
 International Journal of 

Molecular Sciences

Article

Synthesis of Finely Controllable Sizes of Au Nanoparticles on a
Silica Template and Their Nanozyme Properties

Bomi Seong 1, Jaehi Kim 1, Wooyeon Kim 1, Sang Hun Lee 2 , Xuan-Hung Pham 1,* and Bong-Hyun Jun 1,*

����������
�������

Citation: Seong, B.; Kim, J.; Kim, W.;

Lee, S.H.; Pham, X.-H.; Jun, B.-H.

Synthesis of Finely Controllable Sizes

of Au Nanoparticles on a Silica

Template and Their Nanozyme

Properties. Int. J. Mol. Sci. 2021, 22,

10382. https://doi.org/10.3390/

ijms221910382

Academic Editor: Silvia Panseri

Received: 24 August 2021

Accepted: 22 September 2021

Published: 26 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea;
iambomi33@konkuk.ac.kr (B.S.); susia45@gmail.com (J.K.); buzinga5842@konkuk.ac.kr (W.K.)

2 Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Korea;
sanghunlee@hanbat.ac.kr

* Correspondence: phamricky@gmail.com (X.-H.P.); bjun@konkuk.ac.kr (B.-H.J.);
Tel.: +82-2-450-0521 (X.-H.P. & B.-H.J.)

Abstract: The precise synthesis of fine-sized nanoparticles is critical for realizing the advantages of
nanoparticles for various applications. We developed a technique for preparing finely controllable
sizes of gold nanoparticles (Au NPs) on a silica template, using the seed-mediated growth and
interval dropping methods. These Au NPs, embedded on silica nanospheres (SiO2@Au NPs), possess
peroxidase-like activity as nanozymes and have several advantages over other nanoparticle-based
nanozymes. We confirmed their peroxidase activity; in addition, factors affecting the activity were
investigated by varying the reaction conditions, such as concentrations of tetramethyl benzidine and
H2O2, pH, particle amount, reaction time, and termination time. We found that SiO2@Au NPs are
highly stable under long-term storage and reusable for five cycles. Our study, therefore, provides
a novel method for controlling the properties of nanoparticles and for developing nanoparticle-
based nanozymes.

Keywords: gold nanoparticles; nanoparticle size; gold-assembled silica nanostructures; local surface
plasmon resonance; nanozyme; peroxidase-like activity; nanoparticle; nanosphere; aggregation; fine
controllable size

1. Introduction

Enzymes are biocatalysts that play an important role in living systems. However,
they are expensive, difficult to store, laborious to produce, and are easily denatured in
external environments from varying temperature, pH, and chemical stressors [1,2]. These
drawbacks critically limit their practical uses [3].

To overcome the above limitations, nanozymes have been developed as a new alterna-
tive to enzymes [1,4]. Nanozymes are nanomaterials that possess an intrinsic enzyme-like
activity and have advantages such as stability in external environments, reasonable costs,
and good catalytic activity [1,2,5–9].

Since the discovery of the unique peroxidase-like activity of Fe3O4 magnetic nanopar-
ticles (NPs) by Yan’s group in 2007, numerous researchers around the world have gained an
interest in nanozymes made of metal nanomaterials [10]. Metal nanomaterials, including
gold (Au) NPs, platinum NPs, iron oxide NPs, cerium oxide NPs, manganese oxide NPs,
and copper oxide NPs, began to be used as nanozymes [5,6,10–15]. Most of them have
enzyme-like activities, such as those of peroxidases, catalases, oxidases, and superoxide
oxidases [1–3,5,6,10,14–22].

Among the various metal nanomaterials, Au NPs have attracted the most attention
because of their outstanding catalytic properties and advantages [23–35]. Au NPs can be
synthesized easily and are stable [36,37]. In addition, the physical/chemical properties of
Au NPs can be controlled by controlling their size and shape [24,26,33,35]. These NPs are
also highly biocompatible and are easy to functionalize [24,30,35,38–42]. However, gold is
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not cheap, and the catalytic reactions depend on the surface area of the NPs. Fine-sized
NPs can be cost-effective, but they are difficult to separate for reuse [1,3,8–10,17,43,44]. The
development of a structure that uses small amounts of gold to acquire a large surface area,
while still being easily separated, might prove to be a highly useful material in the field of
nanozymes. A nanostructure where Au NPs are assembled onto a silica (SiO2) sphere core
was developed by the Halas group in 1998 [45]. The chemical and optical properties of the
Au NP-embedded SiO2 structure can be changed by simply controlling the diameter of the
core and layered nanoparticles [46–51]. The NP-embedded SiO2 nanostructures are also
cost-effective since only small amounts of expensive Au NPs are embedded onto the silica
core, and they are easily separated from the reaction solution with the SiO2 core.

Au NP-assembled SiO2 nanostructures have been investigated in various fields [50,52–56]
and have been found to have many merits due to the combined properties of Au NPs and
of the silica core, simultaneously utilizing the outstanding and unique features of Au NPs
and the inert and versatile feature of SiO2 [52,54,55,57]. In addition, the absorbance spectra
of the nanostructures can be tuned across the visible and infrared regions by controlling
the size of the Au NPs [38,39,58,59]. Due to these properties, the Au NP-assembled SiO2
nanostructures have broad applications. While there are many possible approaches for
the control of the size and density of Au NPs on a template surface, a method of synthesis
for those nanostructures has not yet been established [46,48–50,58,59]. For this reason,
the low density and non-uniform morphology of Au NPs on nanostructures remain a
considerable challenge [46,48–50]. There is, therefore, a need for the development of an
improved method for preparing Au-NP-assembled silica nanostructures.

Our group recently developed SiO2@Au nanostructures in which Au NPs were densely
immobilized on the surface of a SiO2 nanosphere [60]. For this nanostructure, the SiO2
nanosphere was used as a template, and the Au NPs were uniformly and densely intro-
duced on it, using the seed-mediated growth method. SiO2@Au nanostructures have
enhanced separation and re-dispersion properties and are more stable during surface
modification than Au NPs. Moreover, they have shown potential as effective nanozymes.
In this study, besides introducing dense and uniform Au NPs onto the SiO2 nanospheres,
we also developed a facile method to very precisely control the size of Au NPs on the SiO2
surface, and we investigated their optical and catalytic characteristics by controlling the
size of the Au NPs. Furthermore, various factors affecting the peroxidase-like activity of
SiO2@Au NPs were also studied.

2. Results and Discussion
2.1. Preparation of Size-Controlled Au NPs-Assembled Silica Nanostructures (SiO2@Au NPs)

The SiO2@Au NPs were prepared by using seed-mediated growth synthesis, consisting
of two steps: embedding Au seeds on the SiO2 surface, and growth of the Au NPs via the addi-
tion of an Au3+ precursor and reductant in intervals [45,52]. First, the Au seeds (~2.5 nm) were
prepared by using an Au3+ precursor (HAuCl4) and tetrakis(hydroxymethyl)phosphonium
chloride (THPC). Then, the Au seeds were incubated with aminated SiO2 nanospheres
(~160 nm) to obtain Au-seeded SiO2 nanospheres, as previously reported [56,57,60–62].
On the Au-seeded SiO2 nanospheres, the reduction of the Au3+ precursor was directly
conducted by using ascorbic acid (AA), which is a mild reducing agent, in the presence
of polyvinylpyrrolidone (PVP) as a stabilizer. In these mildly reducing conditions, the
progress of the growth stage is much slower than in strongly reducing conditions, making it
easier to control the growth procedure [36]. A low concentration of the Au3+ precursor and
AA were added onto the Au-seeded SiO2 in 5 min intervals until the desired concentrations
for fine control over the size of the Au NPs are attained. The amounts are indicated in
Table 1.
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Table 1. Amount of material controlling TEM) images of gold-embedded silica nanospheres (SiO2@Au NPs) and its effect.
The sizes of Au NPs were measured by using TEM images.

Sample Au-Seeded
SiO2 (mg) Au3+ (µM)

Ascorbic
Acid (µM) Au Size (nm) λmax (nm) λmax (a.u.) Suspension

Color

I 200 0 0 1.41 - - Pale brown
Ii 200 50 100 4.33 543 0.27 Pink
Iii 200 100 200 6.42 571 0.54 Purple
Iv 200 150 300 7.33 593 0.87 Dark blue
V 200 200 400 9.56 619 1.20 Dark blue
Vi 200 300 600 15.27 632 1.27 Dark blue

Sample numbers correspond to those mentioned in Figure 1.
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Figure 1. (a) Typical scheme of synthesis process of SiO2@Au nanoparticles. (b) The transmission electronic microscopy
(TEM) images of gold-embedded silica nanospheres (SiO2@Au NPs) fabricated in various concentrations of Au3+: (i) 0 µM,
(ii) 50 µM, (iii) 100 µM, (iv) 150 µM, (v) 200 µM, and (vi) 300 µM.
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First, numerous small Au NPs (~2.5 nm) were attached throughout the SiO2 surface
as seeds for the further growth of Au NPs. It is called SiO2@Au NP without the Au (III)
precursor (0 µM), as shown in Figure 1b(i).

Subsequently, various concentrations of the Au3+ precursor were added to the Au-
seeded SiO2 nanospheres at intervals; the size of the Au NPs grew larger as the Au3+

concentration was increased in Figure 1b(ii–vi). Moreover, the size of the Au NPs on the
SiO2 nanospheres was precisely controlled with high levels of density and uniformity,
which were confirmed clearly, as shown in Figure 1. At a high concentration of Au3+

(>200 µM), Au NPs on the SiO2 surface merged with each other and became one larger
particle. When the size of the Au NPs increased, the color of the solution changed in the
order of pale brown, then pink, purple, dark blue, and finally black (Figure 2a). These
changes occurred depending on the size and shape of the NPs, due to their localized surface
plasmon resonance (LSPR) [37,46,48]. When nanoparticles are close to one another, the
absorption spectra of proximally located nanoparticles red-shift considerably from that of
solitary particles [58,59]. Increasing the space between the particles reduces the shift [59].
Mie’s theory accounts for how increasing nanoparticle diameters induces the absorption
spectra to red-shift by changing the electric surface charge density of the NPs [58]. The
results of our study showed that the growth of Au NPs on SiO2@Au was controlled well
by the color change of the particle suspension, transmission electron microscopy (TEM)
images, and absorbance according to the abovementioned theories.
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Figure 2. (a) Optical images and (b) size of Au NPs, and (c) UV–Vis absorption spectra of SiO2@Au NPs fabricated in
various concentrations of Au3+ precursor: (i) 0 µM, (ii) 50 µM, (iii) 100 µM, (iv) 150 µM, (v) 200 µM, and (vi) 300 µM.

The absorption spectra of SiO2 showed that the absorbance band was red-shifted and
broadened upon an increase in the concentration of the Au3+ precursor, indicating the
formation of larger Au NPs, which change the proximate interparticle distance (Figure 2b,c).
In the absorbance band of SiO2@Au-NPs-treated 0 µM Au3+ precursor, no peak was
observed due to the exceedingly tiny size of the Au NPs. On the other hand, 50, 100,
150, 200, and 300 Au3+-treated SiO2@Au showed peaks at 543, 571, 593, 619, and 632 nm
respectively (Figure 2c). Moreover, the absorbance bandwidth broadened as the size of the
Au NPs was increased.

2.2. Verification of the Peroxidase-like Activity of SiO2@Au NPs

The peroxidase-like activity of SiO2@Au NPs was evaluated through oxidation of a
3,3′,5,5′-tetramethylbenzidine (TMB) substrate. The TMB oxidation reaction involves the
transfer of two electrons that each produce a clear color change. When the first electron is
transferred to form TMB+ via oxidization of TMB, the TMB solution changes from colorless
to blue. Since TMB+ is quite unstable in an acidic environment, it further oxidizes to TMB2+

when the second electron is transferred; TMB2+ is stable in acidic conditions, exhibiting a
yellow color and a maximum absorption peak at 453 nm (Figure 3a) [63].
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spectra of tetramethylbenzidine (TMB) + H2O2, TMB + SiO2@Au NPs, and TMB + H2O2 + SiO2@Au NPs after termination
with 1 M H2SO4 in the mixture of 1 mM TMB and 200 mM H2O2. The peak which appears at 453 nm wavelength originated
from the oxidized TMB substrate.

To confirm the peroxidase-like activity of the SiO2@Au NPs, TMB + H2O2, TMB +
SiO2@Au NPs, and TMB + H2O2 + SiO2@Au NPs were prepared in a pH 4 buffer for the
peroxidase assay. The TMB + H2O2 solution was colorless, and an absorbance peak at
453 nm did not appear, as shown in Figure 3b,c. This result indicated that peroxidase-like
activity did not occur in the absence of SiO2@Au. Next, the color of the TMB + SiO2@Au
NP sample was entirely on account of the SiO2@Au NPs, displaying an absorbance band
with a maximum peak at 630 nm. However, a yellow solution and an absorbance band
at 453 nm were observed in the TMB + H2O2 + SiO2@Au NPs sample. These results
showed that SiO2@Au NPs catalyzed TMB oxidation in the presence of H2O2, indicating
that a peroxidase-like reaction occurred due to the peroxidase-mimicking property of
SiO2@Au NPs.

2.3. The Peroxidase-like Activity Depends on the Size of the Au NPs of the SiO2@Au NPs

To investigate the correlation between the size of the Au NPs and the peroxidase-like
activity of SiO2@Au NPs, various kinds of SiO2@Au NPs with different Au NPs sizes
were prepared. The concentrations of the treated Au3+ precursors were 0, 50, 100, 150, 200,
and 300 µM each, resulting in the formation of 1.4, 4.3, 6.4, 7.3, 9.5, and 15 nm diameter
Au NPs on the SiO2@Au structures, respectively (Table 1 and Figure 2b). Each of these
SiO2@Au NPs was subjected to the TMB assay to estimate their peroxidase-like activity. An
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absorbance peak at 453 nm was observed in the UV–Vis absorption spectra of all samples,
indicating that all of the SiO2@Au NPs had peroxidase-like activity, irrespective of the size
of the Au NPs (Supplementary Materials Figure S1). However, the SiO2@Au NPs produced
without any Au3+ precursor treatment showed relatively very weak peroxidase-like activity.
This may be because the size of the Au NPs on the silica core was too small; there were a
large number of vacant spaces on the SiO2@Au NPs with the given number of Au NPs,
providing an insufficient surface area for the reaction between the Au NPs and reactants. On
the other hand, SiO2@Au NPs treated with more than 50 µM Au3+ precursor showed high
peroxidase-like activity. The size of the Au NPs was rapidly increased when concentrations
of Au3+ precursor exceeded 50 µM, as shown in the TEM images (Figure 1b(ii). As the
size of the Au NPs on the SiO2@Au NPs was increased, the surface area which can react
with reactants also increased. Therefore, the peroxidase-like activity of the SiO2@Au NPs
was increased as the concentrations of the Au3+ precursor were increased (Figure 4a,b).
Even though the size of the Au NPs grew as the concentration of the Au3+ precursor
increased, severe aggregation occurred immediately after the peroxidase reaction in the
SiO2@Au was treated with over 200 µM of the Au3+ precursor. Since good dispersibility
is an important factor for generating a constant and stable catalytic activity, 150 µM of
Au3+ precursor-treated SiO2@Au NPs, which have high peroxidase-like activity without
aggregation, was used in the subsequent experiments [64,65].
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2.4. Effects of Reaction Conditions on the Peroxidase-like Activity of SiO2@Au NPs

It is known that the catalytic activity of nanozymes is affected by reaction conditions
such as those associated with an enzyme [10,32,66–69]. For this reason, the effect of reac-
tion conditions on the peroxidase-like activity on SiO2@Au NPs was investigated. The
concentration of TMB and H2O2, pH of the buffer, the number of SiO2@Au NPs, reaction
time, and termination time were considered in this study. For confirming the effects of TMB
concentrations, the concentrations of TMB varied from 0 to 1.0 mM, while the other condi-
tions were fixed in the peroxidase assay (Supplementary Materials Figure S2). The catalytic
activity of SiO2@Au NPs increased until the concentrations of TMB were 0.8 mM; they
then decreased at 1.0 mM, because the poor solubility of TMB in an aqueous buffer caused
precipitation during the oxidation reaction (Figure 5a) [70]. To calculate the kinetic activities
of SiO2@Au toward TMB concentration, various concentration of TMB in the range of 0.1 to
0.4 mM were prepared and then mixed to H2O2, and the absorbance were monitored every
10s. The absorbance at 200 s was used to calculate the Michaelis–Menten constants (Km)
and the maximum reaction velocity (Vmax) in our study. The kinetic activities of SiO2@Au
toward TMB concentration in the range of 0.1 to 0.4 mM TMB were plotted in Supplemen-
tary Materials Figure S3. A linear regression was found in the concentration of TMB from
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0.1 to 0.4 mM. Km were obtained by using Linewaerver–Burk plots. The apparent Michaelis
constant Km was calculated to be 0.060 mM and the maximum reaction velocity Vmax was
2.3 × 10−10 M−1·s−1. Km of SiO2@Au was much lower than that of horseradish peroxidase
enzyme, indicating that SiO2@Au has a higher affinity for TMB than horseradish peroxidase
(Km = 0.438 mM). Moreover, Km of SiO2@Au is lower than those Au NPs (Km = 0.123 mM),
glucose-oxidase-conjugated Au-attached magnetic SiO2 microsphere (Km = 0.208 mM),
Au-NPs-decorated porous silica microsphere (Km = 0.523 mM), Prussian-blue-decorated
latex nanoparticle (Km = 2.19 mM), MnO2 nanoparticles (Km = 0.083 mM), and sulfate-
latex-conjugated polyelectrolyte functionalized MnO2 NPs (Km = 0.099 mM) [71–75].

Int. J. Mol. Sci. 2021, 221, 10382 7 of 13 
 

 

Au-attached magnetic SiO2 microsphere (Km = 0.208 mM), Au-NPs-decorated porous silica 
microsphere (Km = 0.523 mM), Prussian-blue-decorated latex nanoparticle (Km = 2.19 mM), 
MnO2 nanoparticles (Km = 0.083 mM), and sulfate-latex-conjugated polyelectrolyte func-
tionalized MnO2 NPs (Km = 0.099 mM) [71–75].  

In the case of the concentration of hydrogen peroxide, the catalytic activity of SiO2@Au 
NPs was increased steeply until reaching 200 mM H2O2 and decreased at a concentration 
of 300 mM H2O2 (Supplementary Materials Figure S4). Even though the activity again in-
creased at 400 mM H2O2, the rate of increase was lower than 200 mM H2O2 (Figure 5b). Subse-
quently, various buffers with different pH were subjected to the peroxidase assay (Supple-
mentary Materials Figure S5). The highest activity was shown under pH 4.0, at which H2O2 
was more stable and TMB dissolved maximally (Figure 5c) [10,44,70,76–78]. The velocity of 
the catalytic reaction showed the highest value when 20 and 25 µg of SiO2@Au NPs were 
treated in the sample where the rest of the conditions were fixed (Figure 5d and Supple-
mentary Materials Figure S6). About 25 min was required for the TMB+ oxidation and 5 
min for the termination of the TMB+ oxidation to obtain stable results (Figure 5e,f). 

 
Figure 5. Effects of different reaction conditions on the peroxidase-like activity of SiO2@Au NPs in a mixture of TMB and 
H2O2: (a) TMB concentration, (b) H2O2 concentration, (c) pH value of the solution, (d) the velocity and amount of SiO2@Au, 
(e) reaction time, and (f) termination time. 

2.5. Long-Term Stability and Reusability Test of SiO2@Au as Nanozyme 
SiO2@Au NPs are substantially more advantageous over enzymes, owing to their 

long-term stability and reusability. Denaturation during storage and their on–off usage are the 
major defects when using enzymes in practice [1,2]. To verify the long-term stability of their 
peroxidase-like activity, the SiO2@Au NPs were examined by repeating the peroxidase assay 
every day, at the same time, for 14 days and on the 31st day after they were produced, keeping 
them under storage at 25 °C in the meantime (Figure 6a). The results showed that the peroxi-
dase-like activity remained highly stable for at least 30 days after the fabrication of the 
SiO2@Au NPs. In sequence, the reusability of the SiO2@Au NPs as a nanozyme was evalu-
ated through repeated peroxidase assays. Notably, the peroxidase-like activity of stored 
SiO2@Au until the fourth round was 98% of the first cycle level and mildly reduced at the fifth 
cycle to 89% of the first round. The reusability of SiO2@Au NPs was significantly high com-
pared to a previous report on an Au NP-embedded silica nanostructure [79]. Moreover, 
SiO2@Au NPs remained 90% of catalytic activity, while SiO2@Au without the SiO2 core lost 
60% of catalytic activity after five cycles of use (Supplementary Materials Figure S7). These 

Figure 5. Effects of different reaction conditions on the peroxidase-like activity of SiO2@Au NPs in a mixture of TMB and
H2O2: (a) TMB concentration, (b) H2O2 concentration, (c) pH value of the solution, (d) the velocity and amount of SiO2@Au,
(e) reaction time, and (f) termination time.

In the case of the concentration of hydrogen peroxide, the catalytic activity of SiO2@Au
NPs was increased steeply until reaching 200 mM H2O2 and decreased at a concentration
of 300 mM H2O2 (Supplementary Materials Figure S4). Even though the activity again
increased at 400 mM H2O2, the rate of increase was lower than 200 mM H2O2 (Figure 5b).
Subsequently, various buffers with different pH were subjected to the peroxidase assay
(Supplementary Materials Figure S5). The highest activity was shown under pH 4.0, at
which H2O2 was more stable and TMB dissolved maximally (Figure 5c) [10,44,70,76–78].
The velocity of the catalytic reaction showed the highest value when 20 and 25 µg of
SiO2@Au NPs were treated in the sample where the rest of the conditions were fixed
(Figure 5d and Supplementary Materials Figure S6). About 25 min was required for the
TMB+ oxidation and 5 min for the termination of the TMB+ oxidation to obtain stable
results (Figure 5e,f).

2.5. Long-Term Stability and Reusability Test of SiO2@Au as Nanozyme

SiO2@Au NPs are substantially more advantageous over enzymes, owing to their
long-term stability and reusability. Denaturation during storage and their on–off usage are
the major defects when using enzymes in practice [1,2]. To verify the long-term stability of
their peroxidase-like activity, the SiO2@Au NPs were examined by repeating the peroxidase
assay every day, at the same time, for 14 days and on the 31st day after they were produced,
keeping them under storage at 25 ◦C in the meantime (Figure 6a). The results showed that
the peroxidase-like activity remained highly stable for at least 30 days after the fabrication
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of the SiO2@Au NPs. In sequence, the reusability of the SiO2@Au NPs as a nanozyme was
evaluated through repeated peroxidase assays. Notably, the peroxidase-like activity of
stored SiO2@Au until the fourth round was 98% of the first cycle level and mildly reduced
at the fifth cycle to 89% of the first round. The reusability of SiO2@Au NPs was significantly
high compared to a previous report on an Au NP-embedded silica nanostructure [79].
Moreover, SiO2@Au NPs remained 90% of catalytic activity, while SiO2@Au without the
SiO2 core lost 60% of catalytic activity after five cycles of use (Supplementary Materials
Figure S7). These results indicate that SiO2@Au NPs excel not only at being highly reusable
but also at separating easily from the reaction mixture.
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3. Materials and Methods
3.1. Chemicals and Reagents

Tetraethylorthosilicate (TEOS), tetrakis(hydroxymethyl)phosphonium chloride (THPC),
chloroauric acid (HAuCl4), 3-aminopropyltriethoxysilane (APTS), AA, PVP (MW 40,000),
and TMB were purchased from Sigma-Aldrich (St. Louis, MO, USA). Ammonium hy-
droxide (NH4OH, 27%), ethyl alcohol (EtOH, 99.9%), sodium hydroxide (NaOH), and
sulfuric acid (H2SO4) were purchased from Samchun (Seoul, Korea). Hydrogen peroxide
(H2O2) was purchased from Daejung (Siheung, Gyeonggi-do, Korea). Phosphate buffer
saline containing 0.1% Tween 20 (PBST, pH 7.4) was purchased from Dynebio (Seongnam,
Gyeonggi-do, Korea).

3.2. Characterization

The transmission electron microscope (TEM) images of the samples were taken by
using a JEM-F200 multi-purpose electron microscope (JEOL, Akishima, Tokyo, Japan) with
a maximum accelerated voltage of 200 kV. The UV–Vis absorption spectra of the sample
were measured by an Optizen POP UV/Vis spectrometer (Mecasys, Seoul, Korea). The
centrifugation of samples was performed by using a microcentrifuge 1730R (LaboGene,
Lyngen, Denmark).

3.3. Synthesis of Gold Nanoparticles (Au NPs) Assembled SiO2 Nanostructure (SiO2@Au NPs)

The SiO2@Au NPs were synthesized according to the previous report [60]. The
colloidal Au was prepared by stirring 47.5 mL of water, 0.5 mL of 0.2 M NaOH, 12 µL of
THPC, and 1 mL of 50 mM HAuCl4 for 1 h. Silica nanospheres (~160 nm) were prepared by
using the modified Stöber method [80]. Briefly, 40 mL of EtOH, 1.6 mL TEOS, and 3 mL of
NH4OH were allowed to react with each other for 20 h. The amino group was introduced to
the surface of 2 mg SiO2 NPs by treating them with 62 µL of APTS. The aminated SiO2 NPs
were incubated with colloidal Au (~2.5 nm) for 12 h. After several cycles of centrifugation
of the mixture at 8500 rpm for 10 min, 2 mg of Au-seeded SiO2 NPs were obtained and
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dispersed in 2 mL of PVP solution (1 mg/mL of PVP in water). Subsequently, 200 µL of
Au-seeded SiO2 NPs (1 mg/mL) suspension was added to 9.8 mL of PVP solution. Under
stirring, 20 µL of 10 mM HAuCl4 solution (in water, Au3+ precursor) and 40 µL of AA
solution, (10 mM AA in water, reducing agent) were added to the mixture in sequence. The
reaction mixture was stirred for 5 min. To control the size of the Au NPs on the surface of
the Au-seeded SiO2 nanospheres, 10 mM of Au3+ precursor and AA were added. Until
the concentrations of Au3+ reached 50, 100, 150, 200, and 300 µM in the various mixtures,
the same volumes of Au3+ precursor and AA were repeatedly added every 5 min. The
SiO2@Au NPs were washed several times with centrifugation at 8500 rpm for 10 min. The
washed SiO2@Au NPs were dispersed in 1 mL of 0.1% PBST solution to obtain a 0.2 mg/mL
SiO2@Au NP suspension.

3.4. Peroxidase-like Activity of SiO2@Au

To verify the peroxidase-like activity of SiO2@Au NPs, 100 µL of TMB solution (10 mM
in EtOH) and 100 µL of the various SiO2@Au NPs synthesized from 50, 100, 150, 200, and
300 µM Au3+, respectively, were added to 700 µL of pH 4 buffer. Then, freshly prepared
100 µL of H2O2 solution (2 M in pH 4 buffer) was added, and the mixture was incubated
for 30 min at room temperature. To terminate the reaction, 500 µL of 1 M H2SO4 was added
to each mixture and incubated for 10 min. The absorbance of the mixture at 350–800 nm
was measured by using the UV–Vis spectrometer.

3.5. Peroxidase-like Activity of SiO2@Au in Various Reaction Conditions
3.5.1. TMB Concentration

All assays of peroxidase-like activity were carried out in 1.5 mL Eppendorf tubes at
room temperature. The TMB solutions were prepared in EtOH at various concentrations
(1, 2, 4, 6, 8, and 10 mM, respectively). Then, 100 µL of each TMB solution, 100 µL of 2 M
H2O2, and 100 µL of SiO2@Au (0.2 mg/mL) were added to 700 µL of pH 4 buffer. The
final concentrations of TMB in the reaction mixture were 0.1, 0.2, 0.4, 0.6, 0.8, and 1.0 mM.
After incubating the mixture for 30 min, 500 µL of 1 M H2SO4 was added to terminate the
reaction. The absorbance of mixtures was measured by using a UV–Vis spectrometer.

3.5.2. H2O2 Concentration

Various concentrations of H2O2 solutions (1, 2, 3, and 4 M) were prepared. Next,
100 µL of 6 mM TMB solution, 100 µL of each H2O2 solutions, and 100 µL of SiO2@Au
(0.2 mg/mL) were added to 700 µL of pH 4 buffer. The final concentrations of H2O2 in
the mixtures were 100, 200, 300, and 400 mM, respectively. After incubating the mixtures
for 30 min at room temperature, we added 500 µL of 1 M H2SO4 to each to terminate the
reaction.

3.5.3. Buffer pH Value

Buffers of pH 3, 4, 5, 6, 7, and 8 were prepared. Next, 700 µL of each prepared buffer
was added, followed by adding 100 µL of TMB solution, 100 µL of 2 M H2O2 solution, and
100 µL of SiO2@Au NPs (0.2 mg/mL). The mixtures were incubated for 30 min, and the
reaction was terminated by using 500 µL of 1 M H2SO4.

3.5.4. Amount of SiO2@Au NPs

All reagents, including 100 µL of 6 mM TMB solution, 100 µL 2 M H2O2 solution,
and 700 µL pH 4 buffer, were added to tubes. Then 1, 5, 10 15, 20, 25, 30, 40, and 50 µg
of SiO2@Au were dispersed in 100 µL PBST each and added to the mixtures, followed by
incubation and termination.

3.5.5. Reaction Time

To investigate the effect of reaction time on their peroxidase-like activity, the mixtures
containing 100 µL of 6 mM TMB solution, 100 µL of SiO2@Au (0.2 mg/mL), and 100 µL of



Int. J. Mol. Sci. 2021, 22, 10382 10 of 13

2 M H2O2 solution were added to 700 µL of pH 4 buffer. Next, the mixtures were incubated
for 0, 5, 10, 15, 20, 25, and 30 min respectively and terminated by using 1 M H2SO4.

3.5.6. Termination Time

Mixtures including 700 µL of pH 4 buffer, 100 µL of 6 mM TMB solution, 100 µL of
SiO2@Au (0.2 mg/mL), and 100 µL of 2 M H2O2 solution were prepared and incubated for
30 min. After adding 500 µL of 1 M H2SO4, we incubated each sample for 0, 5, 10, 15, 20,
25, and 30 min to terminate the reaction.

3.6. Long-Term Stability of Peroxidase-like Activity

To investigate the long-term stability of peroxidase-like activity of SiO2@Au, the
experiment was repeated every day for 2 weeks and on the 31st day after their fabrication.
The experimental procedures were conducted as follows: adding 100 µL of 6 M TMB
solution, 100 µL of SiO2@Au (0.2 mg/mL), and 100 µL of 2 M H2O2 solution to 700 µL of
pH 4 buffer; 30 min reaction time; 10 min for termination, using 500 µL of 1 M H2SO4.

3.7. Reusability as Nanozymes

To investigate the reusability of SiO2@Au, the peroxidase assay was performed ac-
cording to the mentioned procedures. After the assay was performed, the SiO2@Au NPs
were collected by using centrifugation at 10,000 rpm for 10 min, and the absorbance of the
supernatant at 453 nm was measured by using a UV–Vis spectrometer. The peroxidase
assay was repeated with the collected SiO2@Au NPs.

4. Conclusions

In summary, we successfully synthesized finely controllably sized Au NPs on the SiO2
nanosphere (SiO2@Au), using the seed-mediated growth method and interval dropping
method under mild conditions. The effect of the size of Au NPs on the SiO2@Au NPs was
confirmed by the TEM images, color changing of its suspension, and UV–Vis absorption
spectra. Moreover, we investigated the factors affecting the peroxidase-like activity of
SiO2@Au NPs, such as TMB concentration, H2O2 concentration, pH, SiO2@Au NPs amount,
reaction time, and termination time. Furthermore, SiO2@Au NPs showed high stability
during the 30-day-long storage time at room temperature and outstanding reusability for
five cycles. This work is therefore meaningful for utilizing controllable nanoparticles in
various fields and provides a better approach to develop nanoparticle-based nanozymes.
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