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Analysis of partial hepatitis C virus sequences has revealed many novel genotype 6 variants that

cannot be unambiguously classified, which obscure the distinctiveness of pre-existing subtypes.

To explore this uncertainty, we obtained genomes of 98.0–98.8 % full-length for eight such

variants (KM35, QC273, TV257, TV476, TV533, L349, QC271 and DH027) and characterized

them using phylogenetic analyses and per cent nucleotide similarities. The former four are closely

related phylogenetically to subtype 6k, TV533 and L349 to subtype 6l, QC271 to subtypes 6i and

6j, and DH027 to subtypes 6m and 6n. The former six defined a high-level grouping that

comprised subtypes 6k and 6l, plus related strains. The threshold between intra- and inter-

subtype diversity in this group was indistinct. We propose that similar results would be seen

elsewhere if more intermediate variants like QC271 and DH027 were sampled.

The hepatitis C virus (HCV) is genetically highly variable
and is currently classified into six confirmed and one
provisional genotype. Among them, genotype 6 exhibits
the greatest genetic diversity and has been proposed to
have an older evolutionary origin than other HCV

genotypes (Salemi & Vandamme, 2002). Divergent isolates
of genotype 6 have been found exclusively in South-east
Asia or among emigrants from there, suggesting that the
strains are endemic to that region (Bernier et al., 1996;
Mellor et al., 1996; Noppornpanth et al., 2006; Shinji et al.,
2004; Stuyver et al., 1995; Simmonds et al., 1996; Thaikruea
et al., 2004; Theamboonlers et al., 2002). Taxonomically, as
many as 23 subtypes of genotype 6 (6a–6w) have been
assigned and for each at least one full-length genome
sequence has been characterized (Kuiken et al., 2005).
Whole genome sequences are the gold standard for genetic
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and evolutionary analysis of HCV and for accurate
classification. Measuring the extent of HCV diversity is
essential not only for understanding the origin and
evolution of HCV, but also for defining new preventive
strategies and developing novel therapies and vaccines.

The current HCV nomenclature confirms the designation
of genotypes and subtypes based on phylogenetic analysis
of full-length genome sequences. In terms of nucleotide
identity a difference of 31–33 % is required to discriminate
genotypes, while for subtypes no such fixed criterion is
proposed because they are thought to represent an
epidemiological phenomenon associated with their recent
spreads. However, all the currently designated subtypes do
show nucleotide differences by .15 % (Simmonds et al.,
2005). Using partial genome sequences we have previously
found a number of novel HCV-6 variants whose nucleotide
distances from the currently defined subtypes are around
15 %, making their classification ambiguous. This ambi-
guity is reflected in phylogenetic analyses: some subtypes
are distinct and separated by long internal branches,
whereas other subtypes are more closely related and
sometimes seem to merge into a single but larger
phylogenetic group. Here, we demonstrate this by generat-
ing and analysing 98.0–98.8 % of full-length genome
sequences from six variants related to subtypes 6k and 6l
(KM35, QC273, TV257, TV476, TV533 and L349). In
addition, we also determined such sequences for two other
HCV-6 variants (DH027 and QC271) that appear to not
fall within any currently known subtypes.

HCV genomes were determined each with 22–30 overlap-
ping amplicons for the following 10 strains: KM35, QC273,
TV257, TV476, TV533, L349, TV317, TV494, D027 and
QC271. Their lengths ranged from 9412 to 9533 nt,
corresponding to the nucleotide numbering of 1 to 9452–
9564 in the H77 genome, covering 98.0–98.8 % of the full-
length. The 59 UTRs were all 338 nt long, while the 39

UTRs varied from 23 to 144 nt long. Six isolates (KM35,
QC273, TV476, TV533, D027 and QC271) had their 39

UTRs amplified through to the poly(U) tract, but for four
isolates (TV257, L349, TV317 and TV494) the poly(U)
tracts were not obtained. Isolates KM35, QC273 and
TV317 each contain a single ORF of 9048 nt. TV257,
TV476, TV533, L349, TV494 and QC271 each contain an
ORF of 9051 nt, while the ORF of DH027 is 9054 nt long.
The sizes of the 10 HCV protein encoding regions were as
follows: core (573 nt/191 aa), E1 (576 nt/192 aa), E2
(1092–1098 nt/364–366 aa), P7 (189 nt/63 aa), NS2 (651 nt/
217 aa), NS3 (1893 nt/631 aa), NS4A (162 nt/54 aa),
NS4B (783 nt/261 aa), NS5A (1350–1353 nt/450–451 aa)
and NS5B (1776 nt/591 aa) (see Table S1, available in JGV
Online).

TV317 and TV494 grouped closely with two isolates of
subtype 6l: D33 and 537796 (Fig. 1). Since this grouping is
unambiguous, the classification of TV317 and TV494 will
no longer be discussed. Each of the remaining eight
variants was pairwise compared with the 54 reference

sequences shown in Fig. 1(a). These reference strains
represent the 23 subtypes (6a–6w) currently assigned under
genotype 6. They included five genomes of subtype 6a, four
genomes each of subtypes 6e, 6m, 6n and 6t, three genomes
each of subtypes 6f, 6i, 6o, 6u, 6v and 6w, two genomes
each of subtypes 6g, 6j and 6l, and one representative each
from subtypes 6b, 6c, 6d, 6h, 6k, 6p, 6q, 6r and 6s. When
compared to each other, the eight novel variants showed
nucleotide similarities of 76.7–83.7 % across the whole
genome and of 76.0–83.2 % across the entire ORF (Table
S2). When compared to the 54 reference sequences, their
nucleotide similarities were 72.2–86.2 % across the whole
genome and 71.4–85.7 % across the entire ORF (Table S3).
Within the 10 viral genes, core and NS5B showed the
highest similarities, whilst P7 and NS2 the lowest (Table
S4).

Of the eight novel variants, six (KM35, QC273, TV257,
TV476, TV533 and L349) were found to be roughly equally
similar to subtypes 6k and 6l. The former four (KM35,
QC273, TV257 and TV476) are found to be more closely
related, but remaining somewhat distant, to 6k (isolate
VN405) than to 6l. These four exhibit nucleotide
similarities of 83.2–85.8 % to 6k, and of 80.7–81.4 % to
6l. Conversely, isolates TV533 and L349 exhibit nucleotide
similarities of 82.7–86.2 % to 6l, and of 80.5–81.0 % to 6k.
Recently, we have characterized two variants KM41 and
KM45 that are related to 6k (Lu et al., 2006) and exhibit
nucleotide similarities of 83.3–83.4 % to VN405, which is
the prototype isolate of 6k. Likewise, QC271 was roughly
equally similar to subtypes 6i and 6j, whilst DH027 was
roughly equally similar to subtypes 6m and 6n. QC271
exhibits nucleotide similarities of 85.2–85.5 % to 6j and of
83.0–83.8 % to 6i, whilst DH027 displays nucleotide
similarities of 83.9–85.0 % to 6n and of 81.0–81.3 % to
6m. The nucleotide similarities of the genomes described
above fall close to the threshold by which different subtypes
of HCV are discriminated making their classification
difficult.

A phylogenetic tree was estimated using the obtained
genome sequences. The phylogeny showed that isolates
KM35, QC273, TV257 and TV476 formed a loose cluster
with VN405, KM41 and KM45. Within this cluster, three
subsets can be divided. The first contains KM41, KM45 and
QC273, the second contains TV257 and TV456, and the
third contains KM35 and VN405. Genetic distances among
the three subsets (18.2–18.6 %) are comparable to those
between subtypes 6f and 6r (19.3–19.8 %), 6i and 6j (18.5–
19.4 %) and 6m and 6n (20.8–22.9 %). Isolates TV533 and
L349 were loosely grouped in a second cluster with four 6l
isolates (537796, D33, L349 and TV494). Taken together,
these two clusters form a larger group that contains 13
isolates related to subtypes 6k and 6l. The internal branch
lengths that separate lineages in this group appear smaller
than in the remainder of the HCV genotype 6 tree (Fig. 1a).

In addition to subtypes 6k and 6l, there are other well-
supported taxonomic groupings above the subtype level:
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subtypes 6m and 6n cluster strongly together, as also do
subtypes 6h, 6i and 6j. The isolate DH027 was placed
between 6m and 6n, whilst isolate QC271 was placed
between 6i and 6j. The addition of DH027 and QC271
clearly interrupts the separation of 6m/6n and 6i/6j (Lu
et al., 2007). There was strong bootstrap support for a
group comprising subtypes 6k, 6l, 6m, 6n, 6h, 6j, 6i and
their related viruses, and all the eight novel variants
reported here belong to this clade. We estimated a second
phylogeny using predicted amino acid sequences (Fig. 1b)
and its topology was consistent with the nucleotide
phylogeny in Fig. 1(a). Sequences from the ten protein-
coding regions were also analysed separately, and similar
structures were obtained (data not shown).

It is possible that the phylogenetic tree shape may be
affected by recent viral recombination events that occurred
between subtypes 6k and 6l, between 6i and 6j, and

between 6m and 6n. To investigate this, pairwise similarity
scores were calculated between the eight novel variants and
the 54 reference sequences that represent subtypes 6a–6w
by using the RDP software. In each case, similar plot
patterns were observed but no evidence of recent viral
recombination events was seen (data not shown).

In this study, HCV genomes of 98.0–98.8 % full-length
were determined for eight novel genotype 6 variants
(DH027, KM35, L349, QC271, QC273, TV257, TV476
and TV533). All those except for DH027 and QC271 were
classified into a large cluster containing both subtypes 6k
and 6l. Of them, six were each distant from the prototypic
isolates of 6k and 6l. Within this cluster there are several
short internal branches above the subtype level; such
branches are rare in the rest of the genotype 6 phylogeny,
and represent active viral transmission in the distant past.
One explanation is that the 6k/6l-related group has been
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Fig. 1. Phylogenetic trees estimated from (a) complete nucleotide sequences and (b) predicted amino acid sequences.
Reference HCV sequences are each indicated by a subtype name followed by an isolate name. KM35, QC273, TV257, TV476,
TV533, L349, D027 and QC271 represent the eight novel genotype 6 variants completely sequenced in this study and are
indicated each with a red circle. TV317 and TV494 are two 6l isolates that were also completely sequenced in this study; they
were marked each with a green circle. Bootstrap analysis values of ¢70 % are shown in italics. Bars indicate a genetic distance
of 0.10 nucleotide or 0.05 amino acid substitutions per site.
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sampled more densely, such that the long internal branches
present in other parts of the tree represent insufficient
sampling: the phylogenetic positions of DH027 and QC271
(which are both equidistant between pairs of subtypes)
further support this notion. Other pairs of subtypes that
appear to be clearly separated (e.g. 6a/6b, 6c/6d, 6 g/6w,
6o/6p, 6q/6t, 6u/6v etc.) may therefore become interrupted
and less distinct as further diversity is uncovered. This is
likely to be the case once further molecular epidemiology
studies of HCV are completed in South-east Asian
countries in which there is currently a lack of extensive
HCV surveillance. It is interesting to note that a breakdown
in subtype distinctiveness has also been described for
human immunodeficiency virus type 1 (HIV-1): wide-
spread surveillance and sampling of HIV-1 from central
Africa (Vidal et al., 2000) largely eroded the long internal
branches that previously had defined highly distinct HIV-1
subtypes (Rambaut et al., 2001).

Analysis of our eight novel variants revealed two features: (i)
they are slightly more distinct from subtype prototype
sequence than other strains, making their subtype assign-
ment more difficult; (ii) a larger cluster comprising subtypes
6k, 6l and related viruses exists, representing a more ancient
phylogenetic grouping. A similar grouping of 6i/6j and 6m/
6n could be defined if more variants like DH027 and QC271
are found. Further groupings of subtypes, specifically 6f/6r
and 6a/6b, are strongly suggested by the existence of isolates
that appear to be placed between the subtypes in each pair
(data not shown); these isolates have yet to be entirely
sequenced. We therefore hypothesize that many HCV
variants are still unsampled and represent an important
missing component of global HCV diversity, within which
there may be less or no clear separation of subtypes. If this is
the case then there could be an unmanageable profusion of
subtype designations in the future.

A total of 10 serum samples was used in this study. KM35
was from a voluntary blood donor and DH027 was from an
HIV-1-infected injection drug user; both were originally
from Kunming City, Yunnan Province, China (Fu et al.,
2011; Xia et al., 2008). Isolates TV257, TV317, TV476,
TV494 and TV533 were all from blood donors from Ho
Chi Minh City, Vietnam (Pham et al., 2011). L349 was
from a patient in Vientiane city, Lao PDR (Laos)
(Syhavong et al., 2010; Pybus et al., 2009). QC271 and
QC273 were sampled in Quebec, Canada from individuals
who had the origins from Thailand and Cambodia,
respectively (Murphy et al., 2007). These samples were
selected because our preliminary analyses of their partial
core–E1 sequences have shown ambiguous classification
between subtypes.

The genome sequence of each HCV isolate was determined
from 100 ml of serum using the methods described
previously (Li et al., 2006). In brief, RNA was extracted
using Tripure (Roche). cDNA was transcribed using AMV
reverse transcriptase (Roche) and random hexamers
(Promega). Overlapping fragments were amplified using

the Fast Start PCR system (Roche) with the primers listed
in Table S5. To avoid PCR false positives, standard
procedures were taken (Kwok & Higuchi, 1989). At least
one negative control, one positive control and a water
blank were included in each of the following steps: RNA
extraction, reverse transcription and the 1st and 2nd
rounds of PCR. After PCR, the amplicons were purified
using QIAquick PCR purification kit (Qiagen) according
to the manufacturer’s protocol. To obtain consensus
sequences to reflect the heterogeneity of viral population
within each individual, the purified amplicons were
sequenced directly. The sequencing was done in both
directions by using ABI Prism BigDye 3.0 terminators with
an appropriate primer on an ABI Prism 3500 genetic
analyser (PE Applied Biosystems). The resulting chro-
matograms were corrected using SeqMan in the DNASTAR

package (DNASTAR Inc.). The finalized sequences were
aligned using BioEdit (Tippmann, 2004) followed by
manual adjustments and corrections.

Maximum-likelihood phylogenetic trees were estimated
using PHYML (Guindon & Gascuel, 2003) under the
GTR+I+C6 nucleotide substitution model. The trans-
ition/transversion rate ratio, the proportion of invariable
sites, and the gamma distribution shape parameter were
estimated from the alignment. Base frequencies were
adjusted to maximize the likelihood. Bootstrap resampling
was performed in 500 replicates. For pairwise sequence
comparisons, nucleotide similarities were calculated using
MEGA5 (Kumar et al., 2004) and genetic distances displayed
from the tree file.

To detect possible virus recombination events, we used
RDP3 (Recombination Detection Program, version 3)
(Martin et al., 2010). The program was run under default
settings with the following adjustments: (i) window size
was set to 40 nt; (ii) linear sequences option was chosen;
(iii) six different methods (RDP, GENECONV, MaxChi,
Bootscan, Chimaera and SiScan) were performed simultan-
eously on the multiple sequence alignment; and (iv) only
events detected by more than two methods were listed.
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