully connected; 
specifically, each neuron in a layer is connected with each 
neuron in the subsequent layer. Each linear layer is calcu-
lated using the following formula:

where g is an activation function (e.g., ReLU), w is a weight 
vector, and x is an input vector.

The output layer of the fully connected layer applies an 
activation function (e.g., softmax) to compute a probability 
score (a number ranging from 0 to 1) for each class label.

Pre‑trained Convolutional Neural Network  CNNs have 
widely been used in the ImageNet Large Scale Visual Rec-
ognition Challenge (ILSVRC) [48], especially after the 
impressive results achieved by LeNet-5 [49] in handwriting 
recognition. The ILSVRC is an annual competition for com-
puter vision tasks that uses a subset of ImageNet [50]—a 
large public dataset with more than 14 million images and 
21,000 classes. The ILSVRC facilitates the development 
of different versions of CNNs known as pretrained CNNs. 
CNNs and their variations became state-of-the art technolo-
gies for image processing from 2012 to 2015 [48]. Conse-
quently, these approaches have been adopted for many med-
ical image processing tasks.

The LeNet-5 architecture, which first demonstrated the 
feasibility of CNNs, was introduced by LeCun et al. [49] in 
1998. LeNet-5 utilized the CNN architecture for handwriting 
recognition, achieving a 99.2% classification accuracy. The 
input of LeNet-5 consists of grayscale images. LeNet-5 has 
seven layers: the first four layers are for the feature extractor 
block, and the next three are for the classifier block.

The feature extractor block consists of a convolutional 
layer, a tanh activation function, and an average pooling 
layer that are repeated twice. The convolutional layer has 
a 5 × 5 filter with a stride of 1. The number of filters starts 
from 6 and increases to 16 with the network depth. The aver-
age pooling is non-overlapping (the stride of the pooling 
operation is equal to the pooling filter, e.g., 2 × 2). The last 
three layers of LeNet-5 are fully connected layers for inter-
pretation and final prediction.

AlexNet was designed by Krizhevsky et al. [39] in 2012 
to solve the task of classifying 1.5 million images into 1000 
classes at ILSVRC-2010. AlexNet follows the design of 
LeNet-5 with some differences: AlexNet increases the num-
ber of layers to eight, the first five being for feature extrac-
tion and the last three for classification.

AlexNet introduces some novel features that have become 
essential components in CNN architecture. It was the first 
architecture to apply a ReLU function after each convo-
lutional layer instead of S-shaped functions such as tanh. 
AlexNet replaces the non-overlapping average pooling in 

(3)g(wx + bias),

Fig. 5   Batch Normalization’s algorithm [40]
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LeNet-5 with overlapping max pooling (the stride of the 
pooling operation is smaller than the pooling filter, e.g., 
3 × 2). Overlapping max pooling reduces the top-one error 
rate (the rate at which the model gives the highest score to 
the correct class) by 0.4% and the top-five error rate (the 
rate at which the model correctly predicts the positive class 
to be among the classes with the five highest probabilities) 
by 0.3% compared to those obtained by non-overlapping 
pooling.

In addition, AlexNet introduces a pattern of stacking 
convolutional layers, where the output of one convolutional 
layer is used as input for the following convolutional layer 
with no pooling layer between them, to provide more dis-
tinctive feature maps by applying a ReLU layer after each 
convolutional layer. AlexNet increases the number of filters 
with the network depth, from 96 to 256, 384, 384, and 256. 
The filter size starts from 11 × 11 and decreases to 5 × 5 and 
3 × 3 in the depth layer.

Furthermore, AlexNet applies local response normaliza-
tion after ReLU in the first two convolutional layer, and as a 
result, the top-1 and top-5 were reduced by 1.4% and 1.2%, 
respectively. AlexNet uses dropout regularization and data 
augmentation to reduce the overfitting problem and improve 
the performance accuracy. Data augmentation techniques 
create a transformed version of the original images to 
expand the training dataset without the need to collect new 
data. AlexNet ranked first at ILSVRC-2012, achieving a top-
five test error rate of 15.3%, whereas the second ranking 
approach yielded 26.2%.

ZFNet was proposed by Zeiler and Fergus [38] in 2014 
for ImageNet classification. ZFNet is similar to AlexNet, 
the only difference is the size of the filter and stride. ZFNet 
decreases the filter size and stride of the two first convolu-
tional layers from 11 × 11 with stride 4 to 7 × 7 with stride 
2. Consequently, ZFNet can obtain more distinctive feature 
maps without aliasing, leading to classification accuracy 
improvement by 1.6% in terms of the top-five test error rate. 
ZFNet proved to be the state-of-the-art approach at ILSVRC 
2013 for ImageNet classification, achieving a top-five test 
error rate of 14.8%.

The Visual Geometry Group (VGG) was designed by 
Simonyan and Zisserman [51] in 2014 for classification and 
localization tasks. The VGG stretches the depth of the CNN 
to 16 (VGG-16) and 19 (VGG-19) convolutional layers, 
approximately twice the number of layers in AlexNet.

The VGG applies a small receptive field (3 × 3 and 1 × 1 
with a stride of 1 pixel). The filter number starts from 64 and 
then increases by a factor of 2. The VGG utilizes stacked 
convolutional layers. Unlike AlexNet, the VGG uses non-
overlapping max pooling with a size of 2 × 2 and stride of 
2. The VGG approach achieved a top-five test rate error of 
7.32%. VGG is illustrated in Fig. 6.

GoogleNet [37] was designed for classification and 
detection tasks. GoogleNet increases the depth and width 
of the CNN while keeping the computational budget stable 
(12 × fewer parameters than AlexNet). The key innovation 
of GoogleNet is the inception module, which replaces the 
fully connected convolutional layer with a sparsely con-
nected layer. GoogleNet has 22 convolutional layers, or 100 
layers including the pooling layers, inception modules, and 
auxiliary classifiers.

A naïve inception module is a block of three parallel con-
volutional layers and a max pooling layer. The convolutional 
layers have various sizes corresponding to the receptive 
fields (1 × 1, 3 × 3, and 5 × 5), and the max pooling layer is 
3 × 3. The outputs of each convolutional layer and the max 
pooling layer are concatenated to a single vector used as 
input for the next stage. However, the drawback of a naïve 
inception module is that convolution operation calculation 
becomes quite expensive with a larger filter size (e.g., 3 or 
5), especially with stacked inception modules. Therefore, the 
1 × 1 convolutional layer is applied before the 3 × 3 and 5 × 5 
convolutional layers for dimension reduction. Figure 7 illus-
trates the inception module, where (a) illustrates the naïve 
inception module and (b) depicts the inception module with 
dimension reduction.

GoogleNet connects an auxiliary classifier to the interme-
diate layers. The auxiliary classifier is used to increase the 
discriminative power of the lower layers, solve the vanish-
ing gradient problem, and provide extra regularization. The 
auxiliary classifier has five layers:

1.	 Non-overlapping average pooling layer (5 × 3).
2.	 1 × 1 convolutional layer for dimensional reduction with 

128 channels and ReLU.
3.	 Fully connected layer with 1024 units and ReLU.
4.	 Dropout layer with a ratio of 0.7.

Fig. 6   Architectures of VGG-16 and VGG-19 [51]
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5.	 Softmax layer to predict 1000 classes (the same number 
of classes that the main classifier predicts).

GoogleNet applies local response normalization after the 
first and third convolutional layer. Unlike the previous net-
work architecture, GoogleNet replaces the fully connected 
layers with average pooling layers. Therefore, its top-one 
test error rate is improved by 0.6%. It surpassed the VGG at 
ILSVRC-14 in the classification tasks, with a top-five test 
error rate of 6.67%, whereas the VGG yielded 7.32%.

The deep residual network (ResNet) was proposed by 
He et al. [44] in 2016 for classification, detection, localiza-
tion, and segmentation. ResNet introduces a residual block 
to solve the vanishing gradient problem that comes from 
increasing the network depth. The residual mapping does 
not require extra parameters; therefore, ResNet is eight 

times deeper than VGG and has lower complexity (fewer 
parameters).

The residual block (Fig. 8) is designed based on skip con-
nection, where the input into the residual block is fused with 
its output. The residual block consists of two 3 × 3 convo-
lutional layers, and each one is followed by a ReLU layer. 
Using a 3 × 3 convolution layer can increase the computa-
tional complexity by stacking more residual blocks. Conse-
quently, ResNet adds 1 × 1 convolutional layers before and 
after the 3 × 3 convolutional layer for dimension reduction 
and restoration.

ResNet uses batch normalization after each convolutional 
layer and before ReLU.

ResNet secured first place at the ILSRVC 2015 competi-
tion for classification, detection, localization, and segmen-
tation. It achieved a top-five test error rate of 3.57%, and 
it improved object detection on the COCO dataset [52] by 
28%.

CNN with Transfer Learning  Training a complex supervised 
deep learning model (such as a CNN) requires numerous 
labeled samples for good performance and generalization 
[2, 11, 32–34], and creating a high quality dataset with a 
massive number of samples is expensive and complex [37] 
especially if it requires human intervention for labeling as in 
the cases of the medical dataset.

Transfer learning method helps train a complex model 
with a small dataset. Transfer learning transfers knowledge 
from source tasks to target tasks. For example, knowledge 
obtained from a pretrained model developed to recognize an 
animal organ can be used to classify a human organ. Trans-
fer learning initializes a new model by reusing the weights 
of pretrained models that were developed to solve related 
tasks. Figure 9 shows the differences between traditional 
deep learning and transfer learning.

If the two tasks are similar, then the deeper layer of the 
pretrained network can be used as the starting point for the 
new model. If the two tasks are different, then the weights 
of the early layers of the pretrained network can be fine-
tuned by refreezing the deeper layers and re-training them 
for a new task. Initializing a model with the weights from 
the pretrained model would improve the performance and 
decrease the training time [7, 34, 35, 53].

Region‑Based Convolutional Neural Network

Girshick et al. [54] proposed the R-CNN for object localiza-
tion, detection, and segmentation.

An R-CNN combines the strength of a CNN, the pro-
posed region method, and a support vector machine (SVM). 
The proposed region method—a selective search—gener-
ates candidate region boxes, and the CNN extracts features 
from each box. Then, the SVM predicts a class and draws a 

Fig. 7   GoogleNet inception module [37]. a Naïve inception model. b 
Inception module with dimension reduction

Fig. 8   Residual block architecture [44]. a Residual block. b Residual 
block with dimension reduction
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bounding box for each candidate object. Figure 10 illustrates 
the R-CNN architecture.

The R-CNN approach achieved a mean average precision 
(mAP) of 53.3% at Pascal VOC 2012 [26] and 31.4% for 
the detection task at ILSVRC-2013. However, R-CNNs are 
slow and expensive because a CNN is run for each candidate 
region [56]. For example, if the region proposed method 
generates 2000 candidate boxes, then the CNN runs 2000 
times to extract features of each box. As such, RCNNs 
require large amounts of memory to store feature maps.

Fast R‑CNN  Girshick [56] introduced the fast region-based 
convolutional neural network (Fast R-CNN) to improve the 
R-CNN speed. The input into Fast RCNN consists of an 
image and a set of proposed regions generated by a selective 
search (Fig. 11). Fast R-CNN applies one CNN to extract 
image features. After the CNN computes the feature maps, 
Fast R-CNN uses the ROI pooling layer to convert the size 
of each proposed region into a fixed length. The last layer 
of Fast R-CNN is a fully connected layer that divides into 
two branches for classification and bounding box predic-
tions. Fast R-CNNs are faster than R-CNNs and decrease 
the training time from 83 to 9.5 h. Fast R-CNN improved 
the object detection by 16.7% in terms of the mAP at Pascal 

VOC 2012. However, Fast R-CNNs rely heavily on selective 
searching, which takes up most of the training time [57].

Faster R‑CNN  Ren et  al. [57] proposed the faster region-
based convolutional neural network (Faster R-CNN) to 
improve both the training speed and detection accuracy. 

Fig. 9   The difference between: a traditional learning and b transfer learning [53]

Fig. 10   R-CNN architecture 
[55]

Fig. 11   Fast R-CNN architecture [55]
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Faster R-CNN is similar to Fast RCNN but uses a region 
proposed network (RPN), which is a fully convolutional 
network (FCN) [58], instead of a selective search to gener-
ate proposed regions (Fig.  12). Unlike a selective search, 
an RPN is applied to feature maps and reduces the number 
of proposed regions by removing similar generated regions. 
An RPN generates anchor boxes (different sizes of boxes) 
and then predicts a binary classification (object or back-
ground) and bounding box for each anchor box. The RPN 
subsequently applies non-maximum suppression to remove 
similar bounding boxes. Thus, Faster RCNN achieved a 
mAP of 75% in the detection task at Pascal VOC 2012.

Mask R‑CNN  He et  al. [59] introduced Mask R-CNN for 
instance segmentation, which is designed to detect an object 
while simultaneously generating a segmentation mask. 
Mask R-CNN has a mask branch added in parallel with 
Faster R-CNN (Fig. 13).

Fully Convolutional Network

Long et al. [58] proposed the FCN for semantic segmenta-
tion. An FCN is a CNN that replaces all dense layers with 
convolution layers and is divided into two parts: downsam-
pling and upsampling paths. The downsampling path is a 
CNN (convolution layers, ReLU, and pooling layers) for fea-
ture extraction. The upsampling path contains transposed 
convolution layers (deconvolution) for recovering the spa-
tial information of feature maps. The FCN utilizes the skip 
connection to preserve the spatial information in the early 
layers (Fig. 14). FCNs became state-of-the-art technology 
at PASCAL VOC2012 for segmentation tasks by achieving 
a mean IoU of 62.2%.

Fig. 12   Faster R-CNN architecture [55]

Fig. 13   Mask R-CNN architecture [55]

Fig. 14   FCN architecture [58]
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U‑Net  Ronneberger et  al. [60] designed U-Net for bio-
medical semantic segmentation. U-Net has two symmetri-
cal paths (contracting and expanding), creating a U-shape. 
Figure  15 shows the U-Net architecture. The contraction 
(downsampling) path is a traditional CNN for feature extrac-
tion. The expanding path (upsampling) is used to preserve 
spatial information. Both paths are connected by skip con-
nection to preserve the spatial features from the early layers. 
U-Net is fast, taking less than 1 s to segment an image with 
dimensions of 512 × 512. U-Net proved to be a state-of-the-
art method at the International Symposium on Biomedical 
Imaging (ISBI) 2015 [61] for 2D image segmentation by 
achieving 92% and 77% average IoUs on PhC-U373 and 
DIC-Hela datasets, respectively.

Medical Image Processing: Datasets 
and Applications

This section explores the available medical image datasets, 
and the supervised deep learning application in medical 
image processing.

Available Medical Image Datasets

A medical image dataset is the first component necessary to 
build an accurate automated diagnosis system using super-
vised learning. The dataset consists of inputs known as 
examples or instances. Each example has several attributes 
or features that are used to predict the desired output (target 
or label). For medical image datasets, the inputs are medi-
cal images, and the outputs are the diagnosis results (e.g., 

normal or abnormal). However, high-quality labeled medical 
image datasets are lack [5, 32, 34, 62–65], and the majority 
of publicly accessible medical image datasets have a small 
number of images [5].

Table 2 provides a list of the available medical image 
datasets for various diseases along with their download 
links, and some of these datasets were created for the medi-
cal tasks challenges. Table 3 summarizes the medical task 
challenges with their dataset.

Supervised Deep Learning Application in Medical 
Image Processing

Supervised Deep Learning Networks have been adopted 
to develop automated diagnosis systems for many medical 
image processing tasks for various diseases.

Brain

CNN and its versions were adopted for brain disease. Lu 
et al. [6] applied the AlexNet model for pathological brain 
detection in MRI images. They applied data augmentation 
and transfer learning to avoid overfitting. The model was 
trained for 2 min 17 s and achieved 100% accuracy. Toğaçar 
et al. [83] proposed a novel CNN with hypercolumn tech-
niques and a feature selection approach for brain tumor MRI 
classification. First, they concatenated the features that are 
extracted by both pretrained AlexNet and VGG-16. They 
used hypercolumn techniques (instance segmentation) to 
retain the spatial information at the early layers of CNN, 
which improves the classification accuracy. They applied 
the recursive feature elimination (RFE) to select the most 

Fig. 15   U-Net architecture [60]
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Table 2   Medical image datasets for various diseases

Datasets Type of image Number of cases Number of images Download links

Brain datasets
IXI dataset [66] MRI – 600 https://​brain-​devel​opment.​org/​ixi-​

datas​et/
OASIS-3 [67] MRI 1000 +  2000 +  https://​www.​oasis-​brains.​org/#​data
Multimodal Brain Tumor Image 

Segmentation Benchmark [68]
MRI 2000 8000 Multimodal Brain Tumor Seg-

mentation Challenge 2020: Data 
| CBICA | Perelman School of 
Medicine at the University of 
Pennsylvania (upenn.edu)

Breast cancer datasets
BancoWeb LAPIMO database 

[69, 70]
Mammography 320 1473 http://​lapimo.​sel.​eesc.​usp.​br/​banco​

web/
Breast Cancer Histopathological 

Database (BreakHis) [70]
Microscopic 82 9109 https://​web.​inf.​ufpr.​br/​vri/​datab​ases/​

breast-​cancer-​histo​patho​logic​al-​
datab​ase-​break​his/

Breast Cancer Wisconsin Dataset 
[70]

Mammography – 569 https://​archi​ve.​ics.​uci.​edu/​ml/​datas​
ets/​Breast+​Cancer+​Wisco​nsin+​
(Diagn​ostic)

INbreast dataset [69, 70] Mammography 115 410 http://​medic​alres​earch.​inesc​porto.​
pt/​breas​trese​arch/​index.​php/​Get_​
INbre​ast_​Datab​ase

Mammographic Image Analysis 
Society (MIAS) [69, 71]

Mammography 161 322 https://​www.​mammo​image.​org/​
datab​ases/

Digital Database for Screening 
Mammography (DDSM) [66]

Mammography 2620 10,480 http://​www.​eng.​usf.​edu/​cvprg/​
Mammo​graphy/​Datab​ase.​html

Cervical cancer datasets
Intel and MobileODT on Kaggle 

[72]
Cervical cancer screening – 1480 https://​www.​kaggle.​com/c/​intel-​

mobil​eodt-​cervi​cal-​cancer-​scree​
ning/​data

ISBI Challenge Database [73] Cytology image – 16 real EDF image 
and 945 synthetic 
images

https://​cs.​adela​ide.​edu.​au/​~carne​iro/​
isbi14_​chall​enge/​datas​et.​html

PAP Smear Benchmark Database 
[73]

Microscopic – 917 http://​mde-​lab.​aegean.​gr/​downl​oads

SIPaKMeD Database [73] Pap smear slides – 4049 https://​www.​cs.​uoi.​gr/​~marina/​sipak​
med.​html

Diabetic retinopathy datasets
DiaretDB0 [74] Fundus – 130 https://​www.​it.​lut.​fi/​proje​ct/​image​

ret/​diare​tdb0/
DiaretDB1 [74] Fundus – 89 http://​www2.​it.​lut.​fi/​proje​ct/​image​

ret/​diare​tdb1/
E-Ophtha [74] Fundus – 381 http://​www.​adcis.​net/​en/​third-​

party/e-​ophtha/
Kaggle DR Challenge [74] Fundus – 88,702 https://​www.​kaggle.​com/c/​diabe​tic-​

retin​opathy-​detec​tion/​data
Messidor [74] Fundus – 1200 http://​www.​adcis.​net/​en/​third-​party/​

messi​dor/
Messidor-2 [74] Fundus – 1784 http://​www.​adcis.​net/​en/​third-​party/​

messi​dor2/
Lung cancer datasets
Lung Image Database Consortium 

and Image Database (LIDC/
IDRI) [75]

CT 1018 7371 https://​wiki.​cance​rimag​ingar​chive.​
net/​displ​ay/​Public/​LIDC-​IDRI

National Lung Screening Trial 
(NLST) [75]

CT 53,454 75,000 https://​cdas.​cancer.​gov/​datas​ets/​nlst/

https://brain-development.org/ixi-dataset/
https://brain-development.org/ixi-dataset/
https://www.oasis-brains.org/#data
http://lapimo.sel.eesc.usp.br/bancoweb/
http://lapimo.sel.eesc.usp.br/bancoweb/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic
http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database
http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database
http://medicalresearch.inescporto.pt/breastresearch/index.php/Get_INbreast_Database
https://www.mammoimage.org/databases/
https://www.mammoimage.org/databases/
http://www.eng.usf.edu/cvprg/Mammography/Database.html
http://www.eng.usf.edu/cvprg/Mammography/Database.html
https://www.kaggle.com/c/intel-mobileodt-cervical-cancer-screening/data
https://www.kaggle.com/c/intel-mobileodt-cervical-cancer-screening/data
https://www.kaggle.com/c/intel-mobileodt-cervical-cancer-screening/data
https://cs.adelaide.edu.au/~carneiro/isbi14_challenge/dataset.html
https://cs.adelaide.edu.au/~carneiro/isbi14_challenge/dataset.html
http://mde-lab.aegean.gr/downloads
https://www.cs.uoi.gr/~marina/sipakmed.html
https://www.cs.uoi.gr/~marina/sipakmed.html
https://www.it.lut.fi/project/imageret/diaretdb0/
https://www.it.lut.fi/project/imageret/diaretdb0/
http://www2.it.lut.fi/project/imageret/diaretdb1/
http://www2.it.lut.fi/project/imageret/diaretdb1/
http://www.adcis.net/en/third-party/e-ophtha/
http://www.adcis.net/en/third-party/e-ophtha/
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
https://www.kaggle.com/c/diabetic-retinopathy-detection/data
http://www.adcis.net/en/third-party/messidor/
http://www.adcis.net/en/third-party/messidor/
http://www.adcis.net/en/third-party/messidor2/
http://www.adcis.net/en/third-party/messidor2/
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
https://cdas.cancer.gov/datasets/nlst/
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effective deep features. The support vector machine (SVM) 
was used to classify brain tumor MRIs as either benign or 
malignant. They used imbalance dataset (155 tumor and 98 
normal) in this study. To overcome this problem, they uti-
lized data augmentation to increase the number of normal 
samples to 155. Consequently, the proposed model yields an 
accuracy, sensitivity, and specificity of 96.77%, 97.83%, and 
95.74%, respectively.

Ozyurt et  al. [84] used CNN with the neutrosophy 
approach for brain tumor classification. The neutrosophic 
method was used to segment MRI brain images. Further, 
the AlexNet was applied to extract features from segmented 
images. SVM and k-nearest neighbors (KNN) were utilized 
to classify the extraction features as benign and malig-
nant. The SVM classifier has the best performance, and it 
yields an accuracy of 95.62%, a sensitivity of 96.25%, and 
a specificity of 95%, whereas the KNN yields an accuracy, 
sensitivity, and specificity of 90.62%, 90%, and 91.25%, 
respectively.

Swati et al. [85] developed a model based on a pre-trained 
VGG19 and transfer learning for multiclass brain tumor clas-
sification on MRI images. The transfer learning was used to 

solve the overfitting problem that is associated with training 
VGG19 with small dataset. The transfer learning approach 
used in this study is a blockwise fine-tuning which divides 
VGG19 into six blocks (B1–B6) based on pooling layers. 
Further, they fine-tuned the last block (B6) of VGG19, 
and incrementally fine-tuned the early blocks of VGG19 
to investigate the performance of shallow fine-tuning and 
deep fine-tuning. They found that the performance improved 
with the gradual fine-tuning of the early blocks of VGG19. 
Thus, the deep fine-tuning from B1 to B6 yielded the best 
performance (94.82%) while the shallow fine-tuning B6 has 
the worst accuracy of 86.81%.

They compared pre-trained AlexNet and VGG16 with 
VGG19, and they found VGG19 surpasses both pre-trained 
models by achieving an accuracy of 94.82% while pre-
trained AlexNet and VGG16 have an accuracy of 89.95% 
and 94.65%, respectively.

They discussed the impact of the hyperparameters on the 
model performance and convergence, and they found that 
the learning and scheduling rates play an important role on 
model performance and convergence. If these values are 
very large, the model would fail to converge, and it showed 

Table 2   (continued)

Datasets Type of image Number of cases Number of images Download links

Skin disease datasets
DermNet NZ [76] Clinical – 20,000 +  https://​www.​dermn​etnz.​org/
Dermofit Image Library [76] Dermoscopic – 1300 https://​licen​sing.​edinb​urgh-​innov​

ations.​ed.​ac.​uk/i/​softw​are/​dermo​
fit-​image-​libra​ry.​html

ISIC 2019 [76] Dermoscopic – 25,331 https://​chall​enge2​019.​isic-​archi​ve.​
com/

PH2 Dataset [76] Dermoscopic – 200 https://​sites.​google.​com/​site/​robus​
tmela​nomas​creen​ing/​datas​et

Interactive Atlas of Dermoscopy 
(EDRA)

Dermoscopic 1000 +  2000 +  http://​derm.​cs.​sfu.​ca/​Welco​me.​html

International Skin Imaging Col-
laboration (ISIC 2020) [76]

Dermoscopic 2000 33,126 https://​chall​enge2​020.​isic-​archi​ve.​
com/

Table 3   Medical image processing task challenges

Medical Image processing task challenges Medical dataset

Brain tumors segmentation in multimodal magnetic resonance imaging 
(MRI) scans [68]

Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

Women’s cervix type classification based on images [77] Intel and MobileODT on Kaggle
Detection of Diabetic Retinopathy (DR) by Kaggle [78] Kaggle DR Challenge
Lung nodule detection challenges [79] Lung Image Database Consortium and Image Database (LIDC/IDRI)
International Skin Imaging Collaboration (ISIC) challenges for Skin 

lesion detection [80]
ISIC 2016, 2017, 2018, 2019, 2020 dataset

The Medical Segmentation Decathlon (MSD) [81] MSD dataset
The COVID-19–20 Lung CT Lesion Segmentation Challenge [82] CT images in COVID-19 and COVID-19-AR datasets

https://www.dermnetnz.org/
https://licensing.edinburgh-innovations.ed.ac.uk/i/software/dermofit-image-library.html
https://licensing.edinburgh-innovations.ed.ac.uk/i/software/dermofit-image-library.html
https://licensing.edinburgh-innovations.ed.ac.uk/i/software/dermofit-image-library.html
https://challenge2019.isic-archive.com/
https://challenge2019.isic-archive.com/
https://sites.google.com/site/robustmelanomascreening/dataset
https://sites.google.com/site/robustmelanomascreening/dataset
http://derm.cs.sfu.ca/Welcome.html
https://challenge2020.isic-archive.com/
https://challenge2020.isic-archive.com/
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poor performance. If the values of learning and scheduling 
rates are small, the model would converge at a slow rate.

Breast

For breast cancer classification, Beevi et al. [34] used the 
VGG for mitosis detection in breast cancer in histopatho-
logical images. They adopted transfer learning to overcome 
the overfitting problem. The model achieved an accuracy 
of 94%.

Wei et al. [32] and Chang et al. [13] used the Goog-
leNet inception model. Wei et al. developed a model called 
BiCNN and used several techniques to train the BiCNN: 
from scratch as well as using data augmentation, fine-tuning 
transfer learning, and combining data augmentation with 
transfer learning. BiCNN achieved the best performance at 
97% by combining data augmentation with transfer learning, 
whereas the worst performance was obtained by training 
GoogleNet from scratch (80%). Chang et al. adopted data 
augmentation and transfer learning to overcome the overfit-
ting problem. Data augmentation increased the number of 
samples from 1398 to 11,184 images. The model achieved 
an accuracy of 86% and an AUC of 0.93.

Khan et al. [86] developed a model that was trained by 
concatenated features extracted from three pretrained mod-
els—GoogleNet, VGG, and ResNet—for detection and clas-
sification of breast cancer in cytological images. They used 
data augmentation along with transfer learning to overcome 
the overfitting problem; data augmentation increased the 
number of samples to 8,000 images. The proposed model 
showed a significant classification accuracy of 97.52% by 
transferring the learned features from multiple networks, 
whereas transferring them from individual networks pro-
duced accuracies of 94.6%, 94.2%, and 95.4% with Goog-
leNet, VGG, and ResNet, respectively.

Cervical and Oral

Wieslander et al. [3] used ResNet and a VGG to develop a 
model for oral and cervical cancer classification in micro-
scopic images. They utilized data augmentation to solve 
the overfitting problem. ResNet surpassed the VGG in both 
oral and cervical classification. ResNet achieved an accuracy 
of 82.58% for oral cancer and 85.45% for cervical cancer, 
whereas the VGG had accuracies of 80.66% and 85.38% for 
oral and cervical cancer, respectively.

Ariji et al. [4] utilized AlexNet for oral cancer classifica-
tion in CT. They adopted data augmentation to overcome the 
overfitting problem. AlexNet proved to have performance 
comparable to that of a radiologist. It reached an accuracy 
of 78.2%, where two radiologists with 20 years of experience 
achieved 83.1%.

In addition, Anantharaman et al. [87] employed Goog-
leNet to develop a mobile application for mouth sore (cold 
and canker) classification. They collected 75 images from 
Google, and dentists assigned labels to the images. The 
authors adopted transfer learning to solve the overfitting 
problem. The proposed model achieved 66% accuracy.

Anantharaman et al. [30] utilized Mask RCNN for cold 
and canker detection and segmentation. They collected their 
dataset from Google Images; then, a pathologist provided the 
ground truth annotation using VGG Image Annotator [88]. 
Mask R-CNN achieved average Dice coefficients of 0.74 and 
0.71 for cold and canker, respectively.

Lung

CNNs and their pretrained networks have also been used 
for lung cancer classification in CT images. Li et al. [8] 
designed a model with a single convolutional layer as well 
as max pooling, dropout, and three fully connected layers. 
The model achieved 92% precision and 89% recall. Rao 
et al. [89] developed the CanNet model using convolutional, 
ReLU, max pooling, and dropout layers that were repeated 
twice, followed by two fully connected layers. They also 
designed a model using the architecture of LeNet-5. CanNet 
outperformed LeNet-5 by achieving 76% accuracy, whereas 
LeNet-5 yielded 56% accuracy. The authors indicated that 
the size of the dataset was unsuitable for training LeNet-5.

Fang [36] used AlexNet and GoogleNet for lung cancer 
classification. The author adopted data augmentation and 
transfer learning to avoid overfitting. A fine-tuned Goog-
leNet achieved 81% accuracy, surpassing AlexNet by 2.0%.

Hussein et al. [90] used AlexNet and Gaussian process 
(GP) regression [91] to develop a model known as Tumor-
Net. AlexNet was used for feature extraction, and the GP 
was utilized for classification. The authors applied data 
augmentation to avoid overfitting. TumorNet achieved 92% 
regression accuracy and a standard error of the mean of 1.59.

Zhao et al. [92] combined 2D and 3D CNNs to design a 
model for pulmonary nodule detection. Firstly, a pretrained 
GoogleNet was used to generate candidate nodules. Then, 
a 3D CNN was applied to classify the candidate nodules. 
The model achieved 83% accuracy, 86% sensitivity, and 80% 
specificity.

Tang et al. [93] combined Faster R-CNN and a 3D CNN 
to develop an ensemble model for pulmonary nodule detec-
tion in CT images. The authors adopted Faster R-CNN to 
generate nodule candidates and utilized hard negative min-
ing [94] to reduce the negative samples. Then, they applied 
the 3D CNN to classify the proposed nodule candidates. The 
proposed model achieved an average recall at seven prede-
fined false positive points of 0.815.

Deep learning was applied for an early detection of coro-
navirus disease (COVID-19) during the global pandemic. Oh 
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et al. [95] trained a CNN on chest X-ray images for COVID-
19 diagnosis. First, they applied full convolutional-DenseNet 
to extract lung and heart contours from chest images.

Then, a patch-based CNN was used for COVID-19 diag-
nosis. The proposed model achieved accuracy, precision, 
recall, and F1-score of 88.9%, 83.4%, 85.9%, and 84%, 
respectively.

Hu et al. [96] proposed a model based on a CNN for 
COVID-19 detection and classification using CT images. 
They achieved accuracy, precision, recall, and F1-score of 
96.2%, 97.3%, 94.5%, and 95.3%, respectively.

Skin

Al-Masni et al. [25] proposed a deep learning network for 
multiple skin lesion segmentation and classification. First, 
they used a full resolution convolution network (FrCN) to 
segment the skin lesion on dermoscopy images. Then, they 
utilized different pre-trained CNNs including Inception-v3, 
ResNet-50, Inception-ResNetv2, and DenseNet-201 [97] 
for classifying segmented lesions into multiple classes. The 
proposed model was evaluated using the International Skin 
Imaging Collaboration (ISIC) dataset 2016, 2017, and 2018 
which have binary, three, and seven classes of skin lesions, 
respectively. They applied the data augmentation to increase 
the number of samples, and in some cases, they performed 
up-sampling to solve the problem of imbalance dataset.

The balanced, segmented, and augmented datasets 
improve the F1-score by 8.05%. The F1-scores on ISIC 2016 
are 78.39%, 80.85%, 82.59%, and 81.73% for Inception-
v3, ResNet-50, Inception-ResNet-v2, and DenseNet-201, 
respectively. The ResNet-50 outperforms other networks 
on both ISIC 2017 and ISIC 2018 by achieving F1-scores 
of 75.75% and 81.28%, respectively, where Inception-v3, 
Inception-ResNet-v2, and DenseNet-201 yielded scores 
of 74.92% and 77.84%, 75.72% and 78.46%, and 65.93% 
and 79.47% on ISIC 2017 and ISIC 2018, respectively. The 
authors indicated that the segmentation and classification 
of skin lesions using deep learning networks become more 
complicated as the number of trained classes increases.

Kwasigroch et al. [98] utilized the CNN, specifically 
VGG19, ResNet, and VGG19 with the SVM for skin lesion 
classification. They applied upsampling and data augmen-
tation to solve the problems of imbalance dataset and over-
fitting, respectively. The VGG19 surpasses ResNet and 
VGG19-SVM by achieving an accuracy of 81.2%, where 
ResNet and VGG19-SVM yield scores of 75.5% and 80.7%, 
respectively.

Liu et al. [99] utilized a CNN with mid-level feature 
learning for skin lesion classification. They applied a seg-
mentation network (U-Net) [60] to extract the regions of 
interest (ROI) from skin lesion. They used the pretrained 
ResNet and DenseNet to extract features from ROI images. 

Further, they proposed a novel mid-level feature learning as 
feature representation based on the distance metric learn-
ing that describes the relationship between different classes 
of skin lesions. The metric learning was used to study the 
similarity between the samples images and a reference image 
set to separate different skin lesion classes. Thus, the ResNet 
surpass DenseNet by yielding an accuracy of 87.25%, where 
DenseNet yielded a score of 87%.

Other Diseases

A CNN and its pretrained networks were applied to micro-
scopic images to develop an automated diagnosis system. 
Talo [2] used ResNet50 and DenseNet-161 [97] for histo-
pathological image classification. The author adopted trans-
fer learning and dropout layers to overcome the overfitting 
problem. The proposed model was trained on grayscale and 
color images. DenseNet161 yielded the highest performance 
on grayscale images (97.89% accuracy), ResNet-50 per-
formed better on color images, achieving 98.87% accuracy. 
ResNet-50 was faster than DensNet-161 on both types of 
images.

Nguyen et al. [11] applied Inception v3 [24], ResNet 152, 
and ResNet-v2 [23] for microscopic image classification. 
The proposed model was trained by concatenated features 
extracted from the three networks. The model achieved 
92.57% accuracy, whereas Inception v3, ResNet-152, 
and ResNet-v2 yielded 90%, 89%, and 92% accuracy, 
respectively.

Further, Li et al. [9] utilized AlexNet and GoogleNet for 
gland segmentation. They applied window sliding to divide 
each input image into slides, after which fine-tuned AlexNet 
and GoogleNet were used for feature extraction and classifi-
cation. The fine-tuned AlexNet outperformed the fine-tuned 
GoogleNet by achieving 0.73 and 0.84 Jaccard and Dice 
coefficients, respectively, whereas GoogleNet yielded 0.72 
and 0.83 Jaccard and Dice coefficients, respectively.

Mazo et al. [1] used VGG16, VGG19, GoogleNet, and 
ResNet for cardiovascular tissue classification in histopatho-
logical images. They applied transfer learning to overcome 
the overfitting problem. The pretrained ResNet outperformed 
VGG16, VGG19, and GoogleNet by achieving an F-score 
of 83%, where VGG16, VGG19, and GoogleNet produced 
F-scores of 0.82%, 0.81%, and 0.75%, respectively. The pre-
trained ResNet improved the precision by 5% and recall by 
6% compared to the model trained from scratch.

Tajbakhsh et al. [35] investigated the performance of a 
fine-tuned AlexNet against a CNN trained from scratch by 
developing four models for various medical image process-
ing tasks using three medical image modalities: colonos-
copy classification on a colonoscopy video, intima-media 
segmentation, polyp detection on a colonoscopy video, 
and pulmonary embolism detection on a CT image. The 
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fine-tuned AlexNet surpassed the fully trained AlexNet by 
achieving ROCs of 0.7 and 0.98 for polyp detection and 
colonoscopy classification, respectively, as well as 24.71 
localization error for intima-media segmentation. For pul-
monary embolism detection, the ROCs of finetuned and fully 
trained AlexNet were similar, reaching 0.88. Therefore, the 
four models demonstrated the feasibility of transfer learning 
for medical image processing.

Sa et al. [7] used Faster R-CNN for intervertebral disc 
detection in X-ray images. They leveraged transfer learn-
ing to deal with small datasets and used two datasets with 
different sizes (92 and 1082 X-ray images). The fine-tuned 
Faster RCNN achieved APs of 0.65 and 0.90 in the small 
and large datasets, respectively, and the average detection 
time was 3 s per image.

Yang et al. [12] used Faster R-CNN to detect six cell 
classes (red blood, white blood, yeast, crystal, cast, and epi-
thelium) in microscopic images. Faster R-CNN achieved an 
AP of greater than 0.90 for all categories, and it took only 
0.07 s to detect the cells in each image.

Similarly, Mo et al. [100] applied Faster R-CNN for polyp 
detection in endoscopic videos. They used transfer learning 
to avoid overfitting. The fine-tuned Faster R-CNN achieved 
86.2% precision, 98% recall, an F1-score of 91.7%, and 
25 pixels as the mean Euclidean distance between polyp 
centers.

Chen et al. [101] utilized an FCN for gland and nucleus 
segmentation in histopathological images and proposed 
a deep contour aware network (DCAN). The DCAN was 
trained to generate a segmentation mask and simultaneously 
draw contour detection. A multi-level contextual feature 
FCN was used to deal with large appearance variations in 
the histological structure. An auxiliary classifier was applied 
to deal with the vanishing gradient problem. Contour infor-
mation was integrated with the FCN to separate touching 
objects. DCAN achieved an overall F1-score of 0.88 (0.90 
benign and 0.77 malignant), and it ranked first for segmen-
tation tasks at both the 2015 MICCAI Gland Segmentation 
[80] and 2015 MICCAI Nuclei Segmentation Challenges.

Milletari et al. [102] developed a model known as V-Net 
based on U-Net for prostate segmentation in MRI. V-Net 
uses a 3D CNN instead of a 2D CNN as a traditional U-Net, 
and residual functions are applied in each stage. Max pool-
ing is replaced by a convolution of 2 × 2 × 2 voxels and stride 
of 2. V-Net achieved an average Dice coefficient of 0.87.

Vuola et al. [14] used U-Net along with MaskCNN for 
nucleus segmentation in microscope images. U-Net and 
Mask R-CNN were ensembled to obtain more accurate 
results—U-Net was designed for biomedical images seman-
tic segmentation, whereas Mask R-CNN was developed for 
instance segmentation. Mask R-CNN provides good nucleus 
detection, and U-Net is more accurate in nucleus segmenta-
tion. U-net performs well on large nuclei, whereas Mask 

R-CNN is more effective for grouped nuclei. Combining 
these networks yielded accurate segmentation with a mAP of 
0.523, whereas U-Net and Mask R-CNN separately reached 
mAPs of 0.515 and 0.519, respectively.

Discussions

Trends

We first discuss the overall trends in the distribution of 
supervised learning algorithms for each medical image pro-
cessing task. As Fig. 16 represents, AlexNet, GoogleNet, 
and ResNet are the most frequently adapted networks for 
medical image classification. Faster R-CNN and U-Net net-
works are widely used for detection and segmentation tasks, 
respectively.

Then, we explore the use of different supervised learning 
methods for various diseases. Figure 17 shows the distribu-
tion of different diseases across supervised learning algo-
rithms. Transfer learning and data augmentation are widely 

Fig. 16   Distribution of supervised learning techniques for various 
medical image tasks

Fig. 17   Distribution of supervised learning techniques for various 
diseases



	 SN Computer Science (2022) 3:292292  Page 18 of 22

SN Computer Science

used in medical image processing as training supervised 
architectures require large datasets and medical image data-
sets are scarce.

There are other trends related to transfer learning meth-
ods. Figure 18 shows the accuracy of transferred concat-
enated features extracted from multiple and individual archi-
tectures. The transferred features from multiple supervised 
learning architectures are more accurate than those from 
individual architectures.

Accuracy and Influence Factors

The accuracies of the supervised learning networks in medi-
cal image processing range from 60 to 100%. Figure 19 
shows the highest and lowest accuracies for several super-
vised learning networks. GoogleNet and Faster R-CNN have 
the largest gap between their highest and lowest accuracy. 
The highest accuracy occurs when the number of samples 
is 7,909, with the combination of transfer learning and data 
augmentation [32]; meanwhile, the lowest accuracy occurs 
when the number of samples is so small and only transfer 
learning is utilized [87]. Faster R-CNN obtained 0.90 and 

0.65 of APs with transfer learning and a dataset of 1082 and 
92 samples, respectively [7].

However, there are varied factors that affect the super-
vised learning algorithms’ performance, and we do not con-
sider them in Fig. 19. These factors include the number of 
samples [89], the number of layers [89, 103], the number 
of classes [25], the image modality and quality [104], and 
the hyperparameters values [85, 103]. For instance, AlexNet 
achieved the highest sensitivity and specificity of 100% in 
the binary classification of a brain tumor in MRI images [6]. 
In contracts, AlexNet reached 89% of sensitivity and 89.84% 
of specificity on multiclass brain tumors classification using 
MRI images [85]. Therefore, identifying a suitable super-
vised deep learning algorithms for medical images process-
ing tasks is a significant challenging task.

Challenges and Issues

The big challenges of applying supervised learning in medi-
cal image processing is the bottelnecks of medical images 
labelling. Supervised learning requires a massive number of 
samples for good performance and robust generalization, and 
high-quality labeled medical image datasets are scarce [5, 
32, 34, 62–64], and most publicly available medical image 
datasets consist of small numbers of patients [5]. Creating 
biomedical datasets is expensive and time consuming [34, 
62–64]. Medical image requires clinician’s interpretation for 
collecting, labelling, and annotating medical images. Fur-
thermore, data collection involving human subjects requires 
privacy and ethical oversight by institutional review boards 
(IRBs).

However, data labelling bottlenecks can be addressed 
using several techniques, such as data augmentation, trans-
fer learning, dropouts, and shallow CNNs. Figure 20 shows 
how the reviewed papers related to these techniques have 
been distributed over the years. The use of data augmen-
tation increases from one paper in 2012 to five papers in 

Fig. 18   Accuracies for transferred features from multiple and indi-
vidual networks

Fig. 19   Lowest and highest accuracy of supervised learning networks

Fig. 20   Distributions of papers discussing techniques to overcome the 
overfitting problem over the years
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2019. Transfer learning was used in one paper in 2016 and 
subsequently became more frequently adopted to overcome 
the overfitting problem. The dropout approach was applied 
to solve this problem from 2012 to 2016, and again in 2019. 
The use of shallow CNNs is very rare.

Another significant issue in biomedical datasets is data or 
class imbalance. In imbalanced datasets, the class distribu-
tion is asymmetrical among the categories, and for instance, 
the cancer cell dataset is naturally imbalanced (the number 
of abnormal samples is more than the number of normal 
samples). With an imbalanced dataset, the model learns 
the attributes of the majority class more than the minority 
class [46]. Thus, imbalanced data significantly affect model 
performance. Data augmentation can be used to overcome 
the imbalanced dataset problem by increasing the number 
of samples. Lu et al. [6] had an imbalanced dataset of 38 
normal brain MRI images and 177 pathological ones. They 
resolved this issue by utilizing data augmentation to increase 
the number of normal samples to 144 images and subse-
quently achieved brain classification with 100% accuracy. 
Ariji et al. [4] developed a model with a dataset that con-
sisted of 127 positive metastatic lymph CT images and 314 
negative samples. The numbers of positive and pathological 
samples were increased to 10,638 and 10,724, respectively, 
with data augmentation. Consequently, they achieved an 
accuracy of 78.2% (Fig. 20).

Digital medical imaging modalities are also challeng-
ing for applications of deep learning in medical image pro-
cessing. For instance, the inputs for most state-of-the-art 
deep learning models are 2D images [102], although some 
medical image types are 3D images, (e.g., CT). An addi-
tional method is needed to avoid losing information from 
3D medical images, such as computing the median intensity 
of multiview CT scans [36, 90], replacing a 2D CNN with 
a 3D CNN [93, 102], and incorporating a 2D CNN with a 
3D CNN [92].

Microscopic images have various characteristics, includ-
ing size, resolution, stain types, and enormous numbers of 
heterogenous and overlapping cells [33, 34]. The variations 
in the appearance of histopathological images increase the 
number of false positives, thereby affecting the model per-
formance. Beevi et al. [34] utilized an optimal multi-thresh-
olding known as the krill herd algorithm [105] to reduce 
the false positives for nucleus detection on histopathologi-
cal images. They consequently achieved a high accuracy of 
94%. Yousefi and Nie [33] used a class-agnostic detector, 
which detected several nuclei from histopathological images 
without knowing their class, then applied a CNN to assign 
classes to the detected nuclei with a 98% accuracy.

Conclusion

This survey article provides an overview of the applica-
tion of supervised learning in medical image processing, 
focusing on classification, detection, and segmentation. We 
explained the performance matrices of supervised learning 
and summarized the available medical image datasets for 
various diseases. This study explored the various state-of-
the-art supervised learning architectures, including CNNs 
and the corresponding pretrained algorithms (LeNet-5, 
AlexNet, ZFNet, VGG, GoogleNet, and ResNet), R-CNNs 
and their different versions (Fast R-CNN, Faster R-CNN, 
and Mask R-CNN), FCNs, and U-Nets. We discussed the 
challenges associated with applying supervised learning in 
medical image analysis. The literature demonstrated that 
data augmentation, transfer learning, and dropout tech-
niques have widely been used in medical image process-
ing to overcome the lack of labeled datasets as supervised 
learning needs large labeled datasets to learn and to achieve 
high performance. Supervised learning algorithms show 
promising results in medical image analysis that could be 
leveraged to improve the speed and accuracy of diagnosis 
for various diseases.
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