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Abstract
Cutaneous melanoma is often resistant to chemo- and radiotherapy. This resistance has recently
been demonstrated to be due, at least in part, to high activating transcription factor 2 (ATF-2)
activity in these tumors. In concordance with these reports, we found that B16 mouse melanoma
cells had higher levels of ATF-2 than immortalized, but non-malignant mouse melanocytes. In
addition, the melanoma cells had a much higher amount of phosphorylated (active) ATF-2 than the
immortalized melanocytes. In the course of determining how retinoic acid (RA) stimulates
activating protein-1 (AP-1) activity in B16 melanoma, we discovered that this retinoid decreased
the phosphorylation of ATF-2. It appears that this effect is mediated through p38 MAPK, because
RA decreased p38 phosphorylation, and a selective inhibitor of p38 MAPK (SB203580) also
inhibited the phosphorylation of ATF-2. Since ATF-2 activity appears to be involved in resistance
of melanoma to chemotherapy, we tested the hypothesis that treatment of the melanoma cells with
RA would sensitize them to the growth-inhibitory effect of taxol. We found that pretreatment of
B16 cells with RA decreased the IC50 from 50 nM to 1 nM taxol. On the basis of these findings and
our previous work on AP-1, we propose a model in which treatment of B16 cells with RA
decreases the phosphorylation of ATF-2, which results in less dimer formation with Jun. The
"freed-up" Jun can then form a heterodimer with Fos, resulting in the increased AP-1 activity
observed in RA-treated B16 cells. Shifting the balance from predominantly ATF-2:Jun dimers to a
higher amount of Jun:Fos dimers could lead a change in target gene expression that reduces
resistance to chemotherapeutic drugs and contributes to the pathway by which RA arrests
proliferation and induces differentiation.

Background
The incidence of cutaneous melanoma has been rapidly
increasing in the past few years. In its early stages,
melanoma is curable in most cases by surgery; but once
metastases develop, the median survival for patients is
only 8.5 months. Treatment of patients with metastatic
melanoma has been problematic because of its poor

response to chemo- and radiotherapy. Recently, it has
been found that activating transcription factor 2 (ATF-2)
is responsible, at least in part, for resistance of melanoma
to chemo- and radiotherapy [1]. Bhoumik et al., 2001 [2]
reported that blocking ATF-2 transcriptional activity by
using an ATF-2-derived peptide could sensitize melanoma
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cells to apoptosis induced either by chemotherapeutic
drugs, or by inhibitors of stress kinases.

ATF-2 is a member of the ATF/CREB family of basic region
leucine zipper (bZIP) proteins. Jun and Fos bZIP families,
together with ATF-2, constitute the activating protein-1
(AP-1) transcription factor family. AP-1 transcription fac-
tors mediate gene regulation in response to specific
growth factors, cytokines, tumor promoters, carcinogens,
and oncoproteins. ATF-2 has been implicated in modulat-
ing melanoma proliferation [3] and resistance to chemo-
and radiotherapy [1,4]. Under nonstressed conditions,
ATF-2 is transcriptionally inactive because of its intramo-
lecular inhibition, in which the ATF-2 activation domain
and bZIP domain specifically bind to each other [5]. ATF-
2 is known to acquire its transcriptional activity upon
phosphorylation by MAP kinases, including JNK and p38
[5,6]. Phosphorylation at two threonine sites within the
N-terminal activation domain leads to ATF-2 conforma-
tional changes, which releases the intramolecular inhibi-
tion.

Retinoids have been shown to inhibit proliferation and
induce differentiation in a variety of cancer cell lines and
mouse human tumor xenografts [7-9]. Some mouse and
human melanoma cell lines are sensitive to the growth
inhibitory and pro-differentiating effects of RA [10]. In
B16 mouse melanoma cells, all-trans-RA inhibits both
anchorage-dependent and -independent growth and stim-
ulates melanin production [11]. Previously, our labora-
tory reported that RA induced a three to four-fold increase
in AP-1 transcriptional activity [12]. This RA-induced AP-
1 transcriptional activity plays an important role in the
biological changes induced by this retinoid in B16
melanoma cells because blocking AP-1 transcriptional
activity by a dominant negative c-Fos significantly
decreases the sensitivity to RA-dependent cell growth
arrest and differentiation [13].

In studying the molecular mechanism involved in RA-
induced AP-1 transcriptional activity, we found that RA
did not increase the expression of any of the Fos or Jun
family members. Therefore, we investigated whether RA
altered the expression of the AP-1 family member ATF-2.
In this report we demonstrate that ATF-2 is expressed at a
higher level in B16 melanoma cells when compared with
an immortalized, but non-malignant, mouse melanocyte
cell line. In addition, a much greater amount of phospho-
rylated ATF-2 protein (active) is found in B16 cells, com-
pared with the non-malignant cells. RA treatment of B16
melanoma cells reduced ATF-2 phosphorylation, and evi-
dence was obtained that this action was mediated through
the inhibition of p38 MAP kinase activation. Because
active ATF-2 has been implicated in melanoma resistance
to chemotherapy, we determined whether RA inhibition

of ATF-2 phosphorylation might sensitize B16 cells to the
chemotherapeutic agent taxol. Pretreatment of B16 cells
with RA significantly lowered the concentration of taxol
required to achieve a 50% reduction in tumor cell growth.

Results
Expression and phosphorylation of ATF-2 protein in 
malignant mouse melanoma cells versus non-malignant 
mouse melanocytes
Previous work from our laboratory has shown that RA
induces AP-1 transcriptional activity in B16 mouse
melanoma cells [12,13]. However, RA does not increase
the expression of any of the Fos or Jun family members.
Therefore, we examined whether RA altered the ATF-2
member of the greater AP-1 family of transcription factors.

We measured the relative expression of total ATF-2 pro-
tein in B16 and melan-a cells. Both cell lines are derived
from the same genetic strain of mice (C57BL/6). B16 is a
metastatic mouse melanoma cell line; whereas, melan-a is
an immortalized, but non-transformed, mouse melano-
cyte cell line [14]. Only trace amounts of ATF-2 were
detected in the cytoplasmic fraction from either cell line,
with the vast majority of ATF-2 protein in the nuclear frac-
tion. Higher levels of ATF-2 protein were detected in
malignant melanoma cells, compared with non-malig-
nant mouse melanocytes (Fig. 1A).

ATF-2 was detected as multiple bands of approximately 70
kDa in nuclear extracts from B16 and melan-a cells. The
higher MW band was more prominent in the B16 nuclear
extracts than that in the melan-a cell nuclear extracts. We
suspected that the higher MW band was phosphorylated
ATF-2. To demonstrate that ATF-2 was phosphorylated,
the nuclear extracts from B16 cells were incubated with
protein phosphatase-1A (PP1A) for different periods of
time, and then ATF-2 protein was detected using an anti-
body specific for phospho-ATF-2. This experiment
showed that phospho-ATF-2 was lost, even after a short
incubation period (3 minutes) (Fig. 1B). In contrast, there
was no loss of GAPDH immunoreactivity, indicating that
the loss of phospho-ATF-2 was not due to non-specific
protein degradation. Therefore, we conclude that the
higher MW form of ATF-2 is highly phosphorylated in the
melanoma cells.

Stimulation of ATF-2 transcriptional activity requires its
phosphorylation by the MAP kinases p38 or JNK. We
examined ATF-2 phosphorylation as an indicator of its
activation in malignant melanoma cells, compared with
non-malignant mouse melanocytes. Fig. 1C shows that, if
protein content of extracts from B16 and melan-a cells is
adjusted to correct for the amount of total ATF-2
expressed by these cell lines (Fig. 1A), there is a much
higher amount of phospho-ATF-2 in B16 cells as com-
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ATF-2 expression and phosphorylation in B16 malignant melanoma vs. non-malignant melan-a mouse melanocytesFigure 1
ATF-2 expression and phosphorylation in B16 malignant melanoma vs. non-malignant melan-a mouse melano-
cytes. A. Subcellular distribution and relative amount of ATF-2 in B16 mouse melanoma compared with nonmalignant melan-a 
cells. B16 cells and Melan-a cells were harvested at 80% confluence, and cytoplasmic and nuclear protein were isolated using 
Pierce NE-PER™ nuclear and cytoplasmic extraction reagents described in Materials and Methods. Cytoplasmic and nuclear 
proteins (10 μg) from both cell lines were analyzed by western blotting using polyclonal ATF-2 antibody. The autoradiogram 
(top right panel) was scanned using a Molecular Dynamics densitometer, and after correcting for the amount of β-actin, the rel-
ative amount of total ATF-2 in each sample was determined (bottom). The data shown are from a representative experiment, 
which was replicated three additional times with similar results. The top left panel illustrates the morphology of the two differ-
ent cell lines prior to harvest (phase contrast, 20X). B. Phosphatase digestion of ATF-2. Nuclear extracts prepared from B16 
cells were treated with 2 units of PP1 at 37°C. The reaction was stopped by the addition of SDS-sample buffer at the indicated 
incubation times. The samples were boiled, then blotted and detected using phospho-ATF-2 antibody. GAPDH was used as an 
internal control. The data are representative of three individual experiments with similar results. C. Relative amount of phos-
pho- ATF-2 in B16 cells vs. melan-a cells. Cellular extracts (20 μg) from B16 cells and cellular extracts (40 μg) from melan-a 
cells (minimal amount of protein that allowed signal detection of phosphorylated ATF-2) were analyzed by western blotting 
using anti-ATF-2 polyclonal antibody and anti-phospho-ATF-2 polyclonal antibody, as described in Materials and Methods. The 
autoradiogram (top) was scanned using a Molecular Dynamics densitometer, and after correcting for the amount of total ATF-
2 protein, the relative amount of phospho-ATF-2 protein in both cell lines was determined (bottom). The data shown are from 
a representative experiment, which was replicated three additional times with similar results.
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pared with melan-a cells. Thus, it is likely that in addition
to having more total ATF-2 protein in malignant mouse
melanoma cells versus non-malignant cells, much more
of the ATF-2 in melanoma cells is in the active (phospho-
rylated) state.

The effect of RA on ATF-2 phosphorylation
RA increases AP-1 transcriptional activity in B16
melanoma cells. However, RA does not increase the
expression of any of the Fos or Jun family members, nor
does it increase the binding activity of the AP-1 complex
on a TRE [12]. Because ATF-2 can form a heterodimer with
c-Jun, we hypothesized that RA increases AP-1 transcrip-
tional activity by regulating ATF-2 activation. B16 cells
were treated for 48 hours with or without various concen-
trations of RA. At the end of the treatment period all cells
were harvested and analyzed for the phospho-ATF-2 level.
This experiment revealed that lowest concentration of RA
tested (0.1 μM) reduced ATF-2 phosphorylation by
approximately 30% (Fig. 2A). With increasing concentra-
tions of RA the amount of phospho-ATF-2 was further
reduced, falling to 50% of the control level in cells treated
with the highest concentration of RA (10 μM). Treatment
of B16 cells with or without 10 μM RA for different peri-
ods of time showed that RA caused a small reduction
(~20%) of phospho-ATF-2 at 12 and 24 hours, but
resulted in a major decrease in the phospho-ATF-2
(~75%) after 48 hours of treatment (Fig. 2B). In contrast,
RA treatment caused only a small reduction in total ATF-2
protein level over 48 hours of treatment (Fig. 2C).

Signaling pathways involved in RA-dependent inhibition in 
ATF-2 phosphorylation
Both p38 and JNK MAP kinases have been implicated in
stimulation of ATF-2 transcriptional activity by phospho-
rylation of ATF-2 protein at both Threonine-69 and -71
sites. Therefore, we investigated their potential role in RA-
dependent inhibition in ATF-2 phosphorylation. We
examined the state of JNK and p38 activation in control
and RA-treated cells through the use of total and phos-
pho-specific JNK and p38 antibodies. There was no con-
sistent change in either total or phospho-specific
(activated) JNK in control versus RA-treated B16 cells, at
various times of RA treatment (Fig. 3A). However, RA
treatment inhibited phosphorylation (activation) of p38
MAP kinase by 70% after 48 hours of treatment (Fig. 3B).

To determine whether inhibition of p38 leads to a
decrease in ATF-2 phosphorylation, we treated B16 cells
with or without 10 μM of the p38 MAPK selective enzyme
inhibitor SB203580. This experiment showed that the
SB203580 decreased the amount of phospho-ATF-2 by
50% after 48 hours of treatment (Fig. 3C). Therefore, inhi-
bition of p38 enzyme activity parallels the effect of RA on
inhibition of ATF-2 phosphorylation.

AP-1 transcriptional activity is required for RA-dependent 
inhibition in ATF-2 phosphorylation
The rationale for examining ATF-2 was to discover how RA
increases AP-1 activity in B16 melanoma cells. Therefore,
we decided to investigate whether there is any connection
between the ability of RA to inhibit ATF-2 phosphoryla-
tion and its AP-1 stimulatory activity. We have available
clones of B16 cells which stably express a dominant-neg-
ative fos gene (A-fos) and have very low basal AP-1 activ-
ity, which is minimally increased by RA [13]. We
investigated whether the lack of AP-1 activity might alter
the ability of RA to inhibit ATF-2 phosphorylation.

The amount of amount of total and phospho-ATF-2 pro-
tein in control and treated cells was determined by west-
ern blotting. The results indicate that, as in previous
experiments, treatment of wild-type B16 cells for 48 hours
with 10 μM RA inhibited ATF-2 phosphorylation by 60%
(Fig. 4). However, RA treatment of a clone (#71) express-
ing A-fos did not result in any decrease in ATF-2 phospho-
rylation, while a G418-resistant clone of B16 not
expressing A-Fos (#27) responded to RA treatment with
the same reduction in phospho-ATF-2 levels found in
wild-type B16 cells. The total amount of ATF-2 protein in
wild-type cells and the clones did not substantially change
subsequent to RA treatment.

RA increases the sensitivity of B16 melanoma cells to 
taxol-mediated inhibition of growth
Active ATF-2 has been linked to the resistance of
melanoma cells to chemo- and radiotherapeutic drugs.
Therefore we hypothesized that since RA inhibited ATF-2
phosphorylation, it would increase the sensitivity of
mouse melanoma cells to chemotherapeutic agents. After
preliminary experiments with several cancer therapeutic
drugs, we decided to focus on taxol. This chemotherapeu-
tic compound is able to interfere with the normal progres-
sion of the cell cycle by binding to and preventing
depolymerization of microtubules. It has been success-
fully used in the treatment of breast cancer, but its use in
the treatment of melanoma has not been fully explored
[15-17]. B16 cells were either treated with various concen-
trations of taxol for 16 hours, or pretreated with 10 μM RA
for 48 hours before adding taxol. The cell number in each
taxol-treated group was compared with its appropriate
control (ie, pre-incubation with vehicle or 10 μM RA). We
found that taxol induced a concentration-dependent inhi-
bition in cell growth (Fig. 5). Pretreatment of cells with RA
for 48 hours led to a substantial increase in sensitivity of
B16 cells to taxol-induced cell growth inhibition. Without
RA pretreatment,, the taxol IC 50 was approximately 50
nM; however, when cells were pretreated with RA (10 uM)
for 48 hours before adding taxol, the IC 50 decreased to 1
nM. This action of RA correlates with its ability to inhibit
the phosphorylation of ATF-2.
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RA inhibits ATF-2 phosphorylation in B16 mouse melanoma cellsFigure 2
RA inhibits ATF-2 phosphorylation in B16 mouse melanoma cells. B16 cells were treated with either vehicle (DMSO) 
(C-control) or RA. At the end of the indicated incubation times, cells were harvested and protein (40 μg) from each group was 
analyzed by western blotting using polyclonal anti-phospho-ATF-2 or total ATF-2 antibodies as described in Materials and 
Methods. The relative amount of phospho- or total ATF-2 protein in each sample was determined by densitometry using 
GAPDH as an internal control. The data shown are from a representative experiment, which was replicated three additional 
times with similar results. A. Cells were treated with the indicated concentrations of RA and harvested after a 48-hour incuba-
tion. B. Cells were treated for the indicated time periods with 10 μM RA. C. The effect of different treatment times with 10 
μM RA on total ATF-2 protein level.
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Discussion
Unlike many human melanoma cell lines that are resist-
ant to the effects of RA, B16 melanoma cells are induced
by RA to undergo growth arrest in the G1 phase of the cell
cycle and to increase the production of melanin, an indi-
cator of differentiation [10]. We have previously found
that treatment of B16 mouse melanoma cells with all-

trans-RA induces a two to four-fold increase in AP-1 tran-
scriptional activity, and this increase appears to be
required for growth arrest and differentiation [13]. RA
does not increase the expression of any of the Fos or Jun
family members, nor does it increase the binding activity
of the AP-1 transcription complex [12]. Therefore, we
investigated the effect of RA on the expression level and

Regulation of ATF-2 phosphorylation by p38 MAPK and inhibition by RAFigure 3
Regulation of ATF-2 phosphorylation by p38 MAPK and inhibition by RA. B16 cells were treated with 10 μM RA for 
the indicated times. Cells were then harvested, extracted, and protein from each sample examined for total and phospho-spe-
cific JNK (A) or total and phospho-specific p38 (B) by western blotting as described in Materials and Methods. The results 
shown are representative of three individual experiments, which gave similar results. To determine the effect of inhibition of 
p38 enzyme activity on ATF-2 phosphorylation, we treated cells with or without 10 μM SB203580. At the indicated times, cells 
were harvested, extracted, and protein from each sample was examined for phospho-specific ATF-2 using western blotting as 
described in Materials and Methods. The result (C) shown is representative of three individual experiments, which yielded sim-
ilar results.
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phosphorylation of ATF-2, another member of the AP-1
family.

We found that ATF-2 protein was expressed at higher lev-
els in B16 melanoma cells compared with non-malignant
melan-a cells. The level of ATF-2 mRNA is also higher in
some clinical samples of human tumors compared with
normal tissues [18]. In melanoma, activated ATF-2 con-
fers resistance to radiation and chemotherapeutic agents
[1]. Protein analysis by Western blots demonstrated mul-
tiple bands of immunoreactive ATF-2 protein, which led
us to predict that ATF-2 is a phospho-protein. Removal of
the phosphate group by incubation of cell extracts with
PP1 led to loss of immunoreactivity to the phospho-spe-
cific ATF-2 antibody thus confirming our hypothesis. In
order for ATF-2 to form dimers and stimulate the tran-
scription of target genes, it requires phosphorylation by
the stress kinases p38 or JNK [6]. B16 cells had four-fold
higher levels of phosphorylated ATF-2 compared with
melan-a cells. Since there was less than a two-fold differ-
ence in the amount of total ATF-2 in these two cell lines,
these data suggest that a much higher percentage of ATF-2
is in the active form in B16 compared with melan-a cells.
Although high activity of ATF-2 has not been directly
implicated in tumorigenesis, published data suggest that
high ATF-2 activity might be important in reaching or
maintaining the malignant state of melanomas [19].

A significant finding of our study is that RA decreases the
phosphorylation of ATF-2 in a dose- and time-dependent
manner. One other study has reported that RA alters phos-

phorylation of ATF-2 [20]. However, in this system, RA
increased the phosphorylation and expression of ATF-2 in
the early and middle phase of granulocyte differentiation,
respectively. These findings are opposite to our data in
melanoma and this disparity is likely due to cell type spe-
cificity.

As discussed previously, the activity of ATF-2 is regulated
post-translationally by phosphorylation, particularly by
the JNK/SAPK and p38 groups of mitogen-activated pro-
tein kinases [6,21-23]. Therefore, we examined the possi-
bility that RA decreases phosphorylation of ATF-2 by
interfering with the signaling pathway mediated by JNK
and p38 MAP kinases. Treatment of B16 cells with RA did
not alter the phosphorylation (activation) of either MEK
(data not shown) or JNK. However, RA treatment resulted
in a time-dependent decrease in the phosphorylation of
p38, which correlated with the decrease in phosphoryla-
tion of ATF-2. There are a few other studies in which the
effect of RA on p38 phosphorylation has been investi-
gated. However, in all of these studies, RA increased p38

RA increases the sensitivity of B16 cells to taxol-mediated inhibition of cell growthFigure 5
RA increases the sensitivity of B16 cells to taxol-
mediated inhibition of cell growth. B16 cells were 
seeded at 2.4 × 104/35 mm culture dish. Following a 24-hour 
attachment period, cells were treated with either vehicle 
(DMSO) or 10 μM RA for 48 hours. After this preincubation 
period, the cells were refed with growth medium containing 
different concentrations of taxol and incubated for 16 hours. 
At the end of this second incubation, the cell number in each 
group was determined through the use of crystal violet assay, 
and corrected by the initial cell number seeded. The data are 
presented as the mean ± SEM (error bars) of triplicate dishes 
and are presented as percent of control (DMSO or RA pre-
treated) cell number. * p < 0.05; ** p < 0.01.

Lack of RA-induced AP-1 activity antagonizes the ability of RA to inhibit ATF-2 phosphorylationFigure 4
Lack of RA-induced AP-1 activity antagonizes the 
ability of RA to inhibit ATF-2 phosphorylation. Wild-
type B16 cells, an A-Fos expressing clone (#71), and a non-
expressing A-Fos clone (#27) were treated with or without 
10 μM RA for 24 hours and 48 hours. Cells were harvested 
and protein (40 μg) from each group was analyzed by west-
ern blotting using total or anti-phospho-ATF-2 antibody as 
described in Materials and Methods. The data shown are 
from a representative experiment, which was replicated 
three additional times with similar results.
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phosphorylation and activity [24-26]. Again, these results
are opposite to our finding that RA inhibits the phospho-
rylation of p38 MAPK. It should be noted that in the pub-
lished studies cited above none of the cells were neural
crest derivatives. Our laboratory and others have found
that treatment of neural crest derived cells such as neurob-
lastomas and melanomas with RA often has opposite
effects on signaling pathways compared with treatment of
non-neural crest-derived cells with RA [27-29]. To verify
that inhibition of the p38 MAPK pathway might be the
means by which RA decreased ATF-2 phosphorylation, we
used the selective p38 MAP kinase inhibitor, SB203580.
Treatment of B16 cells with this kinase inhibitor
decreased ATF-2 phosphorylation. Therefore, our results
suggest that the signaling pathway involved in RA-
dependent inhibition of ATF-2 phosphorylation is most
likely the p38 MAPK signaling pathway. In support of our
findings, Ivanov and Ronai [30] reported that treatment
of human melanoma cells, already expressing a peptide
inhibitor of ATF-2, with a chemical inhibitor of p38 cata-
lytic activity, resulted in apoptosis. This biological effect
was not seen in cells treated with either agent alone.

We attempted to measure the effect of RA on ATF-2 tran-
scriptional activity by transient transfection with the CRE
(TGACGTCA)-luciferase reporter gene (data not shown).
However, there was no significant change in luciferase
activity between cells treated with and without RA (data
not shown). There are two possibilities to explain this
result. First, phospho-ATF-2 is expressed at high levels in
B16 melanoma cells, and the ability of RA to inhibit ATF-
2 phosphorylation is a slow process. Because the observa-
tion window for a transient transfection is short (24
hours), there might not have been sufficient time for RA
to decrease ATF-2 phosphorylation to an extent which
would affect its transcriptional activity. Second, the
response elements TRE and CRE have only one nucleotide
difference. Even though ATF-2 dimers prefer to bind to
CRE, it might compete with the Jun:Fos dimer for binding
with TRE. Therefore, the effect of RA on ATF-2 transcrip-
tional activity could not be unambiguously tested by
using the CRE-luciferase reporter gene in B16 cells.

Jun:Fos and Jun:ATF-2 represent two classes of AP-1 tran-
scription complexes. Jun:Fos dimers bind with high affin-
ity to the seven base pair consensus sequence TGAGTCA,
while c-Jun:ATF-2 heterodimers bind with high affinity to
degenerate ATF sites with the consensus motif TGAC-
NTCA. In addition, Jun, Fos, and ATF family members can
bind to DNA upon association with Maf [31,32] C/EBP
[33], and NFκB [34]. The expression of several AP-1 regu-
lated genes can be influenced by the relative amount of
ATF and Jun. For example, Choi et al. [35] found that ATF-
2 down-regulates hepatitis B virus promoter activity by
competition for the AP-1 binding site and the formation

of ATF-2:Jun heterodimers. We previously established
clones of B16 which stably express dominant negative c-
Fos (A-Fos [13]), and demonstrated that inhibition of AP-
1 activity attenuated the ability of RA to inhibit anchor-
age-dependent, -independent growth and to stimulate
melanin production [13]. We observed that the ability of
RA to inhibit ATF-2 phosphorylation was lost in clones
expressing A-fos and consequent low basal and RA-stimu-
lated AP-1 activity. These experiments suggest that there is
an intimate relationship between Fos-containing AP-1
dimers and ATF-2-containing dimers in B16 melanoma
cells. The reason for the loss of RA inhibition of ATF-2
phosphorylation in clones expressing A-fos is not clear.
We previously found that the ability of RA to increase
RARβ and PKCα expression in A-fos expressing clones was
normal, suggesting that A-fos and inhibition of AP-1 activ-
ity interferes with a down-stream, later event in the RA
induction of differentiation and growth arrest in B16
melanoma cells [13]. Our results parallel the studies of
Bhoumik et al. [36] who demonstrated that expression of
a dominant-negative of c-Jun (TAM67) or treatment of the
melanoma cells with JunD siRNA (which should result in
decreased AP-1 activity) attenuated the sensitization of
melanoma cells expressing the ATF-2 peptide inhibitor to
apoptosis after treatment with anisomycin.

The hallmark of malignant melanoma is its resistance to
chemotherapy and radiotherapy [37,38]. ATF-2 and its
activating protein kinase, p38, have been found to play an
important role in the resistance of melanoma to radiation
and chemotherapy [1,29]. Hypophosphorylated or tran-
scriptionally-inactive forms of ATF-2 elicit a silencing
effect on TNFα expression, resulting in increased apopto-
sis [39]. When endogenous ATF-2 expression is inhibited
by ATF-derived peptides, human melanoma cells are more
sensitive to UV radiation or chemical treatment [2], and
their growth and metastasis are also inhibited [40]. On
the basis of these reports, we evaluated the ability of RA,
which inhibits ATF-2 phosphorylation (activation), to
alter the sensitivity of B16 melanoma cells to taxol-medi-
ated growth suppression. We found that pretreatment of
the B16 melanoma cells for 48 hours decreased the IC50
for taxol from 50 nM to 1 nM. The mechanism by which
RA increases the sensitivity of B16 melanoma cells to taxol
treatment is likely to involve ATF-2 activity, because
inhibitors of p38 MAPK also sensitize B16 melanoma
cells to taxol's growth inhibitory activity (data not
shown). We attempted to construct a constitutively active
AFT-2 cDNA in order to determine whether expression of
this construct would block the ability of RA to sensitize
B16 melanoma to taxol-induced growth inhibition.
Unfortunately, using point mutations to substitute arg for
thr 69 and 72 did not result in a constitutively active pro-
tein. Recently, Karmakar et al [41] reported that the com-
bination of RA and taxol caused regression of
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glioblastoma T98G xenografts in nude mice. The combi-
nation caused greater apoptosis than either agent alone.
Whether p38, MAPK, and ATF-2 are involved in mediating
this effect is not known. However, in glioblastoma, this
treatment decreased the activity of NF-kB, which is known
to be activated by p38 MAPK in melanoma cells [42].
Thus an RA-mediated inhibition of p38 MAPK in the
glioblastoma cells might play a role in sensitizing these
cells to taxol.

Our current working model is that RA alters the balance
between ATF-2:Jun containing dimers and Jun:Fos con-
taining dimers. Phosphorylation of ATF-2 induces a con-
formation change that allows ATF-2 to form a homodimer
with another ATF-2 or a heterodimer with Jun. Because
B16 cells have high levels of ATF-2, the majority of which
appears to be phosphorylated, we postulate that in
untreated B16 cells most of the Jun is in a heterodimer
with ATF-2. Treatment of B16 cells with RA decreases the
phosphorylation of ATF-2, which results in less dimer for-
mation with Jun. The "freed-up" Jun can then form a het-
erodimer with Fos, resulting in the increased AP-1 activity
observed in RA-treated B16 cells. Shifting the balance
from predominantly ATF-2:Jun dimers to a higher
amount of Jun:Fos dimers could lead a change in target
gene expression that reduces resistance to chemothera-
peutic drugs and contributes to the pathway by which RA
arrests proliferation and induces differentiation.

Conclusion
We found that B16 mouse melanoma cells express 2–4
times more ATF-2 protein relative to non-malignant
mouse melan-a cells. In addition, most of the ATF-2 pro-
tein in the melanoma cells is phosphorylated (active) vs.
only a small amount of phosphorylated ATF-2 in non-
malignant melanocytes. Retinoic acid treatment of B16
melanoma cells decreased ATF-2 phosphorylation likely
due to the ability of RA to inhibit the phosphorylation
(activation) of p38 MAPK. The inhibition of ATF-2 phos-
phorylation correlated with the ability of RA to sensitize
the B16 melanoma cells to the growth inhibitory activity
of the cancer chemotherapeutic agent taxol.

Methods
Cells and culture conditions
B16 mouse melanoma cells were grown in a humidified
atmosphere of 5% CO2, 95% air at 37°C in Dulbecco's
Modified Eagle's medium (DMEM). This medium con-
tained 1g/L glucose and was supplemented with 10%
heat-inactivated bovine calf serum (Hyclone, Logan, UT),
50 U/mL penicillin G and 50 μg/mL streptomycin sulfate.

Immortal mouse melanocytes, melan-a, were provided by
Dr. Dorothy C. Bennett, St. George's Hospital Medical
School, UK. Melan-a cells were grown in a humidified

atmosphere of 10% CO2, 90% air at 37°C in RPMI 1640
culture medium. This medium contained 2 mM L-
glutamine and was supplemented with 5% fetal calf
serum, 200 nM TPA (tetradecanoyl phorbol acetate), 100
U/mL penicillin G and 100 μg/mL streptomycin sulfate.

All-trans-RA was obtained from Fluka Chemical Co (New
York). All experiments involving the use of RA were con-
ducted under yellow lights to prevent photo-oxidation of
this retinoid. Fresh solutions of RA were prepared in
DMSO for each experiment and then diluted to the final
concentration in tissue culture media before adding to the
cells.

SB203580 was obtained from Biomol Research Laborato-
ries, Inc. (Plymouth Meeting, PA). A concentrated stock
solution of SB203580 (10 mM) was prepared in DMSO
and then stored at -20°C. This stock solution was diluted
to the desired final concentration in tissue culture
medium before adding to the cells.

Paclitaxel (taxol) was obtained from LC Labs (Wobum,
MA). A concentrated stock solution of taxol (10 μM) was
prepared in DMSO and then stored at -20°C in the dark.
This stock solution was diluted to the desired final con-
centration in tissue culture medium before adding to the
cells.

Plasmid DNA constructs
CRE-Luciferase reporter plasmid was from PathDetect® in
vivo signal transduction pathway cis-reporting systems,
Stratagene (La Jolla, CA). This vector contains the luci-
ferase reporter gene driven by a basal promoter element
(TATA box) joined to tandem repeats of the CRE
(TGACGTCA) binding element.

Transient transfection
Plasmid with or without the CRE consensus elements was
transfected into early passage B16 cells via the Lipo-
fectamine procedure (Gibco) together with a plasmid
containing SV40-β-gal to correct for transfection effi-
ciency. B16 cells were seeded (7 × 105 cells/dish) into 100-
mm tissue culture plates 1 day prior to transfection. On
the day of transfection, cells were refed with growth
medium 4 hours prior to the procedure. Transfections
included 3 μg of the plasmid vector pGL2 with or without
CRE response element and 1 μg of pSV-β-galactosidase
(Promega, Madison, WI). Cells were incubated with the
plasmid DNAs for 5 hours before refeeding with regular
growth medium. Twenty-four hours after transfection,
cells were washed twice with PBS and treated with corre-
sponding concentrations of RA for 24 hours before har-
vest. Cells were washed twice with PBS, harvested, and
assayed for luciferase and β-galatosidase activity using the
appropriate kits from Promega. Luciferase assays were
Page 9 of 11
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evaluated in the linear range and values were normalized
to β-galatosidase activity. All transfections were per-
formed in triplicate dishes and the experiments were
repeated three times.

Crystal violet cell proliferation assay
A colorimetric assay employing crystal violet was used to
determine cell growth. This assay is based on the staining
of attached cells (viable cells) with crystal violet dye in
each well [43]. After the treatment period, triplicate wells
with various concentrations of taxol and a control group
were fixed with methanol:acetic acid (3:1) for 1 hour at
room temperature. The fixed cells were washed with 80%
methanol and stained with crystal violet (0.5%) for 1
hour. Excess dye was removed by washing the wells with
distilled water. Wells were air-dried and the dye was
eluted with 500 μL of 10% acetic acid. Eluted dye (200 μL)
from each well was transferred to 96-well plates and
absorbance was measured at 570 nm with a kinetic micro-
plate reader (Molecular Devices Corporation, Sunnyvale,
CA). Absorbance values from the taxol-treated group were
compared with values from the control group.

Western blot assays
Cells were seeded at 2 × 105/100 mm tissue culture dish.
After a 24-hour attachment period, they were again fed
with growth medium containing RA or DMSO. Cells were
harvested after 24 hours or 48 hours of incubation
depending on the experiment and prepared for western
blotting.

For total ATF-2 protein analysis, B16 cells and melan-a
cells were washed twice with PBS, harvested and cytoplas-
mic and nuclear extracts prepared using the Pierce NE-
PER™ nuclear and cytoplasmic extraction reagents.

For western blot analysis of non-ATF-2 proteins, cells were
washed with cold PBS and harvested in 250 μL of lysis
buffer (10 mM Tris, PH 7.5, 1 mM EDTA, 1% glycerol, 1
μg/mL leupeptin, 1 μg/mL pepstatin, 50 μg/mL aprotinin,
0.5 mM PMSF). Cells were lysed on ice by three consecu-
tive 10-sec sonications with a Tekmar® sonic disruptor at
power setting 60. The total lysate was stored at -80°C.

Protein concentration was determined by using the Pierce
BCA protein assay kit. Protein (50 μg) was separated by
SDS-PAGE with 10% separating and 5% stacking gels. The
proteins were electrically transferred to a Hybond-C extra
nitrocellulose membrane (Amersham, Chicago, IL). The
membrane was incubated in blocking solution (Tris-buff-
ered saline containing 0.2% Tween 20 and 10% nonfat
dry milk, TBST) for 1 hour at room temperature. Blots
were then incubated overnight at 4°C with a 1:1,000 dilu-
tion of polyclonal anti-JNK or polyclonal anti-phospho
JNK, polyclonal anti-ERK1/2 or polyclonal anti-phospho

ERK1/2, polyclonal anti-p38 or polyclonal anti-phospho
p38, or polyclonal anti-phospho-ATF-2 antibodies (each
at 1:1,000 dilution, Cell Signaling Technology, Beverly,
MA) depending on the experiments. This solution was
removed and the blot was washed several times in 1×
TBST followed by a 1-hour incubation with 1:2,000 dilu-
tion of rabbit anti-mouse horseradish peroxidase-conju-
gated secondary antibody (Cell Signaling Technology),
then washed several times in 1× TBST. Immunoreactive
bands were visualized by use of the ECL kit from Amer-
sham.

Protein phosphatase-1 assay
PP1 is a Mn2+-dependent protein phosphatase with activ-
ity towards phosphoserine/threonine residues. Each 50-
μL reaction contained: 25 μg nuclear protein isolated
from B16 cells, 1 μL PP1 buffer, 1 mM MnCl2, and 2 units
of PP1. Samples were incubated at 30°C for various times
and the reaction was stopped by the addition of 5 μL of
10× sample buffer followed by boiling of the samples.
Proteins were separated by SDS-PAGE with 10% separat-
ing and 5% stacking gels. The proteins were electrically
transferred to a Hybond-C extra nitrocellulose membrane.
Blots were then incubated overnight at 4°C with
1::Th1,000 dilution of polyclonal anti-phospho-ATF-2
antibody and 1:5,000 dilution of monoclonal anti-
GAPDH antibody, respectively.
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