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ABSTRACT: Despite tremendous progress in understanding and engineering enzymes,
knowledge of how enzyme structures and their dynamics induce observed catalytic
properties is incomplete, and capabilities to engineer enzymes fall far short of industrial
needs. Here, we investigate the structural and dynamic drivers of enzyme catalysis for the
rate-limiting step of the industrially important enzyme ketol-acid reductoisomerase (KARI)
and identify a region of the conformational space of the bound enzyme−substrate complex
that, when populated, leads to large increases in reactivity. We apply computational
statistical mechanical methods that implement transition interface sampling to simulate the
kinetics of the reaction and combine this with machine learning techniques from artificial
intelligence to select features relevant to reactivity and to build predictive models for
reactive trajectories. We find that conformational descriptors alone, without the need for
dynamic ones, are sufficient to predict reactivity with greater than 85% accuracy (90%
AUC). Key descriptors distinguishing reactive from almost-reactive trajectories quantify
substrate conformation, substrate bond polarization, and metal coordination geometry and
suggest their role in promoting substrate reactivity. Moreover, trajectories constrained to visit a region of the reactant well,
separated from the rest by a simple hyperplane defined by ten conformational parameters, show increases in computed reactivity
by many orders of magnitude. This study provides evidence for the existence of reactivity promoting regions within the
conformational space of the enzyme−substrate complex and develops methodology for identifying and validating these
particularly reactive regions of phase space. We suggest that identification of reactivity promoting regions and re-engineering
enzymes to preferentially populate them may lead to significant rate enhancements.

■ INTRODUCTION

Enzymes are remarkable catalysts that produce substantial rate
enhancements, often accompanied by high substrate and
product selectivity. They are increasingly important for
industrial-scale applications, because of the chemistry they
can accomplish sustainably in mild, aqueous conditions.
Despite substantial progress made, more is still required
along two principal avenues in order to advance enzyme
engineering to meet industrial needs. We need a better
understanding of the drivers of reactivity promoted by
enzymes, some of which have been hypothesized to be
dynamic1−3 rather than structural, along with a richer set of
tools to probe and manipulate the active site catalytic
environment.
Current approaches include directed evolution,4−6 catalytic

antibodies,7−9 and computational enzyme design,10,11 the latter
two of which focus on tight-binding of transition states. While

these approaches have produced tremendous successes, they
have not yet become general-purpose tools. The need for
directed evolution to improve designs obtained by other
methods, and our inability to fully rationalize the improve-
ments accumulated through evolution, suggests that our
understanding may be incomplete, perhaps in some
fundamental way, and may require us to incorporate other
factors beyond transition-state binding and transition-state
stabilization (relative to the bound or unbound ground state).
Here we investigate two fundamental questions of enzyme

function motivated by the larger goal of enzyme engineering;
note that our focus is on the enzyme−substrate complex
without specific reference to the transition state. First, can we
gain insight into the nature of the drivers of chemical reactivity,
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and to what extent are these drivers apparent in the behavior of
the bound enzyme−substrate complex, well before the
transition state? And second, based on previous work by
ourselves and others12−16 can we identify regions of the
conformational space of the enzyme−substrate complex that
are inherently more reactive than others? These questions are
addressed using a new approach that combines machine
learning with path sampling, applied to the rate-limiting step
for the industrially important enzyme ketol-acid reductoiso-
merase (KARI).
There are a number of approaches for studying enzyme

reactivity that do not focus on the transition state per se,
although it may enter implicitly. These include the literature
investigating near-attack conformations, which has suggested
that lowering the energetic barrier to facilitate selective
formation of subsets of ground-state conformations that lie
on the path to the transition state can be just as important as
lowering the energetic barrier to the transition state
itself14,17−19 and the computational path sampling meth-
ods,20,21 which are statistical mechanical techniques for directly
computing the rate of a chemical reaction without reliance on
transition-state theory or knowledge of either the transition
state or a valid reaction coordinate connecting the reactant well
with the product well on the free energy surface.
Here we use transition interface sampling21 (TIS), for its

computational efficiency. TIS uses Monte Carlo sampling to
construct an ensemble of trajectories that start in the reactant
well and pass through an interface on the way toward the
product well. Appropriate statistical methods exist to compute
the progressive probability that a trajectory starting in the
reactant well will reach each successive interface, a rapidly
diminishing cumulative probability, and to convert the
probability into a reaction rate, corresponding to the specific
activity, kcat, for enzymes. While a valid reaction coordinate is
not a requirement, the method uses an order parameter that
cleanly distinguishes reactant from product to track progress
between the two wells.21 (The placement of interfaces is
shown schematically in Figure 1A and their progression in
Figure S1, with λ representing the order parameter.) Path
sampling methods have been validated using experimental data
in enzyme kinetic studies.12

The model system for this study, KARI, is a natural enzyme
required for branched-chain amino acid synthesis, found
broadly across plant and microbial species.22 It carries out
two reactions in sequence, first an isomerization, which is
generally rate limiting, consisting of an alkyl migration and
then a faster reduction carried out by a nucleotide cofactor. It
also has an important role in industrial processes for the
production of isobutanol, and, due to its role as the rate-
limiting step, improvements in its specific activity would
improve processes for large-scale isobutanol production.23 Our
studies have focused on the homodimeric enzyme from
Spinacia oleracea (spinach), due largely to the availability of
appropriate crystal structures, and we have studied the
industrially relevant, rate-limiting reaction step involving
isomerization of (2S)-acetolactate (AL) to (2R)-2,3-dihyr-
oxy-3-isovalerate through methyl migration23−25 (Figure 1B).
The natural spinach enzyme exhibits a strong preference for

NADPH as a cofactor and has two divalent magnesium cations
bound at the active site, in intimate contact with substrate,26

which are each hexacoordinate with oxygen atoms from the
substrate, active site water molecules, and residues Asp 315,

Figure 1. (A) Interface placements used to generate reactive and
almost-reactive trajectories, where λ1 denotes the reactant interface,
λAR indicates the product interface used to generate the almost-
reactive trajectory ensembles, and λR indicates the product interface
used to generate the reactive trajectory ensembles. (B) Reaction
catalyzed by KARI with states 2 and 3 indicating initial and final states
used for the specific rate-limiting step of the isomerization studied.
(C) Atoms and residues included in QM region (nonpolar hydrogens
not shown). Note that the residue name AC6 is used in this study to
refer to the reactant state of the substrate shown in Figure 1C. The
residue name NDP refers to the NADPH cofactor, and the residue
name MG6 refers to the five quantum mechanically treated waters
and two magnesium ions in the active site. (D) Distribution of λ
values for reactive (red) and almost-reactive (blue) trajectories time-
shifted such that the last trough before the prospective catalytic event
occurs at the 0 fs time point. Vertical lines indicate time points where
features were computed.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.8b13879
J. Am. Chem. Soc. 2019, 141, 4108−4118

4109

http://pubs.acs.org/doi/suppl/10.1021/jacs.8b13879/suppl_file/ja8b13879_si_001.pdf
http://dx.doi.org/10.1021/jacs.8b13879


Glu 319, and Glu 496 (Figure 1C). Note that the C5
represents the methyl group that migrates from C4 to C7.
The current study is based on previous work we carried out

on KARI, which identified a “pump-and-push” mechanism for
the rate-limiting isomerization reaction, whereby the local
environment vibrationally excites the breaking C4−C5 bond
and the side chain of Glu 319 helps direct and potentially
stabilize the migrating methyl group toward its destination,
bound to C7.12 Moreover, the work suggested that some
portions of the conformational and motional space of the
bound enzyme−substrate complex (the reactant well) led to
trajectories that have a greater probability of reacting than
those that do not pass through or spend as much time in those
same portions of the reactant well.
Here we carried out TIS simulations of wild-type spinach

KARI and performed comparative analysis on two sets of
ensembles of trajectoriesone set that reacted and another set
that approached the barrier but did not react (termed “almost-
reactive”). We tabulated data on 68 different geometric
measurements (Table S1 and Figure S2) in the active site
that represent elements of the local conformation in the form
of distances between pairs of atoms, planar angles across
triplets of atoms, and dihedral angles across quadruplets of
atoms. The set was selected based on mechanistic hypotheses
of others and ourselves, and includes internal metrics within
the substrate; measures of the position and orientation of
substrate relative to the environment, particularly for groups
that might stabilize the bound substrate or transition state; and
measures of conformation of the environment.
Machine learning techniques were applied to identify subsets

of this feature list and build predictive models that accurately
distinguished reactive from almost-reactive trajectories, based
only on data tabulated from before trajectories departed the
reactant well. We reasoned that these reduced feature sets and
models might indicate key features sufficient to drive reactivity.
We analyzed these features in the context of the reactive and
almost-reactive trajectories to understand in more detail these
drivers and to gain insight into mechanism. We found that key
descriptors capable of identifying reactive conformations
included those that quantify substrate conformation, substrate
bond polarization, and metal coordination geometry and
suggest their role in promoting substrate reactivity. To test the
notion that these descriptors are sufficient and that they define
inherently reactive portions of the reactant well, we compared
the computed specific activity of the wild-type enzyme when
trajectories were constrained to visit these regions with those
that were not. We found that ten features alone were sufficient
to describe a portion of the reactant well that led to very large
rate increases, demonstrating it to be a highly reactive portion
of the well.

■ METHODS
Note: Further details may be found in Supporting Methods.
Structure Preparation. The crystal structure of Spinacia oleracea

KARI was obtained from the Protein Data Bank27−29 with the
accession code 1YVE26 and prepared as described previously by
Silver.12 Only the chain A monomer was used for all simulations in
order to improve computational efficiency, justified by the significant
separation between the active sites of the two monomers26 (Figure
S3).
A model of the substrate-bound enzyme was then constructed by

running an in vacuo QM ground-state minimization of the substrate,
two magnesium centers, five magnesium-coordinating water mole-
cules, and the side chains of three surrounding active site residues,

Asp 315, Glu 319, and Glu 496. Glu 496 was protonated, consistent
with previous studies indicating its importance in stabilizing the
transition and product state by forming a hydrogen bond with the
substrate O8.30 The GAUSSIAN03 computer program31 was used to
perform in vacuo QM calculations at the rhf/3-21g* level of
theory.32,33

Simulation Methodology. CHARMM version 4134,35 compiled
with the SQUANTUM option was used to perform all molecular
dynamics simulations. The QM portion of the energy function was
calculated with the AM1 semiempirical quantum mechanical force
field;36 the MM portion of the energy function was computed using
the CHARMM36 all-atom force field.37 Additional AM1 parameters
were used for the magnesium ions.38 The following atoms made up
the QM region: substrate (acetolactate), both magnesium centers, five
magnesium-coordinating active site water molecules, the side chains
of Asp 315, Glu 319, and Glu 496, and the nicotinamide group of
NADPH (Figure 1C). The Generalized Hybrid Orbital method39 was
used to treat the QM/MM boundary atoms. The substrate O6 was
deprotonated and the coordinating Glu 496 was protonated,
paralleling previous QM/MM studies of KARI.30

Seed Trajectory Generation. The initial reactive trajectories
used to bootstrap the TIS simulations were found by computing a
potential of mean force (PMF) along the order parameter λ, defined
as the difference of the distance between the substrate breaking bond
(C4−C5) and the forming bond (C5−C7), in units of angstroms.
This PMF was computed using umbrella sampling and the weighted
histogram analysis method.40 The umbrella sampling was performed
in CHARMM41 using the RXNCOR module with windows 0.05 Å in
width and harmonic restraints of 300 kcal/(mol·Å2). Candidate seed
trajectories were then generated by integrating forward and backward
for 2000 fs without restraints starting from a randomly chosen frame
from the umbrella sampling window ensembles centered at λ values of
−0.05, 0.00, and +0.05. Trajectories were selected as successful seed
trajectories if they connected the reactant basin (λ < −1) and product
basin (λ > +1).

Training Data Set Generation and Time Point Selection.
Three randomly selected connecting seed trajectories from the
collection described above were used as starting trajectories for the
generation of a larger ensemble of reactive and almost-reactive
trajectories. Each seed was used to generate 9 reactive ensembles and
9 almost-reactive ensembles of 20,000 trajectories each. The
combined data set contained 461,422 almost-reactive and 618,578
reactive trajectories. When the almost-reactive process produced a
reactive trajectory, it was removed from that set and added to the
reactive data set. To ensure a balanced number of reactive and almost-
reactive trajectories in each training and testing data set, the reactive
trajectories were randomly sampled without replacement to produce a
set of 461,422 reactive trajectories.

For the reactive ensembles, the product interface was defined as λR
= +1.00, and for the almost-reactive ensembles, the product interface
was defined as λAR = −0.20 (Figure 1A). The TIS methodology was
applied in parallel to produce statistical mechanical ensembles
containing reactive and almost-reactive trajectories that could be
compared to one another. In both ensembles, the reactant interface
was defined as λ = −1.00. To collect time points early in the reactant
basin for analysis, integration was not stopped once a trajectory
reached the reactant and product interface (and had been accepted
into the Markov chain), but continued forward and backward for a
total of 200 fs in each direction.

To ensure that candidate features (see below) were computed at
analogous time points between reactive and almost-reactive trajectory
ensembles, in a postprocessing step, all almost-reactive and reactive
trajectories from all 27 pairs of ensembles were time-shifted such that
the 0 fs time point corresponded to the bottom of the last “trough” in
λ (when plotted vs time) before the prospective alkyl migration event,
a geometric feature that all the collected trajectories shared (Figure
1D). This trough was found by first finding the point in the trajectory
closest to the transition region at λ = 0 and then scanning along the
trajectory backward from this point until the first change in sign of the
derivative of λ with respect to time was found with a value of λ less
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than 0 (i.e., was located in the reactant basin). All other time points
were defined relative to this first trough at time 0. Cartesian
coordinate frames of atomic positions were collected in 5 fs
increments from the 0 fs time point, going backward to −150 fs
and forward to +35 fs from the t = 0 fs point, for a total of 38 total
time points. This collection of subsampled time points was used for all
subsequent analysis.
Feature Computation. At each of the 38 time points between

−150 and +35 fs, the set of 68 structural features in Table S1 were
computed for each of the trajectories in each of the 27 reactive and 27
almost-reactive ensembles. The 68 features are illustrated structurally
in Figure S2A (distances), Figure S2B (angles), and Figure S2C
(dihedrals). These data were pooled across ensembles to produce one
combined reactive and one combined almost-reactive data set at each
of the 38 time points, which were used in machine learning and
subsequent analysis described below and stored as a row in a data
matrix. For model training, the data matrix at each time point was
randomly sampled without replacement to produce five equal
partitions containing 73,827 trajectories each, and for model testing,
the remaining trajectories were randomly sampled to produce five
equal partitions containing 18,456 trajectories each.
Machine Learning. For feature regularization and discovery,

LASSO41 was used with the lassoglm implementation in MATLAB. In
order to select a given number of features with LASSO, the
regularization parameter λ was adjusted until a specific number m (1,
5, 10, 15, 20, 25, or 30) of nonzero coefficients βj remained (using a
tolerance of 1.0 × 10−4). These m LASSO-selected predictor features
with nonzero coefficients were then fit using the f itglm function in
MATLAB to a logistic classifier. After fitting predictor coefficients, the
area under the curve of the receiver operating characteristic (AUC)
was computed for each logistic classifier using the perfcurve function in
MATLAB.
Cluster Assignment. Reactive clusters were assigned by k-means

clustering, with the kmeans function in MATLAB using k = 5 applied
to the matrix of consensus feature Z-scores weighted by their
corresponding logistic coefficient βj for all correctly classified reactive
trajectories. The number of clusters (5) was chosen based on a
hierarchical clustering analysis also performed in MATLAB (data not
shown). The Euclidian distance of the consensus feature set from each
almost-reactive trajectory to each of the five k-means centers was
computed, and each almost-reactive trajectory was then assigned to
the cluster with the shortest Euclidian distance to its respective
centroid.
Rate Constant Computations. For the TIS flux factor

calculations, a total of 10 independent 1 ns molecular dynamics
simulations were performed starting from reactant structures derived
from each of 6 randomly selected seed trajectories generated as
described above. The λA interface was set equal to the λ1 interface at
λ= −0.8. For the control flux factor computations (Figure S1A), the
effective positive flux was computed as the number of times the
trajectory crossed the λA = −0.8 interface, having come from the
region below the λA interface, divided by the total amount of time
spent below the λA interface. For the constrained test flux factor
computations (Figure S1C), the top 10 LASSO-selected features at
the t = 0 time point were written out during the dynamics run, and
the effective positive flux was computed as the number of times the
trajectory crossed the λ1 = −0.8 interface, having come from the
region A′, where region A′ refers to all points in phase space which lie

at the last trough (i.e., the first point at which 0
t

d
d

=λ and 0
t

d
d

2

2 >λ )

before crossing λA = −0.8, having first crossed λ0 = −1, and for which
the logistic classifier with coefficients and features listed in Table S2
evaluated to true.
For the probability factor calculations, a total of 29 P(λi+1 | λi)

interface ensembles from each of the six seed trajectories were
computed, with the λi interfaces spaced between λ = −0.8 and λ = 0.
The placement of these interfaces relative to the PMF surface used to
generate the initial seed is shown in Figure S4. For each interface
ensemble, a total of 5000 shooting moves was attempted. In each λi
ensemble, candidate trajectories were generated using full shooting

moves and accepted if they both crossed the λA= −0.8 interface and
crossed the λ = λi interface having first come from crossing interface
λA. For the unconstrained control ensembles (Figure S1B), no further
acceptance rules were applied.

■ RESULTS

Machine Learning. Data sets consisting of 27 ensembles
each of reactive and almost-reactive trajectories, generated
using a combined QM/MM TIS approach, were analyzed with
machine learning to identify features with the ability to
distinguish reactive from almost-reactive trajectories. At each
of 38 time points between −150 and +35 fs (5 fs spacing and
shown in Figure 1D), the 68 features listed in Table S1 and
illustrated structurally in Figure S2 were computed for both
sets of reactive and almost-reactive ensembles. To assess
individual feature performance, AUC (area under the curve of
the receiver operating characteristic) was computed for all
single features at the 0 fs time point (Figure 2A). The single
feature with the maximum AUC performance was the distance
between Glu 319 Oε1 and substrate C5 (AUC of 0.73). Only
two features (distance Glu 319/Oε1−AC6/C5 and distance
AC6/C4−AC6/C5) produced models with individual AUCs
above 0.70, and 18 features produced models with AUCs
above 0.60.
To find highly predictive groups of features, LASSO41 was

applied iteratively with different penalty strengths to identify
an ordered set of features for each trajectory time point,
optimized to distinguish reactive from almost-reactive
conformations (see Methods). That is, for each time point a
collection of separate classifiers was built, trained, and tested,
enabling comparisons of the useful sets of features across time
points as well as the performance benefits for increased
numbers of features at each time point. Figure 2B shows the
machine learning results for four classifier performance
statistics (AUC, accuracy, sensitivity, and specificity) com-
puted from each model constructed from data at each time
point. Results for models constructed with optimized sets of 1,
5, 10, 15, and 20 features selected by LASSO are shown. The
results show progressively improved performance as the
number of features was increased, with not insignificant
performance with just one feature (generally 0.65−0.75 AUC)
that rose to excellent performance with 10, 15, and 20 features
(generally 0.85−0.95 AUC). Note that the performance of the
LASSO-selected 1-feature models, being the “best” feature for
each time point, was significantly better than the average AUC
of all possible 1-feature models shown in Figure 2A, which was
57.18%. The similarity in performance between 15- and 20-
feature models suggests near convergence with this number of
features. The models developed were well balanced between
false positives and false negatives as judged by similar values
for the sensitivity and specificity metrics of individual
classifiers, as well as the AUC values. Models performed
similarly (for the same number of features) for time points
between −150 and +20 fs, and then became substantially
better (approaching an AUC of 1.00) for time points after +20
fs, which corresponds to times when the reactive and almost-
reactive trajectories began to separate based on the order
parameter λ (Figure 1D).
To assess the effect of LASSO-optimized feature selection

for use in machine learning models, a control was carried out
in which a classifier was trained similarly but using feature sets
randomly chosen from the original 68 features. That is, each
control classifier was optimally trained for the best perform-
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ance possible with the random (and not optimized) features it
was assigned. Analogous performance statistics for these
control classifiers are shown in Figure 2C. The results showed
improved performance with additional features randomly
selected from a chemically plausible set, together with large
error bars, which is consistent with the notion that at any given
time point some features or combinations of features were
much better able than others to create predictive models, and
the performance of models depended greatly on the features
making up that model. Models with any given number of

features performed much better on average when those
features were selected by LASSO based on predictive ability
than when selected randomly, demonstrating the value of the
LASSO-selected features in distinguishing reactive from
almost-reactive trajectories; for example, many of the one-
feature models with LASSO-selected features had AUCs of
about 0.70, whereas the random models had average AUCs of
0.57. The random models showed improved average perform-
ance after t = +20 fs, consistent with the notion that many
features report on the fact that the reaction had largely begun
by that time.

Analysis of Consensus Feature Set Predictive
Throughout Prelaunch Time Window. The union of the
complete 20-feature sets predictive at all 31 time points
between −150 and 0 fs is depicted in Figure 2E. Features are
listed in decreasing order of frequency of appearance, and the
colored bars indicate the time points for which each feature
appears as one of the 20 LASSO-selected features. (The time
range −150 to 0 fs will be called the “prelaunch time window”
for shorthand, as the 0 fs time point represents the last
compression before the ultimate expansion of the putative
breaking bond.) The results show that 17 of the features were
used throughout at least half the window, 31 features were
used at 10 or more time points, nearly all of the original
features were used at least once (54 from the collection of 68),
and 8 were used at five or fewer time points. The results
suggest a commonality among the geometric descriptors that
were broadly predictive across the prelaunch window. The
names and feature types of the top 30 consistently predictive,
consensus features are presented in Table S3 along with the
number of occurrences in the top 20 LASSO-selected sets
within the prelaunch window. Figure 2D shows the
classification performance of models trained using the top 1,
5, 10, 15, 20, 25, and 30 consensus features across the 31 time
points between −150 and 0 fs. With the 30 consensus features,
classification performance was nearly equivalent to or better
throughout the prelaunch window (approximately 0.90 AUC)
than the performance obtained from 20 LASSO-selected
features optimized for each of the individual time points. That
is, 30 shared features performed as well as 20 custom features
across the range, which is strong evidence that the fundamental
determinants of reactivity are relatively consistent across the
prelaunch window. Because the classifiers were each trained
separately at each time point to produce models with different
learned coefficients, these fundamental determinants of
reactivity can (and do) play different roles at different times.
A structural representation of the set of 30 predictive

consensus features is shown in Figure S5A (17 distances) and
Figure S5B (12 planar angles and 1 dihedral angle). Half of the
features (15) represent interactions between the substrate and
its environment (nearby water molecules, the two magnesium
ions, and the side chain of Glu 319), 7 represent intrasubstrate
conformational metrics, 7 represent water−metal interactions,
1 represents an intra-cofactor orientation, and 2 represent
other intraenvironment interactions. A full third of the features
(10) represent distances or angles describing the relationship
of a single atom, the substrate hydroxyl oxygen (O6), to its
environmentthe coordinating magnesium ions and water
molecules interacting with the metal ions. The largest number
of intermolecular features involving any other substrate atom is
2, for both a substrate carboxylate oxygen (O3) and the
substrate carbonyl oxygen (O8), whose carbon receives the
migrating methyl group. Only one intermolecular interaction

Figure 2. (A) AUC performance for all 68 individual features at the 0-
fs time point. Values of AUC shown represent the mean computed
across five equal cross-validation training and testing partitions. (B)
AUC, accuracy, sensitivity, and specificity for models with LASSO-
selected features. (C) AUC, accuracy, sensitivity, and specificity are
plotted for models with randomly selected features. (D) AUC,
accuracy, sensitivity, and specificity are plotted for models with 30
consensus features. Error bars in (C) correspond to standard error of
the mean across 100 randomly selected feature sets. (E) Top 20
features selected by LASSO at each time point. Features are colored
by feature type and sorted by the total number of occurrences in the
top 20 between −150 and 0 fs.
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involves the migrating methyl itself. We note two additional
characteristics of the feature set: (1) the substrate intra-
molecular features involve the geometry local to the C4−C7
covalent bond, which is parallel to the path of the migrating
methyl group, and (2) 8 of the 10 intermolecular angle features
describe the orientation of groups coordinating the metal
ionseither their ligated water molecules or oxygen atoms of
the substrate. We acknowledge that the composition of the
initial 68 features had some effect on the composition of the
selected features; nevertheless, the resulting consensus feature
set suggests important roles for substrate conformation,
substrate bond polarization, and metal coordination in the
reaction mechanism.
Average reactive and almost-reactive time traces for the

consensus feature set are presented in Figure 3A. The closely
overlapping distributions of most features in Figure 3A suggest
the need for multiple features in combination to make usefully
accurate predictions. 2D and 3D histograms of reactive and
almost-reactive trajectories for feature pairs and triplets (data
not shown) show somewhat greater separation than that seen
in Figure 3A, but still considerable overlap between reactive
and almost-reactive distributions at individual time points,
consistent with the relatively poor classification performance of
models with fewer than 10 features.
Variations Distinguish Multiple Reactive Channels.

We examined the question of whether the reaction proceeded
along multiple channels. Clustering was used to organize the
correctly predicted reactive and almost-reactive trajectories
into related sets, and the magnitude of the differences between
the sets was examined, allowing a more fine-grained analysis of
the determinants of reactivity as identified by the machine
learning. Specifically, all correctly predicted reactive trajectories
were clustered based on the 0 fs time point using the 30
consensus features, each weighted by its βj value (we refer to
this as the feature weight, which is listed in Table S4 for the
−150, −100, −50, and 0 fs time points (see Methods); results
for five clusters are shown in Figure 3B). The results show at
least five different modes of reacting, with each cluster
distinguished by which features contribute most and least to
the classifier outcome. In Figure 3B, the 30 columns represent
the contribution from each of the 30 consensus features and
the rows each represent one trajectory. Figure 3B shows that,
at the 0 fs time point, roughly half of the 30 features contribute
very little to the decision, as indicated by white bands in each
cluster. Further confirmation is seen by the observation that
features that appear as white bands usually do not occur in the
top 20 LASSO selected set at this time point (see Figure 2E;
distance AC6/O6−MG6/M16 and distance MG6/O19−
MG6/M17 are exceptions and rank 15 and 18, respectively,
in the top 20 LASSO selected set).
Grouping the weighted features into reactive clusters and

corresponding almost-reactive clusters allows the subtle
differences that define reactivity for each of these subgroups
to be more closely examined. To this end, the mean feature
contribution for each almost-reactive cluster in Figure 3C was
subtracted from each of the weighted features from the
corresponding cluster of reactive trajectories from Figure 3B to
obtain a mapping of how each feature in each reactive
trajectory differs from its mean in the corresponding almost-
reactive cluster (Figure 3D); the results show several common
features that distinguish correctly predicted reactive clusters
from correctly predicted almost-reactive clusters. For example,
across all five clusters shown in Figure 3D, the darkest red

Figure 3. (A) Average time traces of consensus features across −150
to +100 fs time points with red indicating average reactive traces and
blue indicating average almost-reactive traces. Error bars indicate 2
standard errors of the mean at each time point. Vertical black lines
indicate time points at −150, −100, −50, and 0 fs where coefficients
listed in Table S2 were fit. (B) Z-scores for consensus features (listed
in Table S3 and illustrated structurally in Figure S5) evaluated at the 0
fs time point and weighted by their corresponding standardized
logistic regression coefficient for all correctly classified reactive
trajectories in data set. Dark lines indicate cluster boundaries assigned
using k-means clustering with k = 5. Within each cluster, features are
sorted by distance from the centroid of the respective cluster (closest
to centroid at top). (C) Z-scores for the consensus features evaluated
at the 0 fs time point and multiplied by their corresponding
standardized logistic regression coefficient for all correctly classified
almost-reactive trajectories in data set. Dark lines indicate cluster
assignments, based on the closest centroid to the five centroids
learned on the reactive features shown in (B). (D) Z-scores
differences between reactive features in each cluster and the mean
almost-reactive feature set of the corresponding almost-reactive
cluster. (E) Histograms of weighted feature weight differences across
each of the five reactive/almost-reactive cluster sets. The set of five
features shown was determined by computing the top three weighted
feature differences by absolute value for each cluster shown in Figure
3D, then taking the union of the resulting set. Magenta corresponds to
cluster 1, cyan corresponds to cluster 2, green corresponds to cluster
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bands appear for distances AC6/C5−AC6/C4 and MG6/
M16−AC6/O3 (features 10 and 27, respectively), indicating
that these features are critical in driving the reactive/almost-
reactive decision. However, there are other cluster-specific
differences; for example, the distance AC6/O8−Glu 496/Hε2
(feature 6) is responsible for distinguishing reactive from
nearly reactive more for cluster 3 than for any of the others, on
average.
Distributions of feature values with the strongest contribu-

tions to differences in reactivity among the clusters (i.e., the
darkest bands in Figure 3D) are shown, per cluster, in Figure
3E. Although there is often considerable overlap in the
individual feature distributions between each reactive and
almost-reactive cluster, the set of five features alone, when
retrained on each cluster alone, achieved AUCs of 1.00, 1.00,
0.94, 0.91, and 1.00, in classifying trajectories from clusters 1
though 5, respectively, as reactive or almost-reactive. These
very high scores suggest that the more general classifiers
presented earlier somehow carry out the dual tasks of
determining which reaction channel the trajectory is headed
toward, as well as whether the trajectory will successfully react
through that channel. The high AUCs for the second task
above suggest that determining which channel is being
approached may be the harder portion of the two, although
this effect is convolved with the fact that these clusters are
composed of trajectories that were correctly classified
previously. When all (including incorrectly classified) data
points are used, the intracluster AUCs using the same set of
features are 0.92, 0.93, 0.80, 0.88, and 1.00 respectively,
supporting the interpretation that predicting reactivity within a
cluster is easier than in the absence of knowledge of the cluster
for most of the clusters.
Figure 3E shows that across all five clusters, some general

trends exist for the five features and their relative distribution
between reactive and almost-reactive trajectories. The
strongest observation is that, in almost every instance, each
significant feature has a much narrower distribution in the
reactive than the almost-reactive set of trajectories. This is
consistent with the notion that there are many ways of not
reacting, but fewer modalities for successfully traversing the
reaction barrier. Across most of the five clusters, in general,
reactivity is associated with a shorter AC6/C5−AC6/C4 bond
length (column 2; feature 9; clusters 1, 2, 4, and 5), a longer
AC6/C1−AC6/C4 bond length (column 4; feature 25;
clusters 2, 3, and 5), a longer Glu 319/Oε1−AC6/C5 distance
(column 1; feature 1; clusters 1, 2, 4, and 5), and a shorter
MG6/M16−AC6/O3 distance (column 5; feature 27; clusters
1, 2, and 5). The value of the MG6/H29−MG6/O18−MG6/
M17 angle (column 3; feature 20) is associated with reactivity
for small values in cluster 1 but large values in cluster 5.
Nevertheless, the absolute values associated with reactivity for
some of the features varies greatly between clusters (column 3
for clusters 1 and 5, and column 5 for clusters 1 and 2, for
example). Taken together, these results reinforce the notion

that a common set of fundamental reaction-promoting
mechanisms are deployed in somewhat different combinations
in the different clusters.
An illustration and further discussion of representative

structures corresponding to the feature histograms in Figure
3E can be found in Figure S6. In summary, a comparison of
these histograms and representative structures shows that
features distinguishing reactive from almost-reactive trajecto-
ries include internal conformational degrees of freedom of the
substrate, which may provide distortion toward the transition
state and ground-state destabilization; subtle changes to polar
interactions of the two magnesium ions with the substrate and
with their ligating water molecules and side chains, which
could have important effects in polarizing the substrate toward
reactivity; and interactions of the side chain of Glu 319 with
the migrating methyl group, which could be important for
steric, kinetic, and electronic reasons. It is anticipated that
more detailed molecular orbital analyses will contribute to an
understanding of how these structural differences are
responsible for changes in relative reactivity.

Predictive Features Direct Reactivity. Machine learning
was used to develop predictive models capable of distinguish-
ing reactive from nearly reactive trajectories. Predictions of
reactivity were successful, even when applied to trajectories not
used in training the models, further supporting the notion that
model features represent characteristics of reactivity. We
reasoned that these characteristics could be useful not only
to predict reactivity but also to direct it. That is, if the features
identify characteristics that are largely sufficient for reactivity,
rather than just indicative of it, then trajectories constrained to
possess reactive characteristics should show markedly
increased reactivity. We tested that notion, described below,
and our findings confirm the directive power of the machine
learning features and their associated models.
The LASSO-selected, ten-feature model at the 0 fs time

point was used, with a testing performance AUC of 89.03%
and an accuracy of 81.57%. Model features and the
corresponding logistic-regression coefficients are listed in
Table S2. Eight of the ten features occur in the 30-feature
consensus set, with the exceptions being distance AC6/C4−
AC6/O6 and distance AC6/O8−MG6/M17. Of the five
features shown in Figure 3E, four appear in the ten-feature
model, with the exception being angle MG6/H29−MG6/
O18−MG6/M17 (feature 3). Thus, the ten-feature model
achieves very good predictive performance and is composed of
many of the consensus features found to be important at other
time points.
The logistic regression models used here effectively create a

dividing surface in the reactant well (the hyperplane defined by
the βj coefficients; see Methods) and make successful
predictions of reactivity based on whether the trajectory is in
the “reactive portion” of the well at the appropriate time. We
modified the statistical mechanical TIS sampling procedure
used here to compute reaction rates, so that we could require
all trajectories to be on the reactive side of the hyperplane
encoded in the ten-feature model (Table S2) during a rate
calculation (see Methods). Calculations of the reaction rate
were performed with (“test”) and without (“control”) this
constraint applied only at the 0 fs time point from five different
starting seeds (three were used previously to train the model,
and two were new). The expectation was that the test
simulations would show greater reactivity (larger computed
kcat) than the controls, as the test simulations satisfied the

Figure 3. continued

3, yellow corresponds to cluster 4, orange corresponds to cluster 5,
and gray corresponds to the corresponding almost-reactive cluster for
the reactive cluster shown in each histogram. Dots indicate
representative structures (the reactive or almost-reactive structures
closest to the mean of the centroid for each respective cluster) which
are shown in Figure S6.

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.8b13879
J. Am. Chem. Soc. 2019, 141, 4108−4118

4114

http://pubs.acs.org/doi/suppl/10.1021/jacs.8b13879/suppl_file/ja8b13879_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.8b13879/suppl_file/ja8b13879_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.8b13879/suppl_file/ja8b13879_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.8b13879/suppl_file/ja8b13879_si_001.pdf
http://dx.doi.org/10.1021/jacs.8b13879


reactivity conditions in every trajectory (by constraint),
whereas on average only 8.03% of control trajectories satisfied
them through ordinary sampling.
The observed relative differences in rate constants in all five

sets of simulations were consistent with this expectation and
quite large, on the order of 1016 to 1019, depending on the
initial seed trajectory (Table 1). The computed rate is a
product of a factor representing the rate of reactant starting
toward the barrier and a probability factor representing the
cumulative likelihood of progress toward and over the barrier.
Here the rate enhancement was driven by both factors, but
with a significantly larger effect from the probability factor and
with contributions across much of the approach to the barrier,
which suggests that greater reactivity was due to increased
productivity at multiple stages of the reaction, including those
after leaving the reactant well.
Contributions to the probability factor were further

examined. Figure S7A shows the cumulative logarithm of the
probability factor as a function of reaction progress for test
(red) and control (blue) simulations (essentially the
probability that a trajectory that started toward the barrier
will reach this value of λ). Figure S7B shows the individual
multiplicative contribution to the probability factor at each
progress window (essentially the probability that a trajectory
that made it through the previous window will continue
through this window). The test simulations show much smaller
decreases in reaction probability (Figure S7A) and much larger
contributions to reactivity (Figure S7B) than the control
simulations earlier in the reaction (below λ = −0.4) but show
similar behavior beyond that point (between λ = −0.4 and
0.0). These data indicate a strong reactivity advantage of the
constrained simulations (which was applied at the 0 fs time
point, corresponding to a λ value of approximately −0.9 and
well before the barrier) across the whole region from λ = −0.9
to −0.4 but not past this point, noting that by λ = −0.2 the
reaction has essentially already occurred. This is consistent
with a picture in which the constraint achieved its large gains in
reactivity not by giving those simulations a local, near-term
boost in reaction progress, but by directing them into channels
that retained a continuous reactivity advantage.

■ DISCUSSION

In this work, we find that features evident in the enzyme−
substrate complex before it departs the reactant well are highly
predictive of reactivity through the identification of relatively
subtle conformational effects. These structural characteristics
include internal substrate conformation, interactions of
substrate with its environment, and details of the electronic
environment of the two magnesium ions that coordinate the

substrate. A consensus set of 30 features are predictive across
the prelaunch window, although the detailed roles of some
descriptors change across the window.
Interestingly, velocities are not needed to reliably distinguish

reactive from nonreactive trajectories. This does not mean that
velocities cannot also be useful or important, but only that
conformations alone are sufficient. In fact, velocities alone,
without direct conformational measures, were also sufficient to
distinguish reactive from almost-reactive trajectories. The top
20 velocity descriptors at the 0 fs time point are listed in Table
S5, together with their individual predictive performance. Five
of these velocities are for atoms involved in the consensus
geometry feature set, and thus may be indicating the same or
similar drivers of reactivity. Furthermore, Figure S8 compares
the AUCs of the top 5, 10, 15, and 20 LASSO-selected features
from (a) the set consisting of the 68 structural descriptors only,
(b) the velocity magnitudes of the 341 atoms within 5 Å of the
migrating methyl, and (c) the combined structural-velocity set
of (a) and (b), showing that the combined set performs better
than the structural or velocity set alone, but only by a very
small margin. Together, Table S5 and Figure S8 suggest a
largely effective overlap of information between geometric and
velocity descriptors, in that different descriptors can be equally
useful in understanding and predicting reactivity, perhaps
through the same or similar explanations, with a small
component of complementarity. The involvement of some of
the same atoms, although possibly the result of there being a
small reactive center, suggests that different classes of
descriptors may be indicating the same fundamental chemical
effects. Although the analysis in the current work appears
static, relying on conformations evident at fixed points in time,
this may implicitly contain dynamic information. For example,
the 0 fs time point corresponds to the maximum compression
of the breaking bond before the trajectory launches toward the
activation barrier, and so a shorter bond distance, indicating
greater potential energy stored in the bond, may signify greater
kinetic energy available to surmount the barrier (and, indeed,
the velocity of one atom in this bond, C4, was the second most
predictive velocity feature). While this study has focused on
geometry- and velocity-based features, they can also be
interpreted in terms of local energetics. In many instances
shorter distances seem to represent stronger local electrostatic
interactions and higher velocities represent greater local kinetic
energy contributions. Nevertheless, we have not found
evidence of overall energetic differences between reactive and
almost-reactive trajectories that we could discern.
We suggest that a more thorough description may be

necessary to truly understand reactivity than to predict it.
Whenever any fitting procedure is performed (as in this study),

Table 1. Computed Rate Constants, Probability Factors, and Flux Factors for Each Seed Studied

Seed Experiment Mean P Mean Flux (1/fs) Mean Rate Constant (1/s) Test/Control Fold Increase

1 Control 6.7 × 10−23 1.0 × 10−03 6.7 × 10−11 8.7 × 10+19

1 Test 1.4 × 10−08 4.2 × 1002 5.8 × 10+09

2 Control 1.2 × 10−22 9.0 × 10−04 1.1 × 10−10 1.3 × 10+17

2 Test 1.1 × 10−10 1.2 × 1002 1.4 × 10+07

3 Control 2.7 × 10−22 1.0 × 10−03 2.7 × 10−10 1.2 × 10+18

3 Test 3.5 × 10−09 9.6 × 10+01 3.4 × 10+08

4 Control 1.6 × 10−22 7.0 × 10−04 1.1 × 10−10 7.8 × 10+17

4 Test 1.0 × 10−09 8.7 × 10+01 8.7 × 10+07

5 Control 3.2 × 10−21 1.3 × 10−03 4.2 × 10−09 2.0 × 10+16

5 Test 3.0 × 10−10 2.7 × 10+02 8.2 × 10+07
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there is a danger of overfitting, but a number of lines of
evidence suggest that overfitting is not responsible for the
conclusions here. These include the vast overabundance of
data points (order of a half million) relative to number of
parameters included in the fitting procedure (order of up to a
few dozen); the use of cross-validation, in which reported
results are for testing data that is explicitly excluded from the
fitting procedure (which used only training data); and the
observation that the highly predictive features are also
controlling (i.e., enforcing them enhances reactivity, even for
ensembles seeded from trajectories not included in the
training/testing data set). The use of multiple seeds provides
opportunities to test for bias in the sampling simulations. In
one such test, the Euclidean distance matrix of the 68-feature
set for a random sampling of 20,000 trajectories was computed.
Multidimensional scaling analysis of the samples showed
significant overlap between both the reactive and nonreactive
ensembles from each of the three seeds (data not shown). We
also find a relatively narrow spread of results from simulations
using multiple seeds (e.g., Table 1). Taken together, these
results suggest adequate sampling of trajectory space.
This study presents evidence that there are multiple

channels of reactivity, some of which are more productive
than others. The existence of multiple reactive channels
suggests that there are identifiably different reaction subpath-
ways. Results further suggest that within each channel there
could be more ways of not reacting than reacting, consistent
with the notion that there are many conditions that must be
met in order to produce a reactive trajectory, and failing to
achieve any of multiple combinations of those features can be
detrimental to reactivity. This study also highlights the
important role that early active site conformational effects
play in driving chemical catalysis, an idea that underlies
existing theories of the importance of early conformational
effects such as electrostatic preorganization42,43 and enzyme-
stabilized “near-attack conformations” in certain catalytic
systems.13,17 The fact that machine learning methods were
able to identify early conformations predictive of reactivity
lends additional support to the preorganization and near-attack
conformation hypotheses of enzymatic activity, although
further research is necessary to determine whether electrostatic
preorganization or stabilization of near-attack conformations is
a primary driver of catalysis in the KARI isomerization reaction
studied.
Although this study was purely computational, the results

are supported by data available from the literature. A number
of KARI mutants have been made and characterized
experimentally.44 In the closest correspondence with the
present work, mutations have been made in the E. coli KARI
variant (which exhibits 100% conservation of the eight polar
active site residues with the S. oleracea variant studied here),
finding that mutations in positions corresponding to Asp 315,
Glu 319, and Glu 496 all reduce specific activity against 2-
acetolactate by more than 200-fold.44 The relationship
between these experimental results and our computational
features is strikingtwo of the three instances of a debilitating
mutation correspond to a residue involved in a feature in the
top 30 consensus feature set. For example, Glu 319 is involved
in the top ranked feature, the Glu 319/Oε1−AC6/C5
distance, and Glu 496 is involved in the sixth ranked feature,
the Glu 496/Hε2−AC6/O8 distance. Asp 315 was not
included in the features included for training and so could
not appear in our consensus set.

In this work we also showed that that path-sampling
techniques combined with QM/MM simulations can be used
to generate valuable data sets that allow the question of
reactivity to be phrased as a binary classification problem well
suited for machine learning. We believe this represents not
only an exciting and promising application but also a
productive strategy for elucidating subtle yet meaningful
drivers of catalysis in enzymatic systems. While this work
utilized features selected through human intuition and a linear
classification model (LASSO), the application of unsupervised
learning techniques to identify perhaps better features
combined with nonlinear classification models represents an
opportunity to understand further the early events that lead to
enzymatic catalysis. Although this work utilized TIS to
generate only two types of data sets, reactive and almost-
reactive, TIS can also be used to generate many more types of
data (for example, to generate sets of trajectories that reach
progressively higher points along the barrier). Applying
machine learning to trajectory outcomes representing more
than two states of reactivity can potentially yield new insights
as to precisely when and how reactive and nonreactive
trajectories diverge. Although this study identified features
indicative of reactivity, an understanding of how those
structural and potentially electronic effects cooperate to
facilitate the reaction is not obvious from structures alone. It
is possible that more detailed quantum chemical analysis,
perhaps with a focus on orbital behaviors, will lend more
insight.
A difference between this work and prior studies of near-

attack conformations is that we have defined reactivity at time
points relative to the temporal progress of the prospective
catalytic event rather than purely configurational states.13,14,17

Although the sampling constraints during the TIS simulations
were enforced at specific time points relative to the progress of
the prospective catalytic event, e.g. the “last trough” that we
have defined as the 0 fs time point in the reaction, future work
is needed to test how critical the time point is on the
effectiveness of the constraint in leading to more reactive
trajectories. Initial results (unpublished) for sets of constrained
TIS simulations, in which a classifier was trained that was
predictive of reactivity across the entire prelaunch window,
suggests that reactive trajectories spend significantly more time
in the reactive region of the reactant well than almost-reactive
trajectories. This result implies that constraints broadly applied
across a portion of the prelaunch window may be just as
effective, if not more effective at enhancing reactivity than
constraints applied at one specific time point.
The features identified are more than indicators that the

reaction will likely occur; they are control levers that can guide
and enhance reactivity. Our studies demonstrate that enforcing
these indicators of reactivity leads to dramatic computed rate
enhancements, largely by increasing the probability of
trajectories reaching the product state. This enormous
enhancement directly suggests an approach to re-engineering
enzymes for enhanced specific activity. The results of this study
suggest that the identification of mutants whose predominant
effect is to selectively populate regimes identified as promoting
reactivity for a set of geometric features could be a useful
method for enhancing activity, by causing the enzyme−
substrate complex to spend more time in highly reactive
conformations. Such mutations could be especially useful if
they have minimal effects elsewhere on the reactive energy
surface. For example, Table S4 indicates (through positive
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regression coefficients at all four prereaction time points
computed) that a somewhat larger angle between the atoms
Gln136/Nε2, Gln136/Hε22 and the cofactor NDP/O7N (the
17th feature listed in Tables S3 and S4) consistently leads to
enhanced reactivity, and so identifying mutations that
favorably alter this side chain/cofactor polar contact
orientation could be useful. Likewise, Table S4 indicates that
increasing the angle between magnesium M16 and one of its
coordinating water molecules (the fourth feature listed in
Tables S3 and S4) leads to enhanced reactivity. This water also
coordinates the side chains of Glu 319 and Glu 496, and thus,
identifying mutations that alter the packing of these side chains
to affect the water orientation might also be useful. Although
many of the reactivity-predicting features involve substrate
conformation and metal chelating water geometry, we note
that design changes to protein side chains making contact with
substrate and water molecules can alter these geometries,
making them accessible to alteration through protein design.
Indeed, in other ways, several recent studies have attempted to
leverage insights from path-sampling simulations in order to
design enzyme variants,45,46 which represents a promising and
novel framework for biocatalyst design. This study advances
the field by defining a specific approach for identifying the
goals such mutations should achieve.
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