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Despite advances in neonatal care to prevent neonatal brain injury and

neurodevelopmental impairment, predicting long-term outcome in neonates at risk

for brain injury remains difficult. Early prognosis is currently based on cranial ultrasound

(CUS), MRI, EEG, NIRS, and/or general movements assessed at specific ages,

and predicting outcome in an individual (precision medicine) is not yet possible.

New algorithms based on large databases and machine learning applied to clinical,

neuromonitoring, and neuroimaging data and genetic analysis and assays measuring

multiple biomarkers (omics) can fulfill the needs of modern neonatology. A synergy of

all these techniques and the use of automatic quantitative analysis might give clinicians

the possibility to provide patient-targeted decision-making for individualized diagnosis,

therapy, and outcome prediction. This review will first focus on common neonatal

neurological diseases, associated risk factors, and most common treatments. After that,

we will discuss how precision medicine and machine learning (ML) approaches could

change the future of prediction and prognosis in this field.

Keywords: personalized medicine, brain injury, intraventricular hemorrhage, stroke, newborn, preterm, artificial

intelligence, precision medicine

INTRODUCTION

Despite enormous advances in neonatal care to prevent neonatal brain injury and future
neurodevelopmental impairment, predicting long-term outcome in neonates at risk for brain
injury remains difficult. Parents and families of newborns admitted to the NICU with brain injury
inevitably face many unknowns. In the initial period after birth, their first question will usually be:
“Will my baby survive?” immediately followed by other fundamental questions such as: “What kind
of future can we expect for our child? And for us as a family?” or “Will my baby be able to walk?
Will he/she go to school?”

Currently, prediction of outcome is based on developmental milestones measured at specific
ages. Early prognosis is based on CUS, MRI, EEG, and/or general movements assessment (GMA)
assessed during follow up visits. These methods’ predictive power is based primarily on population
data reflecting the general outcome in similar children. Thus, predicting the outcome in a
specific individual (personalized prediction medicine) is not yet possible and is urgently needed.
Estimating the most accurate prognosis, as early as possible, is essential to adequately inform
the child’s family and begin intervention therapy even before the onset of clinical symptoms,
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particularly given that the brain’s plasticity is highest in the first
few months after birth. An individualized approach to neonatal
brain injury and neurologic-oriented precision medicine is
warranted for fragile neonates, not only for outcome prediction
but also for preventing or reducing neonatal brain injury and
supporting decision-making. Perinatal conditions leading to
brain injury in the neonatal period include hypoxia-ischemia,

arterial ischemic stroke, and intraventricular hemorrhage

and especially its complications [post-hemorrhagic ventricular
dilatation (PHVD) and periventricular venous hemorrhagic
infarction (PVHI)], primary causes of neonatal mortality, and
life-long disabilities such as epilepsy and cerebral palsy (1, 2). It
has become clear that there is a need for individual and precise
information on the spectrum of risk factors, symptoms, early
detection, type, and location of brain injury to design/initiate
effective therapeutic and supportive strategies.

In a NICU, medical professionals are continuously trying to
obtain as much information as possible on the patients in their
care. Education and experience provide them with the skills to
make the right decisions. However, the patient load is high.
Furthermore, the human mind can only recall the outcome of
the most recent or complicated case. Computer programs can
approach human cognitive tasks. Thus, a possible approach to
fulfill the needs of modern neonatology is developing new tools
for a precision medicine approach based on large databases,
and machine learning (ML) applied to neuromonitoring and
neuroimaging data and genetic analysis and assays measuring
multiple biomarkers (omics). A synergy of all these techniques
and the use of automatic quantitative analysis could give
clinicians the possibility to provide patient-targeted answers
to parents’ questions. Artificial intelligence can mimic human
experience-based-learning with ML supervised by experts. ML
learns from past experiences, identifies trends and patterns in
data, and uses it to build a model or algorithm. These algorithms
can be used afterwards to make predictions on new data as a
supportive-decisionmaking tool. MLmodels can be created from
data where the outcome is known (supervised learning). Also,
ML can be used to identify patterns in data without previous
knowledge (unsupervised learning).

This review will first focus on common neonatal neurological
diseases such as perinatal hypoxia-ischemia, perinatal ischemic
stroke and intraventricular hemorrhage and their risk factors
and most common treatments. Afterwards, we will focus on
how precision medicine and ML approaches might accurately
identify infants who will develop HIE and cerebral palsy. We
will primarily discuss the newest (and with highest predictive
value) clinical, neurophysiological, neuroimaging, and “omics”
techniques, that in our opinion, could change the future of
prediction and prognosis in this field. However, we are aware that
the present review cannot be comprehensive of all the techniques
in the field, therefore we chose to focus on a limited list where
the first steps are already taken toward a more individualized
neonatal care and a better prediction.

Hypoxic-Ischemic Encephalopathy
Hypoxic ischemic encephalopathy (HIE) is characterized by
a disturbed neurologic function in the perinatal period,

manifesting with an abnormal level of consciousness, seizures,
respiratory insufficiency, and depressed tone and reflexes (3).
Currently, the only effective treatment to reduce death or severe
long-term neurological impairment is therapeutic hypothermia,
which led to an increase in survival rate, with a persistent rate
of death and disabilities around 16–30% (4, 5). However, timing
of intervention is a significant factor in improving outcome and
treatment efficacy (6).

Multiple mechanisms are involved in brain injury
pathogenesis, such as hypoxia-ischemia, inflammation,
excitotoxicity, and oxidative stress (7). The degree and extent
of injury and individual vulnerability depends on sex, genetic
background, maturational age, and the extent of brain injury
and the degree of brain development of particular regions at the
moment of insult (8, 9). Antenatal conditions such as maternal
infection/inflammation, intrauterine growth restriction in utero
hypoxia can also influence and modulate vulnerability to brain
injury (7). Furthermore, different stages of brain injury can
be recognized, and, for each stage, different mechanisms are
involved. This information is critical to program therapeutic
interventions (10, 11). Recent findings and ongoing studies,
using ML-based on big data and -omics approaches, suggest
that by combining clinical, neurophysiological, neuroimaging,
and metabolic/(epi)genetic data, it might be possible to identify
infants who will develop NE and cerebral palsy accurately,
shortly after birth (12, 13). This would allow early initiation of
therapy. However, these methods are currently not yet available
at the bedside.

Perinatal Arterial Ischemic Stroke
Perinatal arterial ischemic stroke (PAIS) is a relatively common
(birth-prevalence in term and near-term newborns ranges from
6 to 17/100,000) (14) and a severe neurologic disorder affecting
primarily term infants (15). The actual treatment is supportive;
however, neuroprotective approaches have been developed and
are currently under evaluation in clinical trials. Among them,
therapeutic hypothermia, erythropoietin, and stem cell therapy
showed promising results in pre-clinical and pilot studies (16–
18).

Sex (male), obstetrical conditions (first pregnancy, caesarean
section), and perinatal complications such as perinatal hypoxia,
and foetal/neonatal inflammatory state, are most commonly
associated with neonatal stroke (19). In general, most studies
emphasize the role of maternal/fetal infection/inflammation (20).
Inherited or acquired prothrombotic status contributes minor to
the PAIS (21). The cumulative perinatal risk factors increase the
incidence dramatically (22). Other conditions, such as bacterial
meningitis, hypoglycemia, and congenital heart disease, may also
be involved as risk factors in PAIS development (23).

Few studies using ML have attempted to obtain reproducible
automatic segmentation of the stroke lesion volumes, mainly
in adults (24). A comparative study evaluating different
segmentation (simple vs. complex ML) methods shows that
high-level ML methods lead to significantly better segmentation
results compared to the relatively simple classification methods.
However, none of the methods could achieve results in the
range of the human observer agreement (24). Thus, more studies
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are needed in this field since segmentation can help quantify
the size and location of injury to test the efficacy of therapies
and prognosis.

Intraventricular Hemorrhage (IVH),
Periventricular Hemorrhagic Infarction
(PVHI) and Post-hemorrhagic Ventricular
Dilatation (PVHD)
Intraventricular hemorrhage (IVH) and its severe complications:
PVHI and PVHD, are common conditions after premature birth
and are frequently associated with mortality and adverse long-
term neurodevelopmental outcome (25). Regarding treatment,
IVH prevention bundles such as delayed cord clamping,
minimal handling, midline head position, limiting the number
of infusions, and frequent multidisciplinary assessments have
emerged as essential tools for reducing IVH morbidity (26–29).

Most relevant risk factors are lower gestational age, absent
antenatal steroid treatment, low Apgar scores, pneumothorax,
early sepsis, inherited thrombophilia, and the use of inotropic
drugs during the first days of life (30, 31). However, recently
Tortora et al. (32) suggested that the congenital variation in
the vascular architecture of subependymal veins might play a
role in the pathogenesis of IVH, especially when other risk
factors affecting the cerebral circulation occur. Another recent
study demonstrated that the presence and expression of specific
vascular endothelial growth factor (VEGF) genetic phenotypes
were associated with higher incidence rates of IVH in extremely
preterm newborns (33). Regarding the possibility to apply ML
to diagnose or prevent consequences of IVH in preterm infants
early, one study attempted to determine whether ML techniques
would be able to identify specific clusters of risk factors with
different probability estimates for severe neonatal morbidity
(including IVH) in preterm infants, with promising results (34).
However, there is still much room for improvement, and further
studies on this field are needed before clinicians will be able to
use these tools in daily practice. A first, fundamental step can be
to build a big publicly available dataset of clinical data, CUS and
MRI images, neurophysiological and biochemical/genetic data by
which deep ML models can find more generalized features to
improve their performance.

THE ROLE OF PRECISION MEDICINE FOR
“BRAIN ORIENTED CARE”

Advances in neonatal care, specifically “brain oriented care,”
particularly the use of therapeutic hypothermia for the
treatment of hypoxic-ischemic encephalopathy, paved the way
for neuroprotection in newborns at risk for brain injury. A
multidisciplinary team for “brain-oriented care” is warranted
in the NICU to optimally implement such treatments (26)
and provide tailored care. This team should include pediatric
neurologists, neonatologists, and “brain-oriented” specialized
nurses (26). Furthermore, specific protocols should be combined
with neuroimaging (MRI) and neuromonitoring [video multi-
channel EEG and amplitude-integrated EEG, near infrared
spectroscopy (NIRS)] (Figure 1). Moreover, laboratory support

FIGURE 1 | Precision medicine for brain-oriented care.

for biomarkers, genetic and metabolic tests, and data scientists
to analyze big data providing rapid algorithms for diagnosis
and ad hoc treatments should be available. Dissemination of
knowledge and research personnel and facilities is also warranted.
Furthermore, genuinely personalized medicine is unlikely to be
realized without the use of artificial intelligence (AI) (35) and
ML. In neonatal neurology, ML is used to prevent brain injury
from the continuous assessment of vital signs (36). Fairchild et
al. (37) used a heart rate characteristic index (HRC index) from
the first 28 days after birth in preterm infants and related this to
neurodevelopmental outcome. They found an abnormal HRC to
correlate with acute brain injury.

Much effort wasmade to develop automated seizure detection.
When tested, all algorithms showed clinically relevant detection
rates (38). Doyle et al. (39) and Malarvilli and Mesbah (40)
used heart rate variability to detect seizures. Their model
showed relevant results with sensitivity and specificity above 80%.
Karayiannis et al. (41) designed a trained neural network that
was able to distinguish seizures from random infant movements
based on video images. In the term infant, encephalopathy
severity can be classified based on the EEG signal. Several
attempted to grade the degree of abnormality in the EEG of a
neonate with hypoxic-ischemic encephalopathy (42). The ML
models were suitable as a clinical decision support tool to
predict outcome after hypoxic-ischemic encephalopathy (43).
Furthermore, evaluating the human connectome and its relation
to normal and abnormal development in preterm and term
infants is virtually impossible without ML (44). AI and ML are
developing fields of research and will be introduced in clinical
practice. Moreover, the interpretation of MRI images of term and
preterm infants using ML can possibly individualize the outcome
prognosis. ML understanding of EEG patterns can potentially
guide medical treatment and the use of sedation. EEG and
vital parameter analysis can explore sleeping patterns in preterm
babies. The potential of automatically warning a caregiver when
a baby is sleeping makes true personalized developmental care
possible (45, 46).

The combination of clinical and ML tools trained
on combined datasets of MRI, EEGs, clinical and
biochemical/genetic data would hopefully help clinicians in
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providing all the treatments and support to mitigate the long-
term effects of brain injury through the use of “brain oriented-
care” during the whole admission and after discharge in a
follow-up program.

Particularly, many efforts have been put into implementing
MRI, EEG, GMs, Hammersmith Infant Neurological
Examination (HINE) training for clinicians worldwide.
However, achieving high education and gain experience in all
these techniques is very hard in small centers. Thus, providing a
decision support tool derived fromML algorithms can help every
physician in decision-making, hopefully, a relevant improvement
in long term outcome.

MRI

The use of magnetic resonance imaging (MRI), a non-invasive
neuroimaging method, has revolutionized our knowledge of
structural alterations to normal neural development leading
to neurological impairment later in childhood (47). MRI can
provide detailed info in vivo of the fetal and neonatal brain
that cannot be obtained in any other imaging modality,
helping clinicians define specific risk factors for neonatal brain
injury (48).

Standard sequences (T1 and T2-weighted images) provide
anatomic detail of the developing brain. They can detect
brain injury and lesions linked to common neurological
neonatal diseases: hypoxic-ischemic brain injury, perinatal
arterial ischemic stroke, IVH-PVHI, infections of the central
nervous system, and congenital cerebral malformations.
Furthermore, advanced MRI sequences can be used in specific
conditions to assess: brain metabolism (MR spectroscopy),
the presence of hemosiderin (susceptibility-weighted images),
microstructural integrity (diffusion tensor imaging), acute
ischemic injury (diffusion-weighted images), cerebral veins and
arteries (magnetic resonance angiography and venography),
brain perfusion (arterial spin labeling), and function (resting-
state functional MRI). Moreover, quantitative approaches
can measure brain volumes of all different regions, quantify
microstructural integrity and cortical development (47, 48), that
are otherwise difficult to quantify by eye. Ad hoc protocols and
specific methodologies have been developed in order to address
the methodological challenges of the newborn population such
as: sensitivity to motion, small brain size, different soft-tissue
contrast and incomplete maturation of brain structures (47).
Thus, the use of neonatal specific MRI post-processing tools is
essential in order to obtain reliable results (47).

Recently, newly developed ML techniques have been applied
to earlier acquired neonatal MRI databases to predict cognitive
scores at 4 years (49). Similar techniques have been used
to predict cognitive, and motor development in preterm
infants based on the microstructure of white matter regions
measured using diffusion tensor imaging (DTI) correlated with
the Bayley Scales of Infant-Toddler Development (BSID-III),
as well as to predict neurological outcome in patients with
neonatal encephalopathy based on connectivity networks (50–
54). Moreover, deep learning–methods based on neonatal MRI

and brain segmentation analysis have successfully automated
classification of impaired brain maturation in full-term infants
born with congenital heart disease and have provided insight
into the pathogenesis of cerebellar dysplasia (55, 56). However,
to optimize and refine the prognostic value of quantitative
MRI techniques, it would highly be recommended to use
standardized protocols, imaging modalities, and scan timing
across centers (57).

Quantitative MRI Techniques and Outcome
Prognosis
Quantitative brain MRI aims to offer objective and reliable
measures of brain structure, function, and brain connectivity, in
the normal and abnormal brain. The main aims of quantitative
neonatal MRI are: the development of automatic algorithms
for images interpretation (58), the detection, measurement, and
characterization of “subtle” brain abnormalities/injuries (59, 60),
and prediction of behavior, cognitive and motor long term
outcome based on sophisticated algorithms (61). Quantitative
MRI analysis is based on the use of multiple software packages
capable of drawing together neuroimaging data processing
routines from across, linking them together to implement end-to-
end processing and analytic solutions. These solutions not only
lead to detailed mathematical and statistical results but also help
to improve the reproducibility of measurements and reduce the
post-processing duration (62).

Using ML approaches, quantitative analysis of brain
morphometry showed significant deviations between different
groups of preterm infants (with or without brain injury,
extremely/moderately preterm) compared with full-term infants
(47). A study comparing visual vs. quantitative MRI assessment
of the thalami in infants with HIE showed that both approaches
are needed since visual assessment alone can underestimate
injury (63).

Automatic methods for brain volume and cortical
morphology quantification, early as well as term equivalent
age MRI, were good predictive tools of both motor and cognitive
outcome at 2–3 years (64, 65). Furthermore, quantitatively
assessed volume and location (frontal, parietal and temporal)
of white matter injury, measured from MRIs, were predictive
of motor outcome, while only frontal injury was predictive of
cognition in a large group of preterm infants (66).

Diffusion MRI quantitative measures have also been related
to later behavioral development in infants at risk for brain
injury. Using automatic voxelwise analyses of DTI showed
that WM microstructure in full-term newborns correlates with
neurodevelopmental outcome at 2-years (67). Another study on
neonatal connectome (detected using deep learning approaches)
at birth showed its predictive value on the 2-years cognitive
outcome in both full-term and preterm infants (68), with
connections involving the frontal lobe being the most important
for classification. Smyser et al. (69), using a multivariate
pattern analysis on resting-state functional MRIs from preterm
infants compared to term controls, were able to estimate birth
gestational age, and thus, brain maturity, with an accuracy
of 84%.
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Therefore, MRI advanced techniques provide direct
information on brain morphology, structural brain connectivity,
microstructural integrity of both gray and white matter, and also
on cerebral function (47), giving indirect insights into molecular
and cellular impairment in relation to brain injury. Thus, ML
application to neonatal MRI, combined with other clinical,
behavioral, and electrophysiological (see next paragraph)
markers, can play an essential role in early diagnosis and
prediction of neonatal brain injury and long-term impairment.

CRANIAL ULTRASOUND (CUS)

Ultrasound is a neonatal neuroimaging technique with several
advantages over other neuroimaging techniques: it is considered
less burdensome to the patient, requires no transport (e.g., to the
MRI unit), or sedation, it can be performed at the bedside with
acceptable disturbance to the infant. It can be initiated directly
after birth and repeated if necessary (70). Ultrasound is seen as
complementary to MRI because it still lacks several important
neuroimaging features such as quantitative tissue analysis US.
Furthermore, CUS is operator dependent, has a limited field of
view, and variability across the quality of ultrasound machines.
However, ultrasound technology developments are rapid, and
ultrasound techniques such as elastography, ultrafast Doppler,
contrast-enhanced ultrasound, and functional ultrasound are
examples of techniques finding their way in routine neonatal
care (71–75). Early and serial neuroimaging can provide valuable
information about the timing and evolution of neonatal brain
lesions in (pre-)term infants and enables visualization of (a-
)typical brain maturation (76).

Trained ultrasonographers, using modern ultrasound
systems, can detect most neonatal hemorrhagic and ischemic
brain lesions and major congenital as well as maturational
anomalies (77). The use of different and higher frequency
transducers (allowing submillimeter resolution) and additional
acoustic windows (e.g., the mastoid fontanel) improved
visualization, resulting in a more reliable detection of
abnormalities (78). Doppler sonography of neonatal brain
vessels enables the evaluation of intracranial blood flow velocities
and the patency of both arteries and veins (e.g., to diagnose
sinovenous thrombosis, arterial vessel occlusions) (78). Modern
ultrasound machines have advanced Doppler modes, allowing
visualization and quantification of low flows (1–2 cm/s) in small
vessels (100–200µm) (79).

ML in Cerebral Ultrasound Techniques
Both 2D and 3D ultrasound measurements are useful to study
(a-)typical fetal and neonatal brain growth (80). For example,
using 3D ultrasound measurements, ventricle volumes can be
calculated to evaluate PHVD (81, 82). Machine learning can be
applied to classify fetal brain ultrasound images as normal or
abnormal, to detect non-typical brain growth, and detect general
and focal brain injury (e.g., IVH) on neonatal CUS (83). ML
is very effective in ultrasound analysis by modeling complex
multidimensional data (84).

Ultrasound elastography is a relatively new technique that
calculates tissue stiffness and is used to study (ab-)normal

neonatal brain development. Two types of elastography are
frequently used in neonatal CUS studies: 1. strain elastography
(using external compression) and 2. shear wave elastography
(using applied acoustic energy). Contrast-enhanced neonatal
CUS (CE-CUS) is another promising technique to study
microvasculature and cerebral vascular autoregulation in infants
at risk for brain injury (e.g., infants with HIE, infants with
congenital heart defects) (85, 86). Contrast-enhanced neonatal
CUS uses injection of gas-filledmicrobubbles to study blood flow.
CE-CUS also allows targeted (localized) medication delivery,
which has potential future use for localized drug delivery in
the brain (87). Another fast-developing ultrasound technique
that holds promise for neonatal care is ultrafast doppler
(UFD). Perinatal brain injury is commonly associated with
inadequate brain perfusion, and UFD can be used to study
microperfusion in detail (72). Combining continuous UFD
with EEG could unravel the relationship between cortical
electrical activity and perfusion (e.g., infants with HIE and
seizures) (71).

Because of the large amount of data that the above-discussed
ultrasound techniques generate, the integration (registration)
with other imaging- and neuromonitoring techniques, and the
observer dependence, ML will play a significant role in the future
of neonatal CUS. ML will be needed to design clinical decision
support algorithms that take several individualized variables
into account.

THE USE OF EEG/aEEG FOR PRECISION
MEDICINE

Newborns with vital instability or at risk of serious morbidity
are admitted or transferred to the NICU, where vital parameters
such as heart rate, blood pressure, oxygen saturation, and
other measures are closely monitored. Additionally, brain
function monitoring is essential. EEG can monitor brain
function, giving continuous, long-time, and high-resolution
data on cortical function. Thus, EEG is a crucial tool for
precision medicine and a tailored approach to neonatal brain
injury. EEG can be useful for precise diagnosis, evaluation
of treatment efficacy, and prognosis. However, interpreting
conventional EEG presents significant challenges to clinicians,
and the most prominent current limitation is the need for
expertise in the interpretation of EEG traces (88, 89). Thus,
most NICU currently use the filtered and time-compressed
EEG trace (aEEG). aEEG is a non-invasive, inexpensive, bedside
tool that evaluates the brain functional status of the newborn,
with a relatively easier interpretation based on background
patterns recognition. This technique is a powerful tool for the
prediction of neurodevelopmental outcome in both preterm and
term neonates.

In the last decade, the automatic classification of EEG/aEEG
has been developed (90). Different automatic algorithm
classifications of background patterns, sleep-wake cycling, and
seizure detection have been investigated using machine learning
approaches (90). This paves the way for future incorporation of
these algorithms in the daily neuromonitoring of newborns at
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risk. The first positive results were obtained to predict adverse
seizure-related outcomes in critically ill children, albeit in a
small number of patients (91). Recently, an ML algorithm for
neonatal seizure recognition, ANSeR, was investigated in a
randomised controlled trial and was found to be safe and able
to detect neonatal seizures. However, it did not yet improve the
identification of individual neonates with seizures (38).

EEG/aEEG in HIE and Stroke Patients
Term infants with NE need continuous monitoring of brain
function using aEEG/EEG. The visual interpretation of the
background pattern is a useful tool to monitor the recovery
of cortical activity after HI injury (92, 93). Mainly, the
normalization of the EEG after HI injury correlates with the
outcome at 2 years of age. This process goes through different
recovery steps from almost no electrical activity at the time
of injury to the increasing number of bursts, toward a more
continuous EEG with the appearance of sleep-wake stages
(92, 94–96). For more personalized, brain-oriented care, visual
EEG interpretation requires high expertise, and the evaluation
incorporates multiple EEG characteristics such as continuity,
amplitude, frequency, symmetry and synchrony, presence of
sleep stages, and clinical information regarding gestational and
postnatal age, differential diagnosis, administration of sedatives
(94). This high expertise is not always continuously available
in the NICU. Thus, the development of real-time, automated
EEG analysis algorithms could be very valuable to assess cortical
brain activity for clinical management, treatment evaluation, and
prognosis. An important attempt was performed by Stevenson et
al. (94) who developed a method for automatically grading the
degree of EEG abnormality in neonates with HIE. EEG signals
were post-processed based on EEG automated classification
of abnormalities and assigned to one of four long-term EEG
grades, resulting in 83% of EEG correct grading from 54
neonates. Lofhede et al. (90) managed to achieve 100% correct
classification when separating burst suppression EEG from all
other EEG patterns and 93% true positive classification when
separating quiet sleep from the sleep stages in term infants.
Burst suppression (BS) has also been associated with poor
outcome (97), allowing for the analysis of interburst intervals
(IBI) to be used as a feature that can assess the recovery of the
infant’s brain. New machines for cerebral functional monitoring
incorporate automatic and real-time IBI calculation algorithm
(IBI%), making it available for the daily clinical management of
these infants.

Furthermore, as already stated, the presence of seizures
can be an indicator for neurodevelopmental outcome, as they
can be caused by HIE (98) or perinatal stroke and can
be detected through EEG data or clinical observation (92,
99–102). Automated seizure detection algorithms (SDA) are
being developed with a reasonable performance compared to
human expertise (103, 104) and with the advantage of being
more objective, capable of analyzing long EEG recordings
with low false detection rates and low missed seizures rates
(105). Yet, currently available SDAs show significant limitations
since seizures can be of short duration, low amplitude, and
possibly migrate from channel to channel, with large intra and

interpatient variability of seizure morphology and repetitive
patterns (106). Furthermore, there is a high number of artifacts
both of biological or technical origin mimicking seizures, that
in combination with the low incidence of seizures and the wide
range of normal rhythmic background activity (varying across
gestational ages and post-natal ages) can reduce the power in
seizure detection rates and increase the number of false-positive
detections (107).

Analysis of the newborn’s sleep-wake cycle (SWC) can also
provide helpful insights on outcome in infants with brain
injury (108). Regular SWC can distinguish those with proper
brain integrity from those with HIE (109), both in full-term
(96) and extremely preterms (110). Recent work suggested that
decreased EEG delta-frequency power and longer periods of quiet
sleep, and lower sleep-wake state entropy were also predictive
of worse neonatal neurobehavioral scores (110). Despite many
publications regarding ML and the development of automatic
EEG/aEEG algorithms, there are still studies failing to establish
the long-term predictive value of early aEEG/EEG characteristics
in neonates (111).

A possible solution to allow a more comprehensive picture
of the brain and thus yield more consistent, personalized, and
reliable results should be the use of a combination of different
measurements of brain dynamics, such as aEEG/EEG, NIRS,
and MRI, together with the clinical neurologic examination.
Nowadays, only a few studies on newborns have focused on the
use of combined early aEEG/EEG and other cerebral monitoring
techniques for the prediction of future outcome, with some
promising results (112–116).

EEG/aEEG Concerning IVH-PVHI
Preterm infants are at risk for peri/intra-ventricular hemorrhage,
especially during the transition phase, with associated adverse
outcomes such as death or neurodevelopmental delay (117).
Cerebral functional monitoring is essential to monitor preterm
brain function during the first postnatal days. aEEG/EEG is the
only effective bedside tool available in the NICU (118, 119).

In extremely preterm infants, EEG/aEEG develops through to
full term age showing increasing continuity of the background
patterns, appearance of specific transient waveforms typical of
prematurity, and the appearance of sleep-wake cycling (120).
Assessing the infants’ EEG recording can give insights into
individual brain maturation in relation to GA and postnatal age
(PNA), and serial recordings can help determine the timing and
severity of brain injury and, thus, outcome prognosis in this
high-risk group (120). Therefore, cerebral functional monitoring
(CFM) using aEEG/EEG is critical for diagnosis, prognosis, and
treatment in the newborn period (120). ML approaches have
been used to analyze several clinical factors in 230 very preterm
infants to predict the risk of intracerebral hemorrhage with good
predictive ability achieved with different combinations of clinical
and laboratory parameters (121). However, the developedmodels
need to be tested further in new larger datasets before being used
in the clinics.

Regarding neonatal seizures in preterm infants, these are
a distinctive sign of neurological dysfunction in early life,
and diagnosis is always challenging in this group. Clinical
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FIGURE 2 | aEEG for neonatal seizures.

features, when present, can often provide valuable clues
about etiology. However, the majority of neonatal seizures are
subclinical. Conventional video EEG and aEEG represents the
gold standard for diagnosis, but ∼15% of patients will require
more sophisticated algorithms for diagnosis, including metabolic
and genetic screening (110, 122, 123) (Figure 2). Currently,
the standard recommendation is to monitor all neonates at
high risk for seizures with long-term video-EEG (124) and
to develop brain-oriented NICUs where neonatologists and
pediatric neurologists would collaborate for early diagnosis and
ad hoc treatments based on electroclinical phenotypes and
etiology (125). Further steps should be taken in this direction in
a multicenter/multicultural approach.

NEAR INFRARED SPECTROSCOPY (NIRS)

Near-infrared spectroscopy (NIRS) is a bedside technique that
can provide valuable continuous information on neonatal
cerebral blood flow, cerebral blood volume, and oxygen
consumption (126–130). NIRS monitoring can help evaluate
the balance between tissue oxygen delivery and consumption,
allowing assessment of brain perfusion in critically-ill infants.
Several studies have shown correlations between cerebral
NIRS data and different neonatal conditions (e.g., anemia,
hypotension, patent ductus arteriosus, hypoxia, hypocarbia,
sepsis, HIE, stroke). The SafeBoosC studies have examined
steering treatment on guideline-driven cerebral rSO2 monitoring
in extremely premature infants to improve clinical outcomes
(131). Cerebral NIRS monitoring has now become a useful
addition to other monitoring tools in several neonatology
departments. NIRS monitoring has been incorporated in several
multimodal neuromonitoring approaches to assess neonatal
cerebral functioning in the past decade (132). For example,
NIRS is used to study cerebral vascular autoregulation, in which
machine learning is applied to unravel the complex interactions
between blood pressure, NIRS, and EEG data (114, 133–135).
ML has several uses in NIRS data analysis such as artifact

detection and correction, the quantitative evaluation of deep and
shallow tissue layers, to analyze the high-frequency raw NIRS
data signals to study in beat-to-beat variations within the NIRS
signals and to cope with the large amount of data when multiple
NIRS optodes are applied to the neonatal head (136, 137). We
believe that with the help of ML, NIRS will be part of the
multimodal neuromonitoring of infants at risk for brain injury
to diagnose injury and steer treatment to prevent further injury
and optimize neurodevelopment.

GENERAL MOVEMENTS ASSESSMENT
(GMs)

Assessment of general movements (GMs) is a
neurodevelopmental biomarker and evaluates the presence and
quality of spontaneous movements originating in the brainstem
(88). GMs begin in fetal life and are useful to build neural
connectivity between motor and sensory systems. The presence
of specific movement patterns such as cramped-synchronized
at term equivalent age, together with the absence of fidgety
movements at 3–5 months, are predictive of the development
of cerebral palsy and other developmental problems (138). GMs
has a sensitivity of 98% for cerebral palsy (CP) prediction and
represent, together with neonatal MRI (86–89% sensitivity) and
the HINE (90% sensitivity), the best predictive tool for detecting
cerebral palsy before 5 months’ of age and as early as by 3 months
(139–142). Limitations to the broader use of GMs evaluation is
the lack of trained clinicians and its subjective nature. Recently,
an attempt to a more objective and cost-effective alternative
based on the automatic video-based assessment of GMs has been
made (143–145). In the paper by Orlandi et al. (144) retrospective
videos were evaluated using automatic analysis, and GMs were
classified as typical or atypical using different classification
algorithms. This retrospective study showed up to 92% accuracy
in predicting CP. More effort should be made in this direction to
support clinicians in early diagnosis and treatment.

HAMMERSMITH INFANT NEUROLOGICAL
EXAMINATION (HINE)

As previously mentioned, HINE can predict the development
of cerebral palsy before 5 months of age with 90% sensitivity.
There is evidence that the congruent combination of abnormal
GMs trajectory, abnormal MRI and low HINE score is even more
accurate than the individual technique alone (139, 140). The
use of HINE plays a role also in the determination of severity
of disability, a very important matter for parents or caregivers.
Severity of motor outcome is difficult to predict before 2 years of
age due to the rapid brain growth and re-organization in response
to external stimuli and therapy. Thus, developing of motor skills
but also the inconstant and changing presence of hypertonia
(140), outcome prediction should always be discussed cautiously
and based on standardized examinations. In particular, the
following HINE cutoff scores predict the probable severity of
motor outcome before 2 years of age: 50–73 Indicates likely
unilateral CP (i.e., 95–99% will walk), • <50 indicates likely

Frontiers in Pediatrics | www.frontiersin.org 7 May 2021 | Volume 9 | Article 634092

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Tataranno et al. Neonatal Brain Injury: Tailored Approach

bilateral CP. Furthermore, a score <40 at 3–6 months indicates
the high chance of walking inability (142).

LARGE DATABASES

Many preterm infants are affected by the same neonatal
neurological incidents. However, their internal variation
in inflammatory response, environmental expositions, and
(epi)genetics can influence the etiology and treatment response.
Identification of individual risk factors and pathophysiological
reactions can lead to targeted interventions. The use of electronic
health records (EHR) has created vast amounts of clinical data
on infant treatment. Utilizing the knowledge extracted from this
data has the potential of providing individualized treatment plans
(36). Large databases consist of a combination of individuals.
These databases provide an insight into the epidemiology of
neonatal disease with trends over time and the distribution
of risk factors (146). Neonatal research networks, such as
the NICHD and Vermont Oxford network, are collaborative
networks that combine data from different hospitals. They can
combine relevant information on relatively rare diseases affecting
the newborn infant using large numbers. Shankaran et al. (147)
described a cohort of 4,216 infants to assess post-hemorrhagic
dilatation outcomes in extremely preterm infants. They were able
to identify several predictors of neurodevelopmental impairment
or death, such as surgery for retinopathy of prematurity, even
though the incidence in a general NICU would only be a
few cases.

Even more significant numbers can be obtained using
nationwide databases. Most of this database research is limited to
general mortality andmorbidity trends for extreme preterm birth
(43). Matsushita et al. (148) used the Neonatal Network of Japan
database to identify risk factors for epilepsy at 3 years of age in
VLBW infants. As only 1.7% of the cohort developed epilepsy, it
would have been almost impossible to identify clinically relevant
risk factors in a smaller cohort. Technological innovations make
it possible to combine different information sources and provide
information on a more detailed level. Clinically collected data
from EHR with well-regulated, international, and privacy proof
unrestricted access for researchers, such as the MIMIC-III and
AmsterdamUMCdb database, and the increased availability of
raw trial data could bring about a revolution in research on
preterm neonates (149–152).

(Epi)GENETICS AND OMICS—FUTURE

The future concept of personalized medicine will be based on
the idea that by using individual genetic/metabolic information,
scientistsmay ensure themost appropriate treatments to the right
patients—thus, “the right drug, at the right dose for the right
person” (153). Genomics and epigenetics, i.e., the interaction
between the genome and the environment, are changing the
concept of clinical medicine, and this is particularly true in the
field of neonatal neurology. Neonatologists and pediatricians
have the unique chance to ensure that young patients derive
maximal benefit from these new technologies.

In a recent study, epigenetic changes measured in blood
leucocytes and analyzed using AI/ML techniques appeared to
predict cerebral palsy accurately and provide crucial information
on the pathogenesis of long-term disability (12).

Both genomics and epigenetics will provide clinicians new
insights into the biological basis of health and disease (154). This
will also lead to the sometimes-challenging choices of both the
clinicians and the patients/families. Furthermore, understanding
the mechanisms through which the environment exerts changes
on genome expression will give new possibilities for new
treatments by modulating gene expression and should be further
investigated (155). In a not far-off future, knowledge of patients’
genomes will help improving diagnosis and, through informed
prediction of individual drugmetabolism and responsiveness, the
individualized selection of therapies.

Metabolomics can also provide valuable information for
outcome prediction. Metabolites offer a unique signature
potentially usable to predict neonatal diseases and evaluate
disease progression and treatments’ effect (156–158).

Metabolomic analysis performed in cord blood predicted
the development of NE with an AUC of 0.67, with lactic acid
and alanine as primary metabolite predictors for NE. When
metabolomic analysis results were combined with clinical data,
the AUC rose to 0.96 (13). Moreover, urinarymetabolic spectra of
extremely preterm infants early after birth were associated with
moderately to severely abnormal cortical grey matter and white
matter abnormalities at MRI performed at term equivalent age
MRI (158). A growing number of studies had been published
on this subject since metabolomic has the advantage of being
rapid and non-invasive. Thus, metabolomics could be useful for
monitoring early cellular injuries and cell death during perinatal
insults. Therefore, it can pave the way for the early preventive
measure to improve the neurodevelopmental outcome of the
affected newborns.

CONCLUSION

The machine learning approach will provide more detailed
information using AI for MRI, CUS, EEG, NIRS, and GM/HINE.
An algorithm combining all techniques might give the best
decision support tool for defining risk factors for brain injury or
impaired brain development, therefore enabling better treatment
and long-term outcome. In IVH, PAIS, and brain injury after
HIE, MRI can improve personalized prognosis and treatment
plan. EEG and aEEG provide more information on the brain than
just a background pattern and seizure activity. Together with
the HINE, GMs are the best predictive tools for early detecting
cerebral palsy, and automatization of GMs classification can
increase the rate of early diagnosis.

However, for the utilization of this potential, more expertise
and the dissemination of knowledge is essential. Machine
learning has the prospective of alleviating the task of bringing all
the pieces of knowledge together. With the increasing amount
of data on the infant in the NICU, it will become nearly
impossible to interpret all these variables for a clinician and use
it for the benefit of the individual patient. Artificial intelligence
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can fill (part of) the gap of knowledge and interpretation.
Especially when genetics, epigenetics, biomarker research, and
metabolomics will provide us with even more variables in the
near future. As the era of AI, -ethics, and –omics is approaching,
we must consider the Ethics. Will all babies benefit equally
from precision medicine? Most efforts to personalised medicine
require a high resource setting.MRI, continuousmonitoring with
ML interpretation, whole-genome sequencing, and even fully
equipped NICU are not available in most parts of the world.
Furthermore, to make an individual treatment plan and risk
assessment, many assumptions are taken into account. They hold
the risk of bias and even discrimination. Attempts to personalise
treatment plans must include careful ethical consideration;

therefore, it should eventually be considered a decision support
tool. Careful monitoring of infants in the perinatal period can
potentially identify and improve neonatal brain injury treatment.
“Precision medicine toward personalised care” is the aim for the
near future.
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