
*For correspondence:

takahashiyd@gmail.com (DYT);

pholmes@math.princeton.edu

(PH); asifg@princeton.edu (AAG)

†These authors contributed

equally to this work

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 30

Received: 18 August 2016

Accepted: 15 January 2017

Published: 16 January 2017

Reviewing editor: David

Kleinfeld, University of California,

San Diego, United States

Copyright Teramoto et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Vocal development in a Waddington
landscape
Yayoi Teramoto1†, Daniel Y Takahashi1,2*†, Philip Holmes1,3*,

Asif A Ghazanfar1,2,4*

1Princeton Neuroscience Institute, Princeton University, Princeton, United States;
2Department of Psychology, Princeton University, Princeton, United States;
3Department of Mechanical and Aerospace Engineering and Program in Applied
and Computational Mathematics, Princeton University, Princeton, United States;
4Department of Ecology and Evolutionary Biology, Princeton University, Princeton,
United States

Abstract Vocal development is the adaptive coordination of the vocal apparatus, muscles, the

nervous system, and social interaction. Here, we use a quantitative framework based on optimal

control theory and Waddington’s landscape metaphor to provide an integrated view of this

process. With a biomechanical model of the marmoset monkey vocal apparatus and behavioral

developmental data, we show that only the combination of the developing vocal tract, vocal

apparatus muscles and nervous system can fully account for the patterns of vocal development.

Together, these elements influence the shape of the monkeys’ vocal developmental landscape,

tilting, rotating or shifting it in different ways. We can thus use this framework to make quantitative

predictions regarding how interfering factors or experimental perturbations can change the

landscape within a species, or to explain comparative differences in vocal development across

species

DOI: 10.7554/eLife.20782.001

Introduction
Understanding how behavior changes across development requires a system-level understanding of

the interplay among an organism’s current behavioral capabilities, its changing body and changing

nervous system (Byrge et al., 2014). Vocal behavior emerges, at a minimum, from the interactions

of the vocal apparatus (the vocal folds, vocal tract and lungs) (Ghazanfar and Rendall, 2008),

the muscles that control the vocal apparatus, and the nervous system and its interplay with social

factors. Development of vocal behavior is the process of adapting a context-dependent stable con-

figuration of these elements so that they work together to produce vocalizations typical of each

developmental stage (Figure 1a). Yet, there is no theoretical or computational framework in which

to understand how the elements of vocal systems come to assemble themselves in this manner dur-

ing development.

Studies of vocal development typically focus only on one or two of the above elements at any

given time. For example, the vocal learning literature emphasizes the role played by imitation and

the neural changes that may facilitate this behavior, particularly in songbirds and humans

(Doupe and Kuhl, 1999). In such considerations, vocal development is not restricted by body struc-

ture or motor development, but rather by memory-related constraints and perceptual predisposi-

tions. Such a view is incomplete for a number of reasons (Tchernichovski and Marcus, 2014;

Vihman, 2015). For example, young swamp sparrows cannot imitate artificially sped up versions of

their species’ song, demonstrating muscular constraints on learning (Podos, 1996). Along similar
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lines, in human infants there is not only growth in the vocal apparatus (Fitch and Giedd, 1999;

Vorperian et al., 2005), but developmental changes in vocalization-related motor control

(Green et al., 2000) and respiration (Boliek et al., 1996). Moreover, in songbirds (West and King,

1988; Chen et al., 2016), bats (Prat et al., 2015), marmoset monkeys (Takahashi et al., 2015;

Gultekin and Hage, 2017) and humans (Kuhl et al., 2003; Goldstein et al., 2003; Goldstein and

Schwade, 2008), social responses by adults influence vocal development. Given that vocal develop-

ment consists of a number of moving parts, how can we track and understand how these parts and

their relationships change over time to produce mature-sounding vocalizations?

Similar questions, of course, plague all studies of development. Cells, for example, are dynamic

entities whose phenotypes change over time. How can we understand the trajectory of a pluripotent

stem cell differentiating into a fixed cell type (e.g., a neural stem cell differentiating into a neuron vs.

a glial cell vs. remaining a stem cell)? Waddington (Waddington, 1957) envisioned this canalized

pattern as a ball (the cell’s state) rolling down a surface with hills and valleys to seek the lowest

points in an epigenetic landscape. At watersheds, the valleys branch so that the ball takes one of

two available paths and thus establishes its identity at that particular time. Recently, this metaphor

for cellular development was given a formal quantitative theoretical framework (Wang et al., 2011).

Cells have states defined by the expression patterns of interacting genes. These states correspond

to different basins of attraction in a probability landscape; cell differentiation proceeds as movement

from one basin to another (Wang et al., 2011). All forms of biological development – including vocal

development – are probabilistic like this cell fate example (Gottlieb, 2007). Vocalizations also go

through different states as they transition from immature to mature forms (Kent and Murray, 1982;

Tchernichovski et al., 2001; Scheiner et al., 2002; Lipkind et al., 2013; Takahashi et al., 2015;

Zhang and Ghazanfar, 2016) (e.g., for marmoset monkeys, see Figure 1b). These states are defined

by the probabilistic relationship between the vocal apparatus, muscle control, neural activity and

social context (Figure 1a).

In the current study, our goal is to generate an integrated landscape framework for vocal devel-

opment that incorporates these elements and their interactions over time. To do so, we will use mar-

moset monkey vocal development, which shares numerous parallels with human vocal development

(Takahashi et al., 2015; Zhang and Ghazanfar, 2016; Takahashi et al., 2016; Ghazanfar and

Zhang, 2016). First, infant marmoset monkey call acoustics change during development

eLife digest As infants develop they learn new behaviors and refine existing ones. For example,

human infants progress from crying to babbling to producing speech-like sounds. A complex

sequence of changes in muscles, the nervous system and in patterns of interactions with other

individuals all contribute to these emerging behaviors.

Despite this complexity, most studies of vocal development have only considered single factors in

isolation. A study of speech development, for example, might examine how changes in the brain

enable infants to imitate sounds. However, that same study will probably ignore how changes in the

structure of the vocal cords, or in the behavior of the parents, also promote imitation.

Young marmoset monkeys, like human infants, gradually develop from producing immature cries

to adult-like calls. Teramoto, Takahashi et al. built a computational model of this process and

compared the model to data from real animals. The first version of the model focused solely on how

the marmosets’ vocal cords grow, and did not fully reproduce how adult-like calls emerge in real

marmosets. Teramoto, Takahashi et al. therefore added factors to the model that simulate

improvements in muscle control, learning in the nervous system and in the behavior of other

animals. These findings show that, to reflect how adult-like calls emerge in real marmosets, the

model needs to include all of these factors.

The model developed by Teramoto, Takahashi et al. may also provide insights into why vocal

learning and some other behaviors emerge in some species and not others. It may also be used to

predict the consequences of disrupting individual processes in young animals at particular points in

time and how such disruptions shape the way an animal develops on its way to adulthood.
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Figure 1. The elements of vocal development and their interactions. (a) Vocal development is the result of

changes in, and interactions among, the vocal apparatus, muscles, nervous system, and social context. (b) Infant

marmosets produce mostly immature calls (cries and subharmonics) during early postnatal days which are

replaced by more adult-like calls (phees) during development. (c) Changes in vocal acoustics during development

include a lowering of the dominant frequency. Purple curve shows a cubic spline fit to the data. (d) Change in the

proportion of mature calls compared to immature calls (the phee/cry ratio). Purple curve shows a cubic spline fit to

the data. The zero-crossing day is the postnatal day in which the number of cries and phees are the same, marking

the transition from mature to immature vocalization. (e) Relationship between the probability of parental

contingent responses and the zero-crossing day. Purple line shows the linear regression fit to the data.
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(Pistorio et al., 2006; Takahashi et al., 2015; Zhang and Ghazanfar, 2016) (Figure 1c). Second,

these changes in acoustics reflect the transition from an initial mixture of immature and mature vocal

sounds to adult-like vocalizations (Takahashi et al., 2015, 2016; Zhang and Ghazanfar, 2016)

(Figure 1d). Third, as in humans (Goldstein et al., 2003; Kuhl et al., 2003; Goldstein and Schwade,

2008), the timing of this transition is influenced by contingent parental vocal feedback

(Takahashi et al., 2015, 2016; Gultekin and Hage, 2017) (Figure 1e). Finally, after taking into

account their rapid growth relative to humans (de Castro Leão et al., 2009), changes in the devel-

opmental trajectory of marmoset vocal behaviors occur at the same life history stages

(Takahashi et al., 2015, 2016; Zhang and Ghazanfar, 2016; Ghazanfar and Zhang, 2016). Using

an extensive longitudinal vocal behavioral dataset from marmoset infants (Takahashi et al., 2015,

2016; Zhang and Ghazanfar, 2016), collected under two controlled contexts (brief social isolation

(undirected context) and vocal interactions with a parent (directed context)), we applied optimal

control principles to formulate and test the predictions of a landscape framework for vocal develop-

ment. This landscape shows how changes in the vocal apparatus, muscles, nervous system, and

social interaction together shape the vocal developmental trajectory of an infant (Figure 1a).

Overview of approach
In our study, the specific vocal behavior under investigation is the production of mature contact

(‘phee’) calls. Adult marmoset monkeys produce these vocalizations when alone and out of sight of

others (undirected context) (Borjon et al., 2016). If another marmoset is within earshot, then the

pair will begin taking turns exchanging these calls (directed context) (Takahashi et al., 2013). Very

young infants are only gradually able to produce mature sounding contact calls (Takahashi et al.,

2015; Zhang and Ghazanfar, 2016), and contingent vocal interactions with parents appears to

accelerate this process (Takahashi et al., 2015, 2016). Here, we use optimal control theory to con-

struct a Waddington-like developmental landscape to model this process.

Optimal control approaches have long been used in studies of motor behaviors and their applica-

tion requires four specifications: (1) well-defined behaviors, (2) a biomechanical model of the system,

(3) a cost function, and (4) an optimization criterion that describes the probabilities of those behav-

iors (Wolpert and Landy, 2012). The theory posits that the probability of producing a specific motor

action can be calculated by knowing the cost that a given behavior demands (Wolpert and Landy,

2012). If the cost to produce an action is high, that action should be less probable than another

whose cost is lower. In the current study, the four specifications are the following: (1) Immature and

mature contact calls are the behaviors; (2) The biomechanical model is one established for songbird

vocalizations (Amador and Mindlin, 2008; Perl et al., 2011; Amador et al., 2013) that we have

shown is also appropriate for marmoset monkeys (Takahashi et al., 2015); (3) The cost function is

the amount of effort required to produce contact calls; and (4) The optimization criterion is the maxi-

mum entropy principle. Maximizing the entropy allows us to identify the probability distribution that

is most consistent with the cost function and makes the fewest assumptions. In essence, the goal of

our study is to understand how each of the elements of vocal behavior – the vocal apparatus,

muscles, nervous system, social interaction – modifies this cost function over postnatal days.

The overall pattern of vocal (contact call) development consists of a change in dominant fre-

quency, a rapid transition from immature to mature calls, and a correlation between the amount of

parental feedback and the rate of this transition (Figure 1c–e). We will use the optimal control

approach to take the following inferential steps in order to explain this pattern of vocal development

(Figure 2). First, we will use the biomechanical model to simulate growth of the vocal apparatus

(specifically, the vocal tract length) (Figure 2a,b). We will then fit the model’s parameters so that it

can reproduce the dominant frequency changes observed in marmoset monkey vocal development

(Figures 1c and 2c). Second, we will test whether these changes in the vocal tract length can also

account for the rapid transition from immature to mature contact calls (phee/cry ratio; Figure 1d).

To do this, we combine the cost function (Figure 2d) with the optimization criterion which together

generate a probability distribution for the production of immature and mature calls (Figure 2e).

Third, the prediction is either falsified or supported by comparing the model-based phee/cry ratio

with the real marmoset phee/cry ratio (Figure 2f). If the prediction is falsified, we add a new element

to the cost function (e.g, change in muscle control) which changes it shape and thus changes the

probability distribution of call types produced in the emerging landscape. We then repeat the infer-

ential steps using the vocalization data, cost function, and optimal control theory (Figure 2g). To
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Figure 2. Illustration of the inferential process used in the study. (a,b) A biomechanical model is made of the

infant marmoset monkey vocal apparatus. (c) The model is used to simulate how the growth of the vocal tract

lowers the dominant frequency of calls. Model data (yellow line) can be fitted to the real data (purple line). (d,e)

Optimal control theory is used to generate a cost function for producing different call types and the maximum

entropy principle is used to calculate a probability distribution. (f) Using the probability distribution, we can

calculate the phee/cry ratios produced by the simulated vocal tract growth (gray line) and compare with the real

marmoset phee/cry ratio data (purple line). (g) The contributions of other individual elements (see Figure 1a) are

gradually added to the framework using a sequential inferential approach together with mathematical modeling.
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and methods and the Appendix. The reader interested in the mathematical aspects of the modeling

will find callouts in relevant places of the main text.

In what follows, we first present the biomechanical model of the marmoset vocal apparatus as

this serves as the foundation of our optimal control approach. We then present our findings related

to the growth of the vocal tract and the successive additions of muscle, nervous system and social

interaction to the developmental landscape.

Results

A biomechanical model of the marmoset monkey vocal apparatus
Establishing a biomechanical model for the vocalizations produced by developing marmoset mon-

keys is required for the optimal control approach. Briefly, we use a model that is a second order

ordinary differential equation with two possible time-varying parameters: aðtÞ, representing the air

pressure produced by the lungs and bðtÞ, representing vocal fold tension (Figure 3a). Different val-

ues of a and b generate different combinations of air pressure and laryngeal tension, resulting in dis-

tinct acoustic signals. The third parameter g is a fixed inverse time scale that sets the upper

frequency range of glottal (vocal fold) oscillations. The glottal air flow (Pglottal) is then filtered by the

vocal tract to produce the final vocal output (Psound). The vocal tract is modeled as a cylinder in which

the filtering property depends on its length L and reflection coefficient r (Figure 3a). Details of the

model are described in Materials and methods: The vocal fold model and From vocal vibrations to

calls, Equations (14–17); parameter values are given in Table 1 and further mathematical details

appear in the Appendix.

By varying the air pressure a and vocal fold tension b, the model produces immature and mature

contact calls (cries, subharmonic-phees and phees) with nearly identical acoustic features to those

produced by infant marmosets (Figure 3b–d); it can also simulate sequences of calls (Figure 3e).

Respiration a and vocal fold tension b can change in time to produce the different call types. To

obtain the results in Figure 3b–e, a and b were varied as increasing and/or decreasing linear ramps.

Figure 3f shows the parameter regions that result in each call type. Lower respiratory power a and

vocal fold tension b produce cries, whereas higher values produce phees. When a and b are small

(gray region, Figure 3f) there is no vocal production. Physiological respiratory data support the pre-

dictions of the model (Takahashi et al., 2015).

By varying the parameters, the fundamental frequencies and amplitude of vocal sounds can be

changed. Higher fundamental frequencies are obtained when the air pressure a and/or the laryngeal

muscle tension b increases (Monsen et al., 1978; Hollien, 2014). Consistent with this, Figure 3g

shows that the model has isofrequency (same frequency) lines for glottal airflow that increase with

higher air pressure a and/or muscle tension b. Vocal amplitude is mainly controlled by the air pres-

sure (Sundberg et al., 1993), which the model expresses as nearly vertical iso-amplitude (same

amplitude) curves in Figure 3h. The glottal air flow is then filtered by the resonant vocal tract. The

gain g is measured as the ratio between the amplitudes of vocal output (after vocal tract resonance)

and of glottal air flow (before vocal tract resonance) (gða;bÞ ¼ maxt PsoundðtÞ=maxt PglottalðtÞ). Glottal

air pressures that oscillate at the resonance frequencies produce higher gains than those that do not

(Ghazanfar and Rendall, 2008). Figure 3i shows the effect on the gain produced by different values

of air pressure and muscle tension. The highest gains are obtained for glottal airflow at approxi-

mately 9–10 kHz (Figure 3g,i).

Growth of the vocal tract contributes to lower dominant frequency
In humans and other primates, vocal development includes a lowering of the dominant frequency of

calls (Hammerschmidt et al., 2000, 2001; Kent and Murray, 1982; Scheiner et al., 2002;

Pistorio et al., 2006; Takahashi et al., 2015) (Figure 1c). Such changes in frequency in early vocal

acoustics are typically associated with increases in the size of the vocal folds: as they get bigger they

naturally oscillate more slowly, producing lower frequency sounds. Some early vocalizations are also

noisy (see the cry in Figure 1b). Noisiness in vocal acoustic features in general are typically associ-

ated with instabilities in the vocal fold movements (Kent and Murray, 1982; Fitch et al., 2002;

Tokuda et al., 2002). Our initial modeling study of the biomechanics of marmoset monkey vocal

development revealed that, unexpectedly, the vocal tract may additionally play an important role in
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Figure 3. A biomechanical model of marmoset vocal apparatus. (a) Representation of the biomechanical model of the vocal production apparatus. In

our one-mass model xðtÞ; yðtÞ are displacement and velocity of vocal folds; nondimensional lung air pressure, vocal fold tension and overall inverse
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Figure 3 continued on next page
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generating the acoustic features present in both immature and mature vocalizations

(Takahashi et al., 2015). Thus, in this study, we explore the role of vocal tract growth on shaping

the developmental landscape.

When an animal’s body size increases during development, so does the length of its vocal tract

(Fitch and Giedd, 1999). Since longer vocal tracts have lower main and subharmonic resonance fre-

quencies f0; f0=2; f0=3, etc., we expect the resonance frequency to decrease over development. To

test this, we fitted the developmental change in dominant frequency observed in the undirected

context data (Figure 4a) and estimated the developmental change in this feature due to the chang-

ing length of the vocal tract L (Figure 4b). As expected, the increase in L and the associated

changes in resonance frequencies during development can explain the observed reduction in the

dominant frequency of vocalizations. Thus, the change in dominant frequency is a developmental

feature that can be associated with changes in vocal tract length. Having established that, we can

now use optimal control theory to determine if vocal tract length L can also explain other features of

the infant marmoset vocal development. In particular, we will examine if the change in L can explain

the rapid transition from producing mostly immature vocalizations like cries and subharmonic-phees

to mostly adult-like contact phee calls (Figure 1d) (Takahashi et al., 2015; Zhang and Ghazanfar,

2016). To do so, we will need to calculate the probability to produce immature and mature calls.

Optimal control theory will allow us to do this, but first we must define an ethologically relevent

’cost’ of producing vocalizations.

Based on what we know about the ethology of infant marmoset monkeys, there are benefits to

producing vocalizations with higher gains (i.e., vocalizations that are louder, longer and more tonal)

(Figure 4c). Marmoset infant cries, subharmonic-phees, and phees are produced when they are sep-

arated from the parents (Takahashi et al., 2015). These vocalizations are louder compared to other

infant calls and result in parents approaching the infant, and so are considered contact calls (New-

man, 1985). However, infant marmoset calls that are more tonal (or ’phee’ like; [Figure 1b, right

panel]) are more likely to elicit parental responses (Takahashi et al., 2016). Hence, we model the

cost of producing a call at different air pressure and vocal fold tension as inversely related to the

gain gða;bÞ ¼ maxt PsoundðtÞ=maxt PglottalðtÞ. We can therefore write the cost to produce a vocalization

with a given air pressure (a) and vocal fold tension (b) as

Cða;bÞ ¼� loggða;bÞ; (1)

where a,b2 ½0;1:1� remain in the region of viable calls (see Figure 3f). The higher the gain for this

function, the lower the cost. The logarithm is used to make the unit of gain proportional to decibels

(dB).

To simplify our analysis and allow visualization, in what follows we will consider only the diagonal

section a ¼ b of the parameter space, labeled �, that passes through the region of cries, subhar-

monic-phees, and phees. Other choices of a and b that include these three calls yield similar results.

The cost function Equation (1) becomes

Cð�Þ ¼� loggð�Þ; (2)

where �2 ½0;1:1�. Figure 4d illustrates our first ‘landscape’: the cost function with troughs indicating

where glottal air pressure oscillates at the vocal tract’s resonance frequency and subharmonics

f0; f0=2, etc. This cost function describes one section of the developmental landscape related to respi-

ration and vocal fold tension.

Figure 3 continued

real infant calls (top) and model simulation of the same calls (bottom). (e) Example of a sequence of infant calls (top) and model simulation (bottom). (f)

Different values of air pressure and vocal fold tension produce distinct types of calls. Gray region represents parameter values that do not produce

vocalization (i.e., self-sustained oscillation). (g) Isofrequency curves. Lines show air pressure and vocal fold tension values that produce glottal air flow

that oscillates at the same frequencies; parameters in the gray region do not produce self-sustained oscillations. (h) Iso-amplitude curves. Lines show air

pressure and vocal fold tension values that produce glottal air flow with same amplitudes. (i) Plot showing gains: the ratios between sound produced

after the resonance (vocal output) and before the resonance (glottal air flow); warmer colors indicate higher ratios. The diagonal line (a ¼ b) is

parametrized by �. au = arbitrary units.
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We can now describe the effect of developmental changes in vocal tract length L on the shape of

this landscape. An increase in L causes a decrease in the location of the troughs with respect to �,

and vice-versa (Figure 4d). The different color regions indicate the different types of calls produced

by the model for a given �. Minimal cost is obtained when the infant produces mature contact phee

calls because the frequency of glottal oscillations match f0. Given the cost function, we want to
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Figure 4. Growth of the vocal tract. (a) Change in dominant frequency of infant marmoset calls during development. Yellow curve shows the value of

resonant frequency fitted by the biomechanical model. Red dots are the mean dominant frequency of each postnatal day for all 10 infants (n ¼ 301

sessions). (b) Vocal tract length estimated by the model assuming a closed-closed cylindrical tube (brown curve); shaded region indicates 95%

confidence interval. (c) Infant marmosets produce calls that maximize distance and efficiency. Therefore, the cost Cð�Þ of producing a call is inversely

related to the gain gð�Þ. (d) Cost function to produce calls at different air pressure and vocal fold tension values (�). Blue, yellow, and green dots

indicate parameter regions for cry, subharmonic-phee, and phee production, respectively. Minimal cost is achieved for phees, which have glottal air

flow oscillating at the natural frequency of the vocal cavity; �-axis is in log-scale. (e) Probability density to produce calls at different � values; color code

is the same as in (d). Increasing h concentrates probability in the parameter range that produces phees. (f) Population and model phee/cry ratios.

Purple line is the population value of phee/cry ratio for the real marmoset infant data; shaded region indicates 95% confidence interval (n ¼ 195

sessions). Gray lines indicate phee/cry ratios predicted by the model for different values of h. (g) Growth (lengthening) of the vocal tract can explain the

lowering of the dominant frequency, but not the transition from cries to phees.
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predict the probability that the infant will produce a call with a given air pressure and vocal fold ten-

sion. This is achieved by using the maximum entropy principle, via application of the softmax action

selection rule (Jaynes, 1982; Wilson et al., 2014). This will give the probability of producing differ-

ent calls that is consistent with the cost function and makes the fewest possible assumptions (see

Materials and methods: Softmax action selection rule for details). This rule implies that the probabil-

ity to produce a call with a given � is proportional to the exponential of the negative of the cost:

Probð�Þ ¼ expð�hCð�ÞÞ=Z: (3)

Here h is a non-negative parameter that controls the concentration of the probability distribution

and that can be estimated from the data. Z ¼
Z

expð�hCð�ÞÞd� is the normalizing constant such that

the total probability is one. Figure 4e shows that increasing h increases the probability to produce

phees. When h is zero, all parameter values are equally likely and we obtain the minimum possible

proportion of phees.

Now we can ask a key question. Is a developmental landscape that only incorporates changes in

vocal tract growth sufficient to explain not only lowering of the dominant frequency (Figure 1c), but

also the other features of marmoset monkey vocal development? If so, then it should be able to

explain the rapid transition from immature to mature calls during development (Figure 1d;

[Takahashi et al., 2015]). To test this hypothesis, we calculated the phee/cry ratio, defined as

phee=cry ratio¼ProbðpheeÞ�ProbðcryÞ
ProbðpheeÞþProbðcryÞ ; (4)

for the data and the model. Using the model, we can calculate the probability to produce a specific

type of call by integrating the probability density for the air pressure and vocal fold tension that pro-

duce each type of call. Specifically, if Acry is the set of parameters � for which the model produces

cries (Figure 4e, blue region), we have

ProbðcryÞ ¼
Z

Acry

Probð�Þd�: (5)

Similarly, if Aphee is the set of parameters for which the model produces phees (Figure 4e, green

region), we have

ProbðpheeÞ ¼
Z

Aphee

Probð�Þd�: (6)

Figure 4f (gray lines) shows that during development, changes in vocal tract length L have only a

small influence on the phee/cry ratio and increasing h only increases the probability of phees. But

the phee/cry ratio in the marmoset data is negative for early postnatal days, showing more cries,

and exhibiting a fast transition to mostly phee production after 20� 30 postnatal days. Therefore,

there are no values of h and L that can fit the data and the cost function that includes only the

change in vocal tract length cannot predict the cries-to-phees transition observed in development

(Figure 4f,g). In other words, the changes in the position of troughs in the landscape due to vocal

tract length increases are insufficient to explain other features of vocal development beyond lower-

ing of the dominant frequency. Therefore, we will next consider the development of muscular con-

trol in the vocal apparatus.

Development of both vocal tract and muscle control accounts for the
rapid transition from immature to mature vocalizations
Laryngeal and respiratory muscle size, strength, and dynamics significantly change through postnatal

development in humans (Moore, 2004; Sasaki, 2006). We expect the control of respiratory and

laryngeal muscles to change similarly during development in marmoset monkeys. Based on this

assumption, one possibility is that the larger proportion of cries that occurs in the early postnatal

period is due to very young infants having difficulty producing higher air pressures and vocal fold

tensions required to generate mature (phee) calls (Figure 3f). Producing higher values requires

stronger respiratory and laryngeal muscles and greater coordination (Takahashi et al., 2015). Our
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aim, therefore, is to estimate a new cost function and hence developmental landscape based on

both vocal tract growth and the development of muscular control. We will model the cost of muscu-

lar control by modeling the required muscular effort as l�: a linear function of � with a parameter l

whose values define how steep is the change in muscular effort for larger values of air pressure and

vocal fold tension. Figure 5a shows the muscular effort for different values of � and l. In this second

function, the total cost to produce a call for a given value of � is the sum of the cost of the vocal tract

change Equation (2) and muscular effort:

Cð�Þ ¼� loggð�Þþl�; (7)

for �2 ½0;1:1�. Figure 5b shows this cost function for different values of � and l. Higher values of l

increase the cost to produce phees (green) more rapidly than the cost to produce cries (blue). There-

fore, the effect of adding l� to the cost function is to rotate the developmental landscape counter-

clockwise, increasing the cost of producing phees.

Using the maximum entropy principle as before (softmax action selection rule Equation (3)), we

can calculate the probability to produce calls for a given �. As expected from the effect of l on the

cost function (Figure 5b), Figure 5c shows that higher values of l imply a lower probability to pro-

duce phees and higher probability to produce cries. This indicates that the developmental transition

from cries to phees can be a consequence of a decrease in l (i.e., an increase in muscular control)

during development. To test this possibility, we fitted the phee/cry ratio data using the cost function

Equation (7) (Figure 5d). The fit follows the phee/cry ratio curve obtained from the directed context

data obtained from infant marmosets (Figure 4f). Figure 5e shows the values of l estimated by

applying the model to these real data. As expected, we find that l decreases during development

(i.e., muscular control increases).

Thus, a two-element developmental landscape that includes vocal tract growth and the develop-

ment of muscle control of the vocal apparatus can account for two key features of vocal develop-

ment: lowering of the dominant frequency as calls become more mature and the rapid transition

from early immature calls to mature ones. Our next question is whether this two-element landscape

can also explain individual variability in the timing of the rapid transition. This timing is represented

by the zero-crossing day (Figure 1d,e) when the number of immature and mature calls produced is

equal (Takahashi et al., 2015). Our prior work demonstrated that the individual timing of the zero-

crossing day appears to depend upon the number of contingent responses provided by parents

when they hear the infant’s contact calls (Takahashi et al., 2015). Thus, to answer this question, we

calculated the correlation between the zero-crossing day and the probability of contingent parental

responses to infant calls (Takahashi et al., 2015). We observe that there are clear correlations

between the amount of parental feedback and the rate of the cry-to-phee transition (Figure 5f, pur-

ple line) but these cannot be explained by the cost function that only includes the elements of vocal

tract growth and muscular control improvements (Figure 5f, gray line). Therefore, an additional fac-

tor is needed, one that can control the vocal apparatus and is influenced by social feedback – the

nervous system (Figure 5g).

Learning in the nervous system facilitated by social feedback
accelerates the individual rate of vocal development
As in songbirds (West and King, 1988; Chen et al., 2016) and humans (Kuhl et al., 2003;

Goldstein et al., 2003; Goldstein and Schwade, 2008), contingent parental responses appear to

influence vocal development in marmoset monkeys (Takahashi et al., 2015, 2016). The timing of

transition from a cry-dominated early developmental period to phee-dominated later period is corre-

lated with the amount of contingent parental vocal feedback that each infant receives (Figure 1e)

(Takahashi et al., 2015). Contingent parental responses are those that are produced within 5 s of an

infant call. Infants that receive a higher proportion of contingent parental calls exhibit earlier transi-

tions from cries to phees. This, of course, is social feedback-based reinforcement learning mediated

by large-scale networks in the nervous system (Syal and Finlay, 2011). Given that increasing muscu-

lar control (i.e., decreasing l) increases the phee/cry ratio, we hypothesize that the change in the

nervous system driven by social feedback affects the daily rate at which l decreases during develop-

ment. In light of this, the amount of change in l would be proportional to the amount of parental

feedback that the infant receives: a larger proportion of parental feedback will decrease l by a
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larger amount. Therefore, we propose the following relationship between the value of l as a func-

tion of time, lt, indexed by postnatal day, and the average proportion of contingent parental feed-

back, represented by F:

lt ¼ lt�1 �kF� d: (8)
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Figure 5. Development of muscular control in the vocal apparatus. (a) Muscular control necessary to produce different air pressure and vocal fold

tension; higher values of l imply a greater effort to produce given air pressure and vocal fold tension. Blue, yellow, and green dots indicate parameter

regions for cry, subharmonic-phee, and phee production, respectively. (b) Cost functions for different values of l. (c) Probability to produce calls at

different air pressure and vocal fold tension. For higher values of l, probability to produce phee diminishes and the probability to produce cries

increases. (d) Phee/cry ratio fitted by the model (white curve). Colors indicate the probability density of the phee/cry ratio for the marmoset population

(n ¼ 195 sessions); warmer colors indicate higher probability densities. (e) Estimated muscle effort coefficient (l) during development (brown curve);

shaded region indicates 95% confidence interval (n ¼ 195 sessions). (f) Relationships between the probability of contingent parental responses and zero-

crossing day for real data (purple line) and the model (gray line); shaded region indicates 95% confidence interval (n ¼ 10 infants). (g) Changes in

muscular control can explain the population change in the phee/cry ratio, but not the social feedback-influenced the individual timing of this transition.

DOI: 10.7554/eLife.20782.007

Teramoto et al. eLife 2017;6:e20782. DOI: 10.7554/eLife.20782 12 of 42

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.20782.007
http://dx.doi.org/10.7554/eLife.20782


Here k is a parameter that models the effect of learning and can be calculated from the data. d

models the neuromuscular development that is independent of contingent parental calls. Like human

infant babbling (Koopmans-van Beinum et al., 2001), infant marmosets will eventually produce

adult-like calls with little or no parental feedback (Takahashi et al., 2015; Gultekin and Hage,

2017). Thus, the daily change in l decomposes into two parts: one (kF) that depends on parental

feedback and another (d) that is independent of such feedback. Equation (8) implies that l

decreases linearly with t:

lt ¼ l0 �ðkFþ dÞt; (9)

where l0 is the starting value at postnatal day 0. The new cost function for each postnatal day which

includes vocal tract growth, muscular control and nervous system development is

Ctð�Þ ¼� loggtð�Þþl0�� dt��kFt�; (10)

where the subscript t indicates dependence on time. Equation (10) derives from Equation (7) with l

replaced by lt ¼ l0�ðkFþ dÞ from Equation (9).

Figure 6a shows the effect of different proportions of contingent parental calls on the develop-

ment l of as predicted by this cost function. If there is no parental vocal feedback (F ¼ 0), e.g., the

infant is deaf or raised in social isolation, l still decreases, but at a slower rate determined by d

(black line). Figure 6b shows that the proportion of parental feedback is negatively correlated to the

timing of transition from cries to phees. Therefore, learning in the developing nervous system facili-

tated by social feedback tilts the developmental landscape, so that the transition from cries to phees

happens sooner and faster. Figure 6c (blue dots) shows the relationship between the proportion of

contingent parental calls and the zero-crossing day in the data and the same relationship fitted using

the cost function Equation (10) (yellow curve, see Materials and methods: The full cost function and

more parameter choices for further details). The fitting shows that the relationship between the pro-

portion of contingent parental responses and the rate of transition from cries to phees can be

explained by the development of the nervous system facilitated by parental feedback. Nevertheless,

this cost function does not explain why parents produce different amounts of contingent calls.

Therefore, we have to consider how the social interaction with parents may depend on other varia-

bles of infant vocal development (Figure 6d).

Infant growth rate does not influence the probability of contingent
responses from parents
The interactions between parents and an infant are predictive of overall health, quality of attachment

and the subsequent communication skills of the child. Unhealthy infants who do not vocalize a lot

tend to be fed and held less by mothers, and are slowed in their speech development and thus

adversely affect the probability of interactions with parents (Zeskind, 2013; Lester, 1985). Differen-

ces in such vocal output can be related to differences in growth (Zeskind and Lester, 1981). There-

fore, one hypothesis is that infant marmoset monkeys with faster growth rates call more and, as a

result, receive more contingent feedback from parents which would accelerate the transition from

immature to more mature calls. If this is true, then the higher frequency of parental feedback should

be a consequence of parents responding to healthier, more vocal infants. If the hypothesis is falsi-

fied, it would suggest that the direct effect of parental feedback is to change the infant’s developing

nervous system, thereby affecting the rate of this vocal transition independently of overall growth

rates.

To model these relationships, let W and N respectively be the weight change over development

(a measure of growth) and the call rate of the infant marmosets. We can write the frequency of

parental feedback F as a simple linear function:

F¼ b0 þ b1W þ b2Nþ �; (11)

where � is noise independent of W and N, b0 is the intercept, and b1, b2 are coefficients relating W

and N to F. If b1 or b2 is different from zero, we have evidence of an indirect effect. To test this

hypothesis, we fitted Equation (11) to the infant marmoset vocalization data collected in the

directed context. We find that no coefficient bi is significantly different from zero (n¼ 10, b0 ¼ 0:083,
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p¼ 0:675, b1 ¼ 0:290, p¼ 0:361, b2 ¼�0:051 p¼ 0:678). We also tested whether W and N are sepa-

rately correlated to F (Figure 7a,b). Again, both correlations are not significantly different from zero

(respectively, p¼ 0:378 and 0:896). This corroborates the alternative hypothesis that parental feed-

back has a direct effect on the infant nervous system that cannot be accounted for by the growth or

call rates of infants.

A dynamic and integrated Waddington landscape for vocal
development
What makes an infant marmoset transition from immature to mature-sounding vocalizations? By

combining the influences of the developing vocal tract, muscles of the vocal apparatus and the ner-

vous system, we can now present an integrated landscape of vocal development in the manner envi-

sioned by Waddington (Waddington, 1957). Figure 8a summarizes the relationships between these

different elements of vocal production and the corresponding changes in vocal development. In our

framework, these elements define the dynamics of the cost function, i.e., the shape of the develop-

mental landscape. Figure 8b illustrates the landscape plotted over ð�; tÞ-space. Its interpretation is

as follows: (1) Development of vocal tract length L changes the resonance frequency by shifting the

troughs/valleys of the landscape represented by the shape of gtð�Þ (Figure 8c); (2) neuromuscular

maturation increases the probability to produce phees by reducing the cost function by an amount

d� per day, i.e. rotating the landscape from one postnatal day to the next (Figure 8d); and (3) ner-

vous system development driven by social feedback further increases the probability to produce
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phees by tilting the entire landscape by an amount that is the product of the learning rate k and the

proportion of parental feedback F (Figure 8e).

To better visualize the dynamics of the landscape as it applies to an individual marmoset infant’s

vocal development, we can associate a diffusion process to it (Video 1). The video shows the states

of a particle driven by the gradient of the cost function Ctð�Þ of Equation (10) and white noise, on

11 postnatal days separated by 6-day intervals. The position of the particle indicates the call types

produced on that postnatal day and the amount of time spent producing each call. Much like the

basins of attraction proposed for cell differentiation (Wang et al., 2011), the deeper the valley, the

longer the diffusion process spends in it each day. As time elapses, the cost function Ctð�Þ deforms

so that the probability of observing cries decreases and phees become more likely, with a zero

crossing day in the third or fourth week, depending on the individual. See Materials and methods:

Softmax action selection rule for more information.

Discussion
Vocal development is a systems-level phenomenon. Its understanding requires the analysis of

changes in the vocal apparatus, associated muscles, the nervous system and social interactions. Each

of these elements modifies the others and itself over time (Thelen and Smith, 2006; Byrge et al.,

2014). Using data from developing marmoset monkeys and optimal control theory, we generated a

systematic and quantitative inferential framework based on Waddington’s developmental landscape

metaphor (Waddington, 1957). We used it to account for three features of marmoset monkey con-

tact call development: the lowering of the dominant frequency, the rapid transition from producing

mostly immature to mostly mature calls, and the influence of social feedback on the timing of this

transition (Takahashi et al., 2015).

We showed that the change in the dominant frequency of infant vocalizations can be explained

by developmental increases in the length of the vocal tract. However, vocal tract growth could not

account for the timing of the transition from immature vocalizations (cries), which are abundant in

early postnatal days, to mature vocalizations (phee calls) which exemplify later periods. This transi-

tion can, however, be explained by including the development of muscular control. This suggests

that immature respiratory and laryngeal muscles do not allow the infant marmoset to produce adult-

like phees: calls that demand greater effort and/or coordination (Takahashi et al., 2015; Zhang and

Ghazanfar, 2016). The development of the vocal tract and muscular control, however, could not

explain how parental feedback influences the timing of the transition from immature to mature

vocalizations. Including a learning component mediated by the nervous system allowed us to infer a
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Figure 8. Waddington landscape for vocal development. (a) Developmental changes associated with each vocal component: vocal tract length L,

neuromuscular maturation d, learning rate k, and parental feedback F. (b) Different components of vocal behavior change distinct features of the

developmental landscape. Similar colors indicate regions with the same cost values; darker colors indicate lower costs. The blue solid line shows

the natural frequency of the vocal tract, which depends upon its length L. Neuromuscular maturation parameter d changes the shape of the landscape.

Figure 8 continued on next page
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relationship between contingent parental vocal responses and the rate of vocal maturation in individ-

ual infants. Thus, incorporating vocal tract growth, increased muscular control and learning-related

changes in the nervous system into a single landscape allowed us to see how these elements interact

over time and influence the trajectory of vocal development. This underscores the fact that neural

networks do not function in isolation; they must typically process sensory data and communicate

with muscles to create appropriate behaviors. The resulting coupling with physiological systems

both enables and constrains the behaviors that such neural circuits can produce (Chiel and Beer,

1997; Tytell et al., 2011).

Vocal biomechanics of developing marmoset monkeys
The key to our optimal control-based elaboration of the vocal development landscape was the bio-

mechanical model for vocal production. The model was originally developed to describe bird song

production (Amador and Mindlin, 2008; Perl et al., 2011; Amador et al., 2013) and then adapted

to model infant marmoset vocal production (Takahashi et al., 2015). The main advantage of the

model is its ability to produce all infant marmoset calls by varying only two parameters: air pressure

and vocal fold tension; continuous changes in these parameters can produce spectrally distinct cries,

subharmonic-phees, and phees. These are sufficiently distinct that they were previously considered

to be different types of calls (Pistorio et al., 2006; Bezerra and Souto, 2008).

The ability of our biomechanical model to generate such acoustic diversity contrasts with previous

models. For example, the origin of cries in nonhuman primates has been attributed to turbulent or

chaotic dynamics of the vocal folds (Fitch et al., 2002), perhaps as a consequence of vocal fold

asymmetry (Herzel, 1993) and/or source-vocal tract interactions (Hatzikirou et al., 2006). Our

model produces cries simply through a mismatch between the low frequency periodic glottal air

flow and the higher frequency resonance of the infant’s upper vocal tract; no chaotic dynamics

occurs. The primary difference between cries and phee calls is that the frequency of glottal oscilla-

tions is lower in the former (see Figure 9 (left)). This result provides direct biomechanical support for

the hypothesis that cries are the scaffolding for vocal maturation in both marmosets

(Takahashi et al., 2015) and humans (Kent and Murray, 1982).

Vocal development as the transformation of a cost function
In our study, vocal development is understood as a transformation of the cost function through time

as a consequence of changes in the vocal apparatus, muscles, nervous system, and social interaction.

To calculate the probability that an infant marmoset produces cries, subharmonic-phees, or phees,

we first defined the cost of producing a call with a given air pressure and vocal fold tension. We

then calculated the probability of producing each type of call using the maximum entropy principle.

The idea of a cost that changes in time to describe development goes back at least to Waddington’s

epigenetic landscape metaphor (Waddington, 1957), but in Waddington’s formulation the meta-

phorical landscape is static and the paths that phenotypical differentiation might take are genetically

determined. Modern perspectives using Waddington’s landscape metaphor (including the current

study) think of development as probabilistic and allow the landscape to change shape over time

(Thelen and Smith, 2006; Wang et al., 2011; Ferrell, 2012; Sasahara et al., 2015). For example,

Sasahara et al. investigated the development of rhythmic structure in the songs of Bengalese finches

using a landscape perspective. They showed that rhythm development exhibits branching and new

trajectories along which early, simple vocalizations developed into diverse note types followed by

specific silent gaps. The trajectory patterns differed considerably among individual birds, but rhythm

proficiency progressed exponentially in all birds (Sasahara et al., 2015).

Figure 8 continued

The nervous system, influenced by parental feedback kF, changes the slope of the landscape, speeding up development as t increases; �-axis

represents values in logarithmic scale. (c) Change in landscape as vocal tract length L increases for fixed d;kF (left to right). (d) Change in landscape as

neuromuscular maturation d increases for fixed L;kF (left to right). (e) Change in landscape as learning rate k times amount of parental feedback F

increases for fixed L; d (left to right). See Table 2 for parameter values.
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Some caveats: Selection of vocal
elements, other behaviors, shape
of trajectories and sequential order
In our probabilistic landscape, we inferred the

role of vocal tract growth, muscular control and

the influence of social feedback on nervous sys-

tem development. This allowed us to explain – in

an integrative manner – the role these elements

together play in the transformation of immature

to mature contact calls in developing marmosets.

We used these somewhat generic elements to

most clearly illustrate (in our view) the develop-

mental phenomena, as there is no prior study of

this kind. However, a more detailed landscape

could certainly be generated by at least three

means. First, more elements could be added. For

example, lowering of the dominant frequency

may also be due to growth-related increases in

the size of the vocal folds

(Hammerschmidt et al., 2000, 2001), but we

only considered the vocal tract. Similarly, ’muscu-

lar control’ and ’nervous system’ in our landscape

could be more specifically represented by sepa-

rating the development of individual muscles and

neural connections, respectively, related to vocal

apparatus control.

Second, other infant behaviors may act as

scaffolding or otherwise constrain or facilitate

vocal development (Iverson, 2010). In the case

of infant marmosets, the ability to self-monitor

(and thus to take turns vocalizing with parents)

matures in an experience-independent manner at

the same time as they transform immature con-

tact calls into mature versions (Takahashi et al.,

2016). The current study did not incorporate how

such changes in self-monitoring could also shape

the developmental landscape for this vocal

transformation.

Third, we made assumptions about the developmental trajectory of the elements. For example,

we assumed that the development of muscular control and learning in the nervous system were lin-

ear processes. This simplification has the benefit of making clear the main phenomena in our frame-

work, but more precise data on the developmental trajectories of muscles or learning-related

neuronal activity would provide more accurate predictions. Our framework is general enough to

incorporate such details for a deeper understanding. For example, if the linear functions can be

replaced by more realistic, perhaps non-linear, functions relating air pressure, vocal fold tension and

muscular control, they could be incorporated.

Finally, one part of our inferential sequence was that increased muscular control was due to learn-

ing-related changes in the nervous system via social reinforcement. An alternative inferential

sequence could have been adopted. For example, improvements in muscular control independent

of learning could have resulted in more mature-sounding infant calls and thereby increased the rate

of parental vocal feedback. This would lead to a different explanation of the correlation between the

rate of transition from cries to phees and the amount of parental feedback. We did not test this pos-

sibility in our inferential sequence because this hypothesis would be valid only if the change in social

interaction were incorporated in the model before changes in the nervous system. The behavioral

data do not support this alternative sequence of events: parental call rate, and strength of the

Video 1. Animation showing a typical realization of a

diffusion process with cost function C as described in

Materials and methods: Softmax action selection rule.

The particle travels through a developmental

landscape that changes its shape due to changes in

vocal apparatus, muscle strength, nervous system, and

social interaction. The particle’s location represents the

behavior of a marmoset infant. In early postnatal days,

it stays mostly in the parameter region ð�Þ producing
immature calls, whereas in later postnatal days, it stays

mostly in the region producing more mature calls.

Diffusion dynamics are shown at intervals of six days.

Lower left panel shows the numbers of cries and phees

produced in each simulated postanatal day; lower right

panel shows the phee/cry ratio for the same postnatal

days.

DOI: 10.7554/eLife.20782.011

Teramoto et al. eLife 2017;6:e20782. DOI: 10.7554/eLife.20782 18 of 42

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.20782.011
http://dx.doi.org/10.7554/eLife.20782


dynamic interaction between infants and parents, remain constant throughout development

(Takahashi et al., 2015, 2016). Thus, a change in social interaction driven by muscle development

(before learning-related neural changes) cannot explain the relationship between parental feedback

and rate of transition to more mature calls.
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Figure 9. Producing marmoset cries and phees with the model. (a) Trajectories of x plotted vs. y for Equation (14) for a cry (left) and a phee (right).

Parameter values ða;bÞ ¼ ð0:09364; 0:088Þ for cry and ð0:151; 0:895Þ for phee respectively. (b) Glottal air flows Pglottal produced by the model and (c)

vocalizations Psound produced after resonance in the vocal tract for a cry and a phee. (d) Cry and phee waveforms for calls recorded from infant

marmosets; compare with model waveforms shown in (c). Note different vertical scales on left and right columns, indicating that phees are substantially

louder than cries.
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Applications of the vocal development landscape
An integrative understanding of vocal development is important for a variety of reasons, because

while we know that many communication disorders originate in problems early in life, we lack any

clear grasp of the initial problems. By the time a child is diagnosed with a disorder, the symptoms

represent a build up of earlier developmental events. For example, the early vocalizations of infants

elicit attention, care and vocal responses from parents (Lester, 1985; Zeskind, 2013). Infants who

do not vocalize much tend to be fed and held less by mothers, and are slowed in their vocal devel-

opment. The lack of adequate early vocal output by infants may be due to many factors, including

abnormal growth of the vocal apparatus, weak laryngeal and respiratory muscles, and/or problems

related to nervous system function, such as arousal dysregulation or deficits in motor control and

learning.

Understanding the mechanisms for human communication, and how it may go awry, requires the

use of model animals that naturally exhibit at least a subset of similar communicative behaviors. The

early vocal development of marmosets shares a number of parallels with prelinguistic vocal develop-

ment in humans (Ghazanfar and Zhang, 2016), perhaps due to convergent evolution of a coopera-

tive breeding strategy (Borjon and Ghazanfar, 2014; Ghazanfar and Takahashi, 2017). Moreover,

we are gaining knowledge of the genetics of this species (Harris et al., 2014) and, more specifically,

the sensorimotor physiology related to its vocal production (Eliades and Wang, 2008; Miller et al.,

2015; Zhang and Ghazanfar, 2016; Borjon et al., 2016; Roy et al., 2016). Recent innovations

establishing genetically-modified marmosets (Sasaki et al., 2009; Okano et al., 2016) will allow for

any number of experimental routes needed to gain novel insights into vocal development. The land-

scape framework in the current study could be used to make quantitative predictions on the effects

of genetic or other types of experimental manipulations. For example, the landscape framework

combined with genetic engineering could be used to make predictions regarding the influences of

communication- or connectivity-related genes expressed during neuroembryological development in

marmosets (Matsunaga et al., 2013; Kato et al., 2014).

Naturally, marmosets do not share with humans every aspect of postnatal vocal development.

Songbirds, for example, are much better suited to investigate the shared mechanistic basis for more

sophisticated forms of vocal learning (Lipkind et al., 2013), though such learning occurs at different

life-history stages. The vocal development landscape may be used to illuminate why there are spe-

cies differences in both the degree to which vocalizations can be learned and the life history-timing

of such learning. For example, vocal development data from songbirds and humans could be used

to generate landscapes for comparison with the marmoset landscape. Closely related species which

differ radically in their vocal behavior could also be compared in this manner. For instance, the land-

scapes of New World squirrel monkeys, whose vocalizations change very little during development

(Hammerschmidt et al., 2001), could be quantitatively compared to each other and with the mar-

moset landscape. Similarly, evolutionary insights could be gained by comparing vocal development

landscapes of the white-rumped munia and its domesticated counterpart, the Bengalese finch,

whose song behaviors and biologies differ considerably (Katahira et al., 2013; Suzuki et al., 2014).

Moreover, as the evolution of a phenotype in essence defines its developmental trajectory, provid-

ing the developmental parameters for different species could illuminate how changes in their respec-

tive landscapes lead to similarities or differences in their adult vocal behaviors.

Overall, we believe that the integrated systems view provided by the vocal development land-

scape not only eschews the incorrect view that there are privileged levels of understanding behavior

and its development (Noble, 2012; Krakauer et al., 2017), but also enables us to make predictions

regarding how natural or experimental perturbations (e.g., changes in social feedback, weakening of

muscles, disruptions of neural circuits, genetic engineering, etc.) will affect the development of vocal

behavior, and why species differ in their capacity to learn communication signals.

Materials and methods

Subjects
All experiments were approved by the Princeton University Institutional Animal Care and Use Com-

mittee. The data analyzed in this work is a subset of the dataset that was previously published

(Takahashi et al., 2015) and can be found at http://science.sciencemag.org/content/suppl/2015/08/
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13/349.6249.734.DC1. The subjects used in the study were 10 infants and six adults (three male-

female pairs, >2 years old), captive common marmosets (Callithrix jacchus) housed at Princeton Uni-

versity. The colony room is maintained at a temperature of approximately 27˚C and 50–60% relative

humidity, with a 12L:12D light cycle. Marmosets live in family groups; all were born in captivity. They

had ad libitum access to water and were fed daily with standard commercial chow supplemented

with fruits and vegetables. Additional treats (peanuts, cereal, fruits and marshmallows) were used

prior to each session to transfer the animals from their home-cage into a transfer cage.

Experimental procedures
The vocalizations of marmoset monkey infants were recorded starting on the first postnatal day in

two different contexts: undirected (i.e., social isolation) and directed (with auditory, but not visual,

contact with their mother or father). The details of the full experiments were described previously

(Takahashi et al., 2015). Here, the experimental procedures are described in brief for the conve-

nience of the reader. Early in life, infants are always carried by a parent. Thus, the parent carrying

the infant(s) was first lured from the home cage into a transfer cage using treats. The infant marmo-

set was then gently separated from the adult and taken to the experiment room where it was placed

in a second transfer cage on a flat piece of foam. The testing corner was counterbalanced across ses-

sions. A speaker was placed at a third corner equidistant from both testing corners and pink noise

(amplitude decaying inversely proportional to frequency) was broadcast at 45 dB (at 0.88 m from

speaker) in order to mask occasional noises produced external to the testing room. An opaque cur-

tain of black cloth divided the room to visually occlude the subject from the other corner. A digital

recorder (ZOOM H4n Handy Recorder) was placed directly in front of the transfer cage at a distance

of .76m. Audio signals were acquired at a sampling frequency of 96 kHz.

Every session typically consisted of two consecutive undirected experiments (one twin followed

by the other) and one directed experiment (just one of the twins on a given day). Each session

started with the undirected experiments lasting 5 min each. The order of the infants was counterbal-

anced. As soon as the undirected experiment was finished, one of the parents was brought to the

experiment room and put into the opposing corner of the room. A second digital recorder (ZOOM

H4n Handy Recorder) was placed directly in front of the parent at a distance of 0.76m from the

transfer cage. During this setup procedure and throughout the directed experiment, the opaque cur-

tain prevented the infant and the parent from having visual contact. The directed experiment lasted

for » 15 min. The order of which parent participated in the interaction was counterbalanced. If the

parent took more than 15 min to be lured for the directed calls experiment, the experiment was

aborted to avoid any excessive separation stress on infants and parents. The number of undirected

experiments with at least one call production was 40, 38, 38, 38, 37, 39, 19, 15, 16, 21 (10 infants,

301 sessions, 73,421 utterances). The number of directed experiments for each infant was 17, 13,

13, 18, 24, 24, 22, 21, 21, 22 (10 infants, 195 sessions). The number of subjects used in this study is

based on a previous cross-sectional developmental study of marmoset vocalization that studied nine

marmosets (Pistorio et al., 2006). A post hoc power analysis using G*Power 3.1 showed an

achieved power of 0.818 for the correlation in Figure 5f (n ¼ 10, Pearson’s r ¼ �0:771, Type I error

¼ 0:05, H0 : r ¼ 0). All the experimental data used in this article is documented and can be found at

http://science.sciencemag.org/content/suppl/2015/08/13/349.6249.734.DC1.

Detection of calls
To determine the onset and offset of a syllable, a custom made MATLAB routine automatically

detected the onset and offset of any signal that differed from background noise over a specific fre-

quency range. To detect the differences, the full recording signal was first bandpass filtered between

6 and 10 kHz. Second, the signal was resampled to a 1 kHz sampling rate, a Hilbert transform was

applied and its absolute value was calculated to obtain the amplitude envelope of the signal. The

amplitude envelope was further low pass filtered to 50 Hz. A segment of the recording without any

call (silent) was chosen as a comparison baseline. The 99th percentile of the amplitude value in the

silent period was used as the detection threshold. Sounds with an amplitude envelope higher than

the threshold were considered as possible vocalizations. Finally, to ensure that sounds other than

call syllables were excluded, a researcher verified whether each detected sound was a vocalization

or not, based on the spectrogram.
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Quantification of the dominant frequency
After detecting the onset and offset of calls, a custom made MATLAB routine calculated the domi-

nant frequency of each syllable. The dominant frequency of a syllable was calculated as the average

frequency at which the spectrogram had maximum power. A cubic spline curve was fitted to the

population data using the MATLAB csaps function.

Classification of type of call syllables
Each automatically detected call was manually classified as phee, phee-cry, subharmonic-phee, cry,

twitter, and trill, based on the spectro-temporal profile measured by the spectrogram. To ensure

validity of our classification procedure, 10 sessions chosen at random were classified by two different

individuals and compared. The classification matched in more than 99.9% of the call syllables. The

six call types show very distinct spectro-temporal profiles and can be easily classified by eye

(Pistorio et al., 2006; Bezerra and Souto, 2008).

Calculation of phee/cry ratio and zero-crossing day
For the directed calls experiments, a whole (i.e., multisyllabic) call was defined as any uninterrupted

sequence of utterances of the same type (phee or cry) with previous offset to next onset separated

by less than 500 ms (DiMattina and Wang, 2006; Takahashi et al., 2013). To quantify the develop-

mental transition from cry to phee, for each session and subject, the ratio between the number of

phees minus cries and the number of phees plus cries was calculated, i.e.,

phee=cry ratio¼ ð# of infant phee calls produced�# of infant cry calls producedÞ
ð# of infant phee calls producedþ# of infant cry calls producedÞ : (12)

A cubic spline curve was fitted to the phee/cry ratio data to obtain the phee/cry ratio curve. The

zero-crossing day was defined as the first point at which the phee/cry ratio curve crossed zero, tran-

sitioning from a negative to a positive value. The zero-crossing day quantifies how quickly each

infant transitioned from the cry-abundant initial period to phee-dominated later period.

Contingent/non-contingent responses vs. zero crossing day
A parental call was classified as a contingent response to an infant call if the parental call onset was

separated by less than 5 s from the infant call offset with no other call between them

(Takahashi et al., 2015). To test if the contingent parental responses were related to how fast

infants transition from cries to phees, we calculated the Pearson’s correlation and the linear regres-

sion between the proportion of infant phees to which the parents responded before the zero-cross-

ing day (total number of contingent parental responses before the zero-crossing day divided by the

total number of infant phees in the period) and the zero-crossing day. To calculate the correlation,

only the proportion of contingent parental responses that occurred before the zero-crossing day

were included to be consistent with the causal ordering in which the possible cause (contingent

parental response) happens before the effect (zero-crossing day). We used MATLAB csaps function

to calculate the correlation and significance test.

Biomechanical model of vocal apparatus
To investigate how nonlinearities in infant marmoset calls arise, and why they decline throughout

development, we extended previous biomechanical models of the human speech production system.

The resulting biomechanical model of the larynx and upper vocal tract is based on the one-mass

model of Titze (Titze, 1988), which is simpler than earlier two-mass models (Ishizaka and Flanagan,

1972; Herzel, 1993; Lucero, 1993) and can produce a wide range of birdsong (Amador and Mind-

lin, 2008; Perl et al., 2011; Amador et al., 2013). In the next two sections we describe the model;

further technical details are provided in the Appendix.

The vocal fold model
Titze (1988) approximates vocal fold dynamics using two modes of vibration: lateral displacement

of the tissues in the form of a mucosal wave, and a flapping motion due to out-of-phase oscillations

at the entry and exit of the glottis (Perl et al., 2011). Titze’s model uses the body-cover hypothesis,

which proposes that laryngeal vibrations are governed by muscles and cartilage that determine its
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geometry, and by its covering of soft tissue that allows waves to propagate in the direction of air

flow. Bilateral symmetry in vocal fold oscillations is assumed, simplifying the system to a single

degree of freedom oscillator of the form

m€xðtÞþ bðxðtÞ; _xðtÞÞ _xðtÞþ kðxðtÞ; tÞxðtÞ ¼ f ðxðtÞ; _xðtÞ; tÞ; (13)

where m is the mass of the vocal folds and x, _x and €x respectively their lateral displacement, velocity

and acceleration; bðx; _xÞ _x and kðx; tÞx are nonlinear damping and stiffness forces, f ðx; _x; tÞ is the driving

force due to lung air pressure, and t denotes time.

As we shall see, the functions bðx; _xÞ and kðxÞ determine the kinds of dynamics produced, and

they are typically written as power series. Even truncating these series at third order leaves many

coefficients to be determined, and we therefore make a nonlinear change of coordinates that trans-

forms Equation (13) to its normal form that appears in Figure 3a:

_x¼ y; (14a)

_y¼�aðtÞg2�bðtÞg2xþg2x2�gxy�g2x3 �gx2y: (14b)

Here the number of coefficients or control parameters is reduced to 3. Normal forms preserve all

qualitative aspects of the dynamics of the original system in the neighborhoods of critical parameter

values where bifurcations (Guckenheimer and Holmes, 1983) occur and different dynamical behav-

iors appear. That this could be done for Equation (13) was first realized by Perl et al. (2011). In this

case the parameters aðtÞ and bðtÞ (which may vary with time) represent lung air pressure and vocal

fold tension, and g is a time constant. Details on the derivations of Equations (13) and (14) are pro-

vided in the Appendix.

Models such as Equations (13) and (14) have been fitted to experimental data and model simula-

tions have been compared with human vocalization and bird song (Mergell et al., 2000; Sitt et al.,

2008; Zañartu et al., 2011; Amador et al., 2013). However, vocal production in marmosets has not

been extensively studied and detailed measurements of lung pressure and muscle activity are lack-

ing. As a proxy for this data, recordings of different marmoset calls were used to fit model parame-

ters in the present work. The relative simplicity of the normal form (14) is helpful in this regard.

From vocal fold vibrations to calls
Equipped with a simple model of laryngeal dynamics, we next derive the resulting sound pressure

signals emitted from the mouth. Again seeking simplicity, we appeal to source-filter theory, which

assumes that the vocal fold dynamics are independent of filtering within the upper vocal tract

(Titze, 1994). The derivation of Titze (Titze, 1988), outlined in Appendix §§1.1.1-1.1.2, shows that

the pressure Pglottal at entry to the upper vocal tract is proportional to xðtÞ at the midpoint vocal fold

position. Figure 9a shows phase space plots of x and y for air pressure and vocal fold tension corre-

sponding to a cry (left) and a phee (right). Figure 9b shows the corresponding time histories of xðtÞ.
The resulting pressure changes propagate through the upper vocal tract and mouth cavity, which we

model as a uniform cylinder. At the exit from the cylinder, part of the wave is reflected back towards

the entrance (glottis) and the rest is transmitted as sound. Letting T=2 be the time for sound to travel

the length, L, of the cylinder, the supraglottal pressure, Pin, at the inlet to the upper vocal tract has

the following form:

PinðtÞ ¼ f ðxðtÞÞ� rPinðt�TÞ; (15)

where f ðxðtÞÞ is a function of xðtÞ (Appendix §1.1.2) and r 2 ½0;1� is the reflection coefficient. Near any

given point xðtÞ the time-dependent function f ðxðtÞÞ may be approximated by a Taylor series, and

ignoring second and higher order terms we obtain

PinðtÞ ¼ cxðtÞ� rPinðt�TÞ; where cxðtÞ ¼ Pglottal; (16)

and c is a nonnegative constant. In Takahashi et al. (2015) a third order approximation was used

(see Appendix 1.1.2, Equation (34)), but given that the higher order terms are small and produce

only minor effects, here we use only the first order term.
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Note that the vocal fold dynamics xðtÞ determined by Equation (14) are independent of sound

pressure in the vocal tract, but the incoming pressure PinðtÞ is affected by the reflection rPinðt � TÞ.
Finally, the emitted sound is the part not reflected back towards the vocal folds:

PsoundðtÞ ¼ ð1� rÞPinðt�T=2Þ (17)

Figure 9c shows the signals Psound which result from the effect of resonance on Pglottal in Figure 9b

for comparison with waveforms from examples of a cry and phee recorded from an infant marmoset

in Figure 9d.

Unlike the zebra finch song model of Amador et al. (Amador et al., 2013), we do not model the

mouth cavity separately; our model can reproduce typical marmoset calls well without this refine-

ment, as shown in Figure 3b–e. Thus, the mathematical model is defined by Equations (14) and

(16–17). The components of the model are summarized in Figure 3a in relation to those of the mar-

moset’s vocal apparatus in panel (a), and Table 1 lists parameter values and ranges used in simula-

tions. To verify that the model could reproduce realistic marmoset calls, the parameters were fit

manually to match the spectrotemporal data of calls as shown in Figure 3b–e.

Numerical simulations
Numerical simulations of Equations (14) and (16–17) were carried out using Euler’s method in cus-

tom written MATLAB codes. Parameter values are given in Table 1. To generate the simulated calls,

we varied aðtÞ and bðtÞ within the range ½0; 1:1� and matched the frequency spectra and temporal

profiles of the simulated sound to the corresponding vocalizations. To improve the fit between the

model and recordings, pink noise was added to the simulation to match its presence in the back-

ground of the exemplar vocalizations in Figure 3b–e, using the MATLAB pinknoise function (file

exchange #42919 by Hristo Zhivomirov [Kasdin, 1995]). The parameter b was held fixed for the cry,

while aðtÞ was ramped up and down in a piecewise-linear manner; for the other calls, both aðtÞ and
bðtÞ were ramped up and down to produce the varying fundamental and harmonic frequencies of

calls such as those in Figure 3c–e. High pass filtering of PsoundðtÞ was done using MATLAB eegfilt.

Below, we provide the MATLAB code used to solve Equations (14) and (16).

function [x, y, p_in] = funcamador(gamma, a, b, r, T, c, x1, y1, dt)

%FUNCAMADOR.M This function will use the Euler method to simulate the

%motion of the vocal folds.

% This simulation will run for 1 s with time step dt and with

% initial conditions x1 and y1.

%% Initializing system

t = 1000;

N = floor(t/dt);

x = zeros(1,N + 1);

y = zeros(1,N + 1);

x(1) = x1;

y(1) = y1;

p_in = zeros(1,N + 1);

%% Simulating using Euler

for n = 1:N

x(n + 1) = x(n) + dt*y(n);

y(n + 1) = y(n) + dt*(-a*gammâ2 - b*gammâ2*x(n) + gammâ2*x(n)̂2 ...

- gamma*x(n)*y(n) - gammâ2*x(n)̂3 - gamma*x(n)̂2*y(n) );

if n < T + 1

p_in(n + 1) = c*x(n);

else

p_in(n + 1) = c*x(n)- r*p_in(n-T);

end

end
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Dynamics of the biomechanical model
Combination calls like that of Figure 3e suggest that infants can dynamically modulate their vocal

output by relatively small muscular changes, since switches between the call types occur very rapidly

(Zhang and Ghazanfar, 2016). We show that small changes in air pressure (a) and laryngeal muscle

tension (b) can switch our model’s output from cries to phees.

Figure 10 illustrates the vocal fold dynamics produced by Equation (14) over a range of values

of air pressure a and muscle tension b. The top left panel shows curves in ða;bÞ-space on which

bifurcations of fixed points (equilibria) of this equation occur. As parameter values ða;bÞ cross these

curves, equilibria appear or disappear, their stability types change, and limit cycles representing sus-

tained periodic oscillations in xðtÞ can appear, as illustrated in the phase portraits corresponding to

regions I-V. Appendix §1.1.4 details the calculations that yield the bifurcation curves.

Only in the shaded region I, lying above the upper saddle-node bifurcation curve and to the right

of the Hopf bifurcation curve, do robust stable limit cycles and hence calls exist, to which almost all

solutions converge. Each passage around the cycle corresponds to the vocal folds opening and clos-

ing once. Moreover, as ða;bÞ approach the saddle-node bifurcation curve from above, the period of

oscillations grows to infinity, so that small changes in these parameters can produce large changes

in waveform and hence spectral content. In this region xðtÞ varies rapidly and slowly in different parts

of the cycle, implying a broad frequency content (see Figure 9a,b (left) above). This extreme sensi-

tivity is responsible for the rapid switches from cries to phees as lung pressure and/or vocal tension

increases.

No other regions reliably yield calls. Values of a<0 cannot produce sustained oscillations, because

in region V there is a single stable equilibrium and in region IV there two stable equilibria and a sad-

dle point; in both cases all solutions converge on equilibria and no sound is produced, consistent

with the biological intuition that low driving pressure produces no sound. In region II one stable and

one unstable equilibrium coexist with a saddle, again without limit cycles, and all solutions approach

equilibria. A small stable limit cycle surrounds the unstable equilibrium in region III, but random per-

turbations due to noise typically drive the system to the stable equilibrium, thus quenching the

oscillations.

We therefore focus on parameter values in region I. Since Equation. (14) only captures the

behavior of the original vocal fold model of Titze (1988) locally (Figure 11; see Materials and meth-

ods: The vocal fold model), we restrict the control parameters to 0<a<1:1 and 0<b<1:1 and use

numerical simulations to fit values of a, b that produce the spectrograms and waveforms of calls of

interest. The remaining parameters g, c, r and T were chosen to reproduce observed resonant fre-

quencies and sound pressure levels, as described in Appendix §1.1.2, and were fixed at the values

listed in Table 1, unless otherwise specified.

Parameter dependence of the calls
Within the parameter ranges that stably produce calls, we investigated the relationship between

parameter values and characteristics of the resulting model call. To obtain these, we iterated over

many parameter values, recorded the natural frequency and amplitude of the calls produced, and

computed their gains gða;bÞ and gð�Þ, as shown in Figure 3i.

Fitting the resonance frequency and estimating the vocal tract length
For a closed-closed tube, the fundamental frequency is given by f0 ¼ csound

2L
¼ 1

T
Hz (Kinsler and Frey,

1962), which provides the relationship L ¼ csoundT=2. We used csound ¼ 350 m/s. We then calculated

the resonance frequencies of the biomechanical model for upper vocal tract lengths L ¼
7:9; 8:7; 9:6; 10 mm and interpolated the frequency over this range with a cubic spline curve, thus

relating L 2 ½7:9; 10� to the resonance frequencies 1=T . Using a second cubic spline curve fitted to

the marmoset data and the relationship between L and the resonance frequencies obtained previ-

ously, we calculated the corresponding vocal tract lengths L. For the data we used the dominant

(highest amplitude) frequencies as surrogates of resonance frequency. The 95% confidence interval

for the resulting estimated vocal tract lengths were calculated from the dominant frequency data by

resampling with replacement 1000 times and repeating the estimation method on each of the

resampled data sets.
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Classifying the type of call in the model
Initially, the calls produced by the model were classified manually as had been done with the infant

recordings (Takahashi et al., 2015). To facilitate analysis of the model, an automatic classifier was

developed and manually validated on a smaller sample. For each pair (a, b), the call was simulated

for one second. The envelope was calculated using the Hilbert transform of the call lowpass filtered

at 4 kHz. Then, the power spectrum of the modeled call and that of its envelope were calculated.

Cries are generated by a combination of slow vocal fold vibrations and resonance (Figure 9 (left)).

Therefore, we expect the power spectrum of the amplitude modulation to contain a peak for the cry

but not for the subharmonics or phee. To differentiate between the latter we compared the relative

power of the first and the second peak of the power spectrum of the call itself. For the phee, we

expect the first peak to be f0, and hence the largest peak in the spectrum. In contrast, for subhar-

monics we expect peaks of the power spectrum to occur below the resonance frequency, so the

largest peak will not be the first. As a result, if the first peak was larger than the second peak, then

the call was classified as a phee and otherwise as a subharmonic.

Softmax action selection rule
The softmax action selection rule is obtained by applying the maximum entropy principle. We state

the principle in a simplified form that suffices for this article. Let C : Q ! R be a cost function which

may also be called an ‘observable’ or ‘utility’ of the system. Assume that C has expected value
R

Q
Cð�Þpð�Þd� ¼ E. Given a cost function C, a natural question is to know what is the probability distri-

bution pð�Þ that the animal will execute a specific action. In our case, knowing the cost C of produc-

ing a vocalization, we ask what is the probability that a marmoset will produce a call with air

pressure and laryngeal tension �. The maximum entropy principle specifies that the probability den-

sity p associated with the cost function C should be the one that maximizes the entropy HðpÞ ¼
�
R

Q
pð�Þ log pð�Þd� and satisfies the expectation constraint

R

Q
Cð�Þpð�Þd� ¼ E. In other words, the

maximum entropy principle states that given a cost function and a constraint, we must choose a

probability distribution that makes the fewest possible assumptions (because maximal ignorance

equates to maximal entropy). Such a probability distribution is said to follow the softmax action

selection rule and can be written as pð�Þ ¼ expð�hCð�ÞÞ=Z, where Z is a normalizing constant so that
R

Q
pð�Þd� ¼ 1 and h is chosen to satisfy the constraint on the expected value of C. Probabilities were

computed using a right Riemann sum approximation.

A complementary way to understand the softmax action selection rule is to introduce gradient

dynamics with a potential derived from the cost function C (Video 1). More precisely, consider the

diffusion equation

d�t ¼
qC

q�
ð�tÞdtþ

ffiffiffiffiffiffiffiffi

2=h
p

dWt; (18)

where qC=q� is the gradient of C and Wt is a Wiener process. The equilibrium probability distribution

for the dynamics �t of Equation (18) is given by Equation (3):

Table 1. Parameter values used for simulations to fit marmoset calls. The notation ½0; 1:1� means that

values are chosen in the range 0 to 1.1.

Parameter Description Value(s)

dt Time step size (�s) 5

a Nondimensional pressure ½0; 1:1�
b Nondimensional muscle tension ½0; 1:1�
g Time constant (1/ms) 45

c Pressure coefficient 1

r Pressure reflection coefficient 0.8

T=2 Time for one way sound travel in vocal tract (�s) 50

DOI: 10.7554/eLife.20782.014
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pð�Þ ¼ expð�hCð�ÞÞ=Z: (19)

The resulting diffusion process therefore has an equilibrium measure given by the probability dis-

tribution predicted by the softmax action selection rule. If vocalizations are produced at periodic

intervals (approximately once per second in infant marmosets [Zhang and Ghazanfar, 2016]), with

the parameter defined by the stochastic process �t, then the probability of producing each call type

is given by the time that �t spends in each valley of the cost function Ctð�Þ. This probability is found

by integrating pð�Þ over the parameter region defining each call type, as in Equations (5) and (6).

To generate the simulations for Video 1, we approximated the diffusion process (18) by a random

walk with a potential that is a discretization of C. To allow rapid visualization of the typical diffusion

dynamics, we arbitrarily sped up the timescale.

Calculating l from the data in Figure 5
The cost function that only includes the contribution of vocal apparatus and muscle control is given

by

Cð�Þ ¼� loggð�Þþl�: (20)

To estimate the values of l for each postnatal day, we first fitted a cubic spline curve to the mar-

mosets’ phee/cry ratio data. Then we calculated the value of l that best approximated the phee/cry

ratio curve for each postnatal day. The exact values of l depend on the choice of h, but the

a1, P1

x

x02

x01

PL

l a2, P2

Pin

ag

Figure 11. The larynx and glottis model. The coordinate system is shown with fixed depth l, lateral displacement xðtÞ at midpoint, cross sectional areas

a1; a2 at larynx entry and exit, ag at midpoint, air pressures P1;P2, and prephonatory widths x01; x02 at entry and exit. Adapted from Titze (1988).
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difference is only in the scaling factor and the result in Figure 5e is representative for any choice of

h. In Figure 5c,e we used h¼ 5. Larger values of h have a similar effect, but since the probability

densities are more concentrated on the peaks it is harder to display the effects of different l’s in

analogues of Figure 5c,e.

The full cost function and more parameter choices
The final time-varying cost function with all its parameters can be written as

Ctð�Þ ¼� loggtð�Þþl0�� dt��kFt�: (21)

We can decompose Ctð�Þ as follows. The biomechanical contribution is represented by gtð�Þ, where
the dependency on time t comes from the change in the vocal tract length L or equivalently from

the time T=2¼ L=csound for sound to traverse the cylinder. The change in muscle development is rep-

resented by d, the change in the nervous system by k, and F represents the contribution of social

feedback. To obtain the sharp transition from low to high phee/cry ratio, a good value was h¼ 300

(Figure 6b). With this parameter, the zero-crossing day ðz0Þ occurred when lz ¼ 0:7927, implying that

l0 �lz

z0
¼ kFþ d: (22)

We chose l0 ¼ 3 so Equation (22) yields z0 ¼ 2:2073
kFþd

(see Figure 6c). Any value of l0>lz would give

the same curve fitting as we need only to rescale k and d accordingly. l0 is the only parameter that

cannot be estimated from the data. Fitting the function to the data relating the amount of parental

feedback (F) and zero-crossing day z0, we get k¼ 0:2126 and d¼ 0:0654. Table 2 lists the parameters

used to produce Figure 8b–e.

Correlating F with W and N
We tested if the rate of weight change W and the rate of infant phee production N before the zero-

crossing day could predict the frequency of parental feedback F. To calculate the weight change we

first calculated the difference between two consecutive weight measurements and divided by the

number of days between them to obtain the local rate of weight change. The overall rate of weight

change was calculated as the average of local rates of weight change before the zero-crossing day.

If there were a linear relationship between the weight change and the frequency of parental feed-

back, we would expect a significant Pearson correlation (r) between these parameters. We also fitted

a multiple linear regression between the explanatory variables W and N, and the dependent variable

F. We applied the two-sided t-test to verify the nullity of regression coefficients (n ¼ 10 infants). We

concluded that neither infant weight increases nor changes in phee call numbers could predict the

frequency of parental feedback.
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Appendix 1 Derivation of the biomechanical model

In this appendix we review background material on laryngeal dynamics and vocal production

models, and provide details on the derivation of the biomechanical model and the normal

form of the vocal fold equations used in this paper.

1.1 The biomechanical model
As in recent work on songbirds (Perl et al., 2011; Amador et al., 2013), we base our model on

Titze’s work on human vocal fold dynamics and voice production (Titze, 1988). We briefy

summarize conservation laws from fluid mechanics (e.g. Bird et al., 2007, Chap. 3), which

are used in deriving the model, and then outline its simplification via coordinate

transformations to obtain the normal form describing vocal fold dynamics (Equation (14) in

the main text):

_x¼ y; (23a)

_y¼�ag2 �bg2xþg2x2 �gxy�g2x3 �gx2y: (23b)

In the process we find that the usual procedure, using Taylor series expansion about a

degenerate (codimension 2) fixed point with a double zero eigenvalue and assuming linear

and cubic order stiffness and damping terms, yields the term þ2gxy=3 instead of �gxy as in

Perl et al. (2011), Amador et al. (2013), and we indicate a modification to the damping

term in the original model of Titze (1988) that would produce Equation (23). We explain

the reason for this difference and also derive explicit expressions in terms of the parameters

ða;bÞ for which bifurcations create steady and periodic states relevant for vocalizations.

1.1.1 Conservation laws for one-dimensional flows
Bernouilli’s law expresses the conservation of energy in a fluid flowing at velocity v through a

frictionless pipe:

P

�
þ gzþ v2

2
¼ constant; (24)

where P and � denote fluid pressure and density, g the acceleration due to gravity, and z the

height of the pipe. Variations of gravitational energy gz in the respiratory and vocal system

are insignificant, and we need only consider the balance of potential and kinetic energy in

the first and third terms of (24). The mass flow rate _M ¼ �va also remains constant but cross

sectional areas a can change. Across such a change from area a1 to a2, these conservation

laws imply that

P1 þ
1

2
�v2

1
¼ P2þ

1

2
�v2

2
and a1v1 ¼ a2v2; (25)

where the subscripts denote values in the locations of areas a1 and a2. In writing

Equations (25) we have also assumed that changes in density are negligible (� ¼ constant).

Titze, 1988, uses these equations to express pressure differences across the vocal folds.
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1.1.2 Vocal fold dynamics and coupling to the upper vocal tract
We describe vocal fold dynamics in terms of two modes: displacement of tissue in the direction

of airflow, and lateral flapping due to antiphase motions at the entry and exit of the larynx.

The tissue displacement is approximated by a traveling mucosal surface wave of fixed shape,

as in d’Alembert’s solution of the classical wave equation (Greenberg, 1978), that couples

time and space dependence. This implies that the lateral displacements x1ðtÞ and x2ðtÞ at
entry and exit of the larynx can be written in terms of the displacement xðtÞ and velocity _xðtÞ
at the midpoint of the vocal folds. Section IIA of Titze (1988) approximates the wave by a

linear function, and letting t denote the time taken for it to travel half the length of the

glottis, obtains

x1 ¼ xþ t _x and x2 ¼ x� t _x: (26)

The resulting cross-sectional areas a1; a2 at entry and exit of the glottis are therefore

a1ðtÞ ¼ 2lðx01þ x1Þ ¼ 2lðx01þ xðtÞþ t _xðtÞÞ; (27a)

a2ðtÞ ¼ 2lðx02þ x2Þ ¼ 2lðx02þ xðtÞ� t _xðtÞÞ; (27b)

where l is the depth of the glottis and x01 and x02 are the prephonatory lateral positions of its

lower and upper ends in the absence of airflow: see Figure 11. We do not model the flow in

the trachea, assuming that it simply transmits lung pressure to the larynx (see below).

As indicated in Figure 11 (cf. Figure 3a), we assume bilateral symmetry and represent the

vocal folds, moving in antiphase on left and right, by a mass m supported by a spring,

subject to dissipative forces and driven by the transglottal pressure. The second order

ordinary differential equation (ODE) that describes the resulting dynamics therefore has the

form

m€xþ bðx; _xÞ _xþ kðxÞx¼ agPavðtÞ; (28)

where the nonlinear terms bðx; _xÞ and kðxÞ represent energy dissipation and spring stiffness,

and the last term is the driving force due to the mean pressure Pav averaged over the glottis

from entry to exit, applied to the glottal area ag measured at the midpoint of the vocal folds.

Using Equations (25) and several simplifying assumptions, (Titze, 1988), ( see § IIB-C,

Figure 5 and Equation (21) of the reference) shows that, when subglottal pressure P1 is

equal to lung air pressure PL, vocal tract input pressure is atmospheric, and supraglottal area

is large relative to a2, Pav can be approximated as

PavðtÞ ¼
PLðtÞ
kt

1� a2ðtÞ
a1ðtÞ

� �

; (29)

where kt is a kinetic pressure coefficient representing losses in the entry and glottis and

recovery in the supra-glottal expansion region.

Vocal fold dynamics
We follow Perl et al. (2011) in assuming third order nonlinearities in the stiffness and damping

terms of Equation (28), and using Equation (29) and Equations (27a–27b), obtain the

system

Teramoto et al. eLife 2017;6:e20782. DOI: 10.7554/eLife.20782 35 of 42

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.20782


_x¼ y; (30a)

_y¼ 1

m
�ðk1 þ k2x

2Þx�ðbþ cx2Þyþ agPLðx01� x02þ 2tyÞ
ktðx01þ xþ tyÞ

� �

; (30b)

cf. Titze (1988), Equation (22) and Perl et al. (2011), Equations (1–3). Here the parameters

m; k2; c; ag; x01; x02; kt and t are positive and k1; b;PL may take either sign. Note that some

symbols differ from those of Perl et al. (2011) and that we have replaced the nonspecific

damping term bðyÞy in Perl et al. (2011), Equation (1) by the linear damping term by.

Equation (30) contains 11 parameters, most of which are unknown, but our subsequent

reduction to the normal form Equation (23) with an overall time scale and two

nondimensional parameters analogous to k1 and PL will allow us to fit fundamental call

frequencies and explore the biophysical space of muscle tension and driving pressure.

However, as shown below, to obtain this normal form, also given in Perl et al. (2011),

Equation (8), may require inclusion of a quadratic damping term xy or an additional forcing

term (Amador, 2009). Henceforth we assume that all parameters are held constant, because

the normal form theory used here applies only to autonomous ODEs.

Coupling to the vocal tract
In Titze (1988), Equation (35) models the fluctuating input pressure to the vocal tract as

Pin ¼ R2uþ I2 _u, where u ¼ a2v2 is the flow rate at glottal exit and R2; I2 are the tract’s input

resistance and inertance. The flow derivative is therefore _u ¼ _a2v2 þ a2 _v2, but for simplicity

we assume quasi-steady flow _v2 » 0. Thus, from Equation (27b), we obtain

_u¼ 2lv2ð _x� t€xÞ: (31)

and we may write the input pressure in terms of the vocal fold displacement x as

PinðtÞ ¼ 2v2l I2 _x� t€xð ÞþR2 x02þ x� t _xð Þ½ �: (32)

Vocal tract dynamics
The supraglottal vocal tract and mouth cavity filter the input pressure PinðtÞ. In the absence of

details on marmosets, we model the entire supraglottal sytem as a cylinder supporting

traveling plane waves, a fraction of which are reflected back from the exit at the mouth, and

the remainder transmitted to produce the animal’s calls. Letting T ¼ 2L=csound denote the

time taken for waves to travel at speed csound to the exit and back and r 2 ½0; 1� be the

reflection coefficient, this adds a delayed and scaled copy of the input pressure to

Equation (32):

PinðtÞ ¼ 2v2L½I2ð _x� t€xÞþR2ðx02þ xþ t _xÞ�� rPinðt�TÞ: (33)

Collecting the terms multiplying x; _x and €x yields the series approximation

PinðtÞ ¼ c1xðtÞþ c2 _xðtÞ� c3€xðtÞ� rPinðt�TÞ (34)

which appears as Equation (16) in the main text. For further details see Titze and Alipour,

(2006), Ch 7. The part of Pin not reflected produces the transmitted sound pressure

Psound ¼ ð1� rÞPinðt � T=2Þ: Equation (17) in the main text. We note that the parameters c1 ¼
1; c2 ¼ 0:01; c3 ¼ 0:001 used by Takahashi et al. (2015) prompted our neglect of c2 and c3 in

Equation (16) in the main text.
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1.1.3 Normal form transformation
Here we explain how the simplified normal form ODE may be derived from the version of

Titze’s model of vocal fold dynamics adopted by Perl et al. (2011), Equations (30) above.

For a general introduction to normal forms and analyses of relevant examples, see

Guckenheimer and Holmes (Guckenheimer and Holmes, 1983, §3.3 and §7.3).

In studying linear ODEs of the form _x ¼ Ax, where x is an n-vector and A is an n� n

constant matrix, it is helpful to change coordinates via a similarity transformation x ¼ Ty,

where T is a matrix whose columns are eigenvectors of A. In the y-coordinates, the ODE

becomes _y ¼ T�1ATy
¼def

Ly and L is a diagonal matrix containing the eigenvalues of A.

The transformation decouples the variables, making analyses much simpler; it also effectively

reduces n2 possible matrix entries to the n eigenvalues. In a similar manner, normal form

theory allows one to simplify nonlinear ODEs _x ¼ fðxÞ, where the components of fðxÞ are
polynomial functions.

We start by nondimensionalizing the displacement and velocity in Equation (30), letting x1 ¼
x=x01; x2 ¼ y=x01 and renaming parameter groups for convenience. to obtain:

_x1 ¼ x2; (35a)

_x2 ¼ g2 �ðkþ x2
1
Þx1�ðd1 þ d2x

2

1
Þtx2 þ

Pð�þ 2tx2Þ
ð1þ x1 þ tx2Þ

� �

; where (35b)

g¼ x01

ffiffiffiffiffi

k2

m

r

; k¼ k2
1

x2
01
k2
; d1 ¼

b

x2
01
k2t

; d2 ¼
c

k2t
; P ¼ agPL

ktx
3

01
k2
; and �¼ x01� x02

x01
: (35c)

Here t is the glottal timescale from Equations (26), g is an overall inverse timescale, velocity

x2 also has dimension time�1 and the remaining parameters are dimensionless. Note that all

the parameters excepting k;P and d1 are strictly positive; in particular coefficients of the

terms x3
1
and x2

1
x2 on the right hand side of Equation (35b) must be negative for global

stability of the vocal fold dynamics.

Fixed points of Equations (35a–35b) lie at ðx1; x2Þ ¼ ð�x1; 0Þ, where �x1 solves the quartic

equation

ð1þ�x1Þðkþ�x2
1
Þ�x1 ¼P�; (36)

and to obtain the normal form we will make a Taylor series expansion about a double root

at which the Jacobian matrix of Equations (35) has a zero eigenvalue of multiplicity 2. For

k<0 and P ¼ 0 there are three biophysically relevant roots �x1 ¼ 0 and �x1 ¼ � ffiffiffiffiffiffiffi�k
p

(the root

�x1 ¼ �1 corresponds to a closed glottis). For small k ¼ ��k<0 and

P ¼ 2�k
3

2

3
ffiffiffi

3
p � 4�k2

9
þO �k5=2

� �

>0; (37)

a double root occurs at

�x1 ¼�
ffiffiffi

�k

3

r

þ �k

3
þO �k

3

2

� �

: (38)

If we additionally choose the dissipation parameters such that
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d1þ d2�x
2

1
¼Pð2ð1þ�x1Þ� �Þ

ð1þ�x1Þ2
; (39)

the Jacobian matrix of Equation (35) linearized at the degenerate fixed point is

A¼ 0 1

0 0

� �

: (40)

This linear part identifies a Takens-Bogdanov point (Guckenheimer and Holmes, 1983,

§3.3,§7.3), see §1.1.4 below. Note that Equation (39) implies that d1 ¼ Oð�k3=2Þ and
d2 ¼ Oð�k1=2Þ. Thus, at this point the nondimensional pressure P, and dissipation parameters

d1; d2 are all small and scaled in fractional powers of the linear stiffness k, which is also small

and negative.

We now expand the right hand side of Equation (35) in a Taylor series about ð�x1; 0Þ that may

be written in vector notation as

_x¼Axþ f 2ðxÞþ f 3ðxÞþOðjxj4Þ; (41)

where x denotes the deviation from ð�x1; 0Þ and the f jðxÞ are homogeneous polynomial

functions of order j. In general, all possible terms xk
1
x
ðj�kÞ
2

may occur in each of these

functions: six in f 2, eight in f 3, etc. We next define a new variable y via the near-identity

transformation

x¼ yþPðyÞ
¼def

yþ
X

N

j¼2

PjðyÞ; (42)

where the functions Pj are homogeneous polynomials in y. Under this change of variables

Equation (41) becomes

_y¼Ayþg2ðyÞþg3ðyÞþOðjyj4Þ; (43)

in which the functions gj can be significantly simplified by suitable choices of the Pj’s.

Specifically, differentiating Equation (42) with respect to time and using the chain rule, we

obtain _x ¼ ½IþDPðyÞ� _y and thereby find that

_y¼ ½IþDPðyÞ��1½AðyþPðyÞÞþ f2ðyþPðyÞÞþ f3ðyþPðyÞÞþOðjyj4Þ�; (44)

where DP denotes the Jacobian matrix of first order derivatives of P. As shown in

Equation (43), the first order (linear) term in this ODE is Ay (it is unchanged by the

transformation x ¼ yþPðyÞ), but the quadratic order function is

g2ðyÞ ¼AP2ðyÞ�DP2ðyÞAyþ f2ðyÞ: (45)

We now seek to choose the six terms in the two components of the quadratic vector

function P2 to cancel as many of the analogous terms in f 2 as possible. The matrix A

determines the extent to which this can be done via the Lie Bracket operator

adLðP2Þ ¼ ½AP2ðyÞ �DP2ðyÞAy�, where L ¼ Ay denotes the linear part of Equation (41)

and DPj the Jacobian matrix of first partial derivatives of Pj. In general adLðPjÞ is a
homogeneous polynomial of order j, so transformations of increasing order can successively

remove terms in the ‘new’ nonlinear functions gjðyÞ.
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For the matrix (40) all quadratic terms except those of the forms

0

y2
1

� �

and
0

y1y2

� �

(46)

can be removed, and a similar computation using P3 shows that all cubic terms except

0

y3
1

� �

and
0

y2
1
y2

� �

(47)

can be removed (Guckenheimer and Holmes, 1983, §3.3). These are precisely the four

nonlinear terms that remain in the normal form Equation (23) adopted by Amador et al.

(2013) (similar pairs of terms would remain at each higher order power). However, in

performing the transformation x ¼ yþP2ðyÞ to remove terms of Oðjyj2Þ from g2ðyÞ,
additional terms of Oðjyj3Þ and higher are introduced. Except for multiples of those in

Equation (47), these can be removed by a subsequent transformation y ¼ zþP3ðzÞ, but to
obtain the correct ODE at cubic order terms of the forms (47) must be included. Since we

will neglect all terms of Oðjzj4Þ, this analysis is strictly valid only for sufficiently small state

variable values ðx1; x2Þ and in a neighborhood of the Takens-Bogdanov point, implying that

the parameters k and P should also remain small.

We now describe the specific transformations employed to derive the normal form. As

noted above we first change coordinates to shift the degenerate Takens-Bogdanov point

ð�x1; 0Þ occurring for the parameter values of Equations (37–39) to the origin. To avoid

excessive notation, we retain the notation x1 for the vocal fold displacement, now measured

relative to �x1:

_x1 ¼ x2; (48a)

_x2 ¼ g2 Ax2
1
þBx1x2þCx2

2
þDx3

1
þEx2

1
x2þFx1x

2

2
þGx3

2
þOðjxjj4Þ

h i

; (48b)

where

A¼ P�
ð1þ�x1Þ3

� 3�x1;B¼ 2
Pð��ð1þ�x1ÞÞ

ð1þ�x1Þ3
� d2�x1

" #

t; C¼Pð�� 2ð1þ�x1ÞÞt2

ð1þ�x1Þ3
;

D¼� 1þ P�
ð1þ�x1Þ4

" #

; E¼� d2 þ
Pð3�� 2ð1þ�x1Þ

ð1þ�x1Þ4

" #

t: (49)

There are similar expressions for the coefficients F and G but since they can be removed

from the Oðjxjj3 they are not needed here. At Oðjxjj2 the term Cx2
2
can be removed by the

transformation

x¼ yþP2ðyÞ with P2ðyÞ ¼C
y2
1
=2

y1y2

� �

; (50)

which, via the Lie Bracket operation, produces the additional terms

0

BCy2
1
y2=2

� �

and
0

2C2y1y
2

2

� �

(51)

at Oðjxjj3Þ. The second of these can be removed along with the terms Fy1y
2

2
and Gy3

2
by a

further transformation y ¼ zþP3ðzÞ, but the first must be added to the term Ey2
1
y2 which
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which passes unchanged through the transformation from Equation (48b). This yields the

ODE

_y1 ¼ y2; (52a)

_y2 ¼ g2 Ay2
1
þBy1y2 þDy3

1
þ EþBC

2

� �

y2
1
y2 þOðjyjj4

� �

; (52b)

Examining the parameter combinations that appear in the coefficients A; . . . ;E via

Equations (49) and (35c), using the asymptotic expressions (37–38), continuing to assume

that P and k ¼ ��k remain small, and retaining only the leading order Oð
ffiffiffi

�k
p

Þ and Oð1Þ terms,

we deduce that A»
ffiffiffiffiffiffi

3�k
p

>0, B » 2d2t
ffiffiffiffiffiffiffiffi

�k=3
p

>0, D » � 1<0 and E þ BC=2 » � d2t<0, consistent

with global stability as noted following Equations (35). Setting �k ¼ 1=3 and d2t ¼ 1=g and

letting �a;�b denote departures in nondimensional pressure P and linear stiffness k

(muscle tension) from the values corresponding to the Takens-Bogdanov point, we obtain

the normal form (23) with the exception that the coefficient g2B of xy is þ2g=3, in place of

�g.

The factor 2=3 is not crucial, but the fact that the quadratic damping term has the opposite

sign to that of Equation (23) removes a key feature of the model, namely, the occurence of

a saddle-node bifurcation on a limit cycle on the upper saddle-node bifurcation curve shown

in Figure 10 and described in the next section. Without the long-period finite amplitude

limit cycles that exist near this curve, the model does not produce infant cries with broad

spectral content. This region in parameter space is also where all but one of the ‘gestures’ in

zebra finch song are located (Amador et al., 2013, Figure 2d).

To obtain a negative sign for B, it suffices to add a quadratic damping term, replacing ðd1 þ
d2x

2

1
Þtx2 in Equation (35b) by ðd1 þ �dx1 þ d2x

2

1
Þtx2, which modifies the coefficient to

g2B ¼ g2ð�dþ 2d2
ffiffiffiffiffiffiffiffi

�k=3
p

Þt. The left hand side of the dissipation balance (39) becomes d1 þ
�d�x1 þ d2�x

2

1
and setting �dt ¼ 1=g then yields the normal form (23) at leading order. We note

that the term ��dx1x2 implies that the force is negative when x1>0 (during vocal fold

opening), but positive when x1<0 (vocal fold closing), leading to a balance of energy

dissipation and creation. Similar effects arise from terms of the form �dx2
2
(Holmes, 1977).

Also, the linear damping term d1x2 could be omitted without affecting the normal form.

We note that in her PhD thesis (Amador, 2009) includes a constant term in Equation (30b)

representing the force due to dorsal gating muscles [G.B. Mindlin, personal communication].

Adjusting this additional parameter allows one to locate the Takens-Bogdanov point more

easily and also derive the normal form with a positive coefficient in the xy term, as used in

Perl et al. (2011) and Amador et al. (2013).

1.1.4 Bifurcation sets and parameter dependence
We now derive the bifurcation set of the normal form ODEs Equation (23) and infer the

qualitative structures of the phase portraits shown in Figure 10. For this analysis we take the

pressure and muscle tension parameters ða;bÞ as time-independent and seek steady

solutions, specifically fixed points and limit cycles. For g>0, fixed points ðx; yÞ ¼ ð�x; 0Þ of
Equations (23) occur with �x satisfying the cubic equation

�x3 ��x2 þb�xþa¼ 0; (53)

one, two or three fixed points can exist, depending on the value of ða;bÞ.

Stability types of the fixed points are determined by the eigenvalues of the Jacobian matrix
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J¼
0 1

g2ð�bþ 2x� 3x2Þ�gð2xyþ yÞ �gxðxþ 1Þ

� �

ð�x;0Þ
(54a)

¼
0 1

�g2ðb� 2�xþ 3�x2Þ �g�xð�xþ 1Þ;

� �

(54b)

which has trace tJ ¼ �g�xð�xþ 1Þ, determinant DJ ¼ g2ðb� 2�xþ 3�x2Þ, and eigenvalues

l1;2 ¼ ðtJ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

t2J � 4DJ

p

Þ=2.

Takens-Bogdanov point
Noting that J has a double zero eigenvalue if tJ ¼ DJ ¼ 0, we deduce that this occurs for a ¼
b ¼ 0 at the fixed point �x ¼ 0, about which the Taylor series expansion and normal form

transformations of §1.1.3 are made. A nondegenerate sink also exists at �x ¼ 1.

Hopf bifurcations
When J has purely imaginary eigenvalues, or more specifically when tJ ¼ 0 and DJ>0, a Hopf

bifurcation can occur. Since g>0, tJ ¼ 0 implies �x ¼ 0 or �x ¼ �1. The latter condition implies

a closed glottis and so is biophysically irrelevant, and in the former case DJ ¼ b must be

positive. This yields the Hopf bifurcation set fa ¼ 0jb>0g: the vertical line emerging from the

Takens-Bogdanov point in Figure 10. Crossing this set from left to right, the sink at �x ¼ 1

becomes a source and a limit cycle appears or disappears.

The direction of bifucation and stability of the limit cycles can be determined by computing

the coefficient of a third order term in the normal form of the Hopf bifurcation, as described

by Guckenheimer and Holmes (1983), §3.4. At �x ¼ 0 and a ¼ 0 the Jacobian (54) takes the

form

J¼
0 1

�g2b 0

� �

; (55)

with eigenvalues �ig
ffiffiffi

b
p

¼def
� i!. Using the similarity transformation

x

y

� �

¼
0 1

! 0

� �

u

v

� �

; (56)

Equation (23) becomes

_u

_v

� �

¼ 0 �!

! 0

� �

u

v

� �

þ
g2v2

! �guv� g2v3

! �gu2v

0

 !

; (57)

and we may use Equation (3.4.10) of Guckenheimer and Holmes (1983) to determine that

a¼�g

8
1þ 1

b

� �

<0; (58)

implying that the limit cycles are stable and lie to the right of the bifurcation set

fa ¼ 0jb>0g, in region I or region III (depending on the value of b).
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Saddle-node and pitchfork bifurcations
In 2-dimensional systems like Equation (23) a pair of fixed points, either a saddle and a source

or a saddle and a sink, come together in a degenerate saddle-node bifurcation and

disappear (or, crossing the bifurcation set in the opposite direction, appear and separate). A

saddle node occurs when one of the eigenvalues of J is zero and the other is not, i.e., for

DJ ¼ 0 with tJ 6¼ 0. Alternatively, they may be located by seeking double roots of

Equation (53), which occur when its first derivative also vanishes

3�x2 � 2�xþb¼ 0: (59)

Substituting the solution �x ¼ ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3b
p Þ=3 of (59) into Equation (53) and noting that

�x2 ¼ ð2� 3b� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 3b
p Þ=9, we obtain the two saddle-node bifurcation curves:

a¼ 2� 9b� 2ð1� 3bÞ32
27

; with b<
1

3
: (60)

As shown in Figure 10, these curves meet in a cusp at the pitchfork bifurcation point

ða;bÞ ¼ ð�1=27; 1=3Þ, at which the unique fixed point �x ¼ 1=3 is a triple root of

Equation (53). Note that the Takens-Bogdanov point lies on the left hand curve, where the

Hopf bifurcation line begins.

Homoclinic loop bifucations
Unfolding the Takens-Bogdanov normal form as in Guckenheimer and Holmes (1983), §7.3

shows that a third bifurcation curve emerges from the point ða;bÞ ¼ ð0; 0Þ to the right of a ¼
0 and tangent to it at ð0; 0Þ. On this curve, shown dashed in Figure 10, one of the

separatrices emerging from the saddle point returns to it in a homoclinic loop. Approaching

from above and to the left in region III the stable limit cycle grows until, for parameters

ða;bÞ on this homoclinic bifucation curve, it fuses with the saddle and disappears. Numerical

solutions indicate that the curve crosses regions III and II, thereby dividing them, and ends

on the upper saddle-node bifurcation curve. To the right of this meeting point, the saddle-

node bifurcation occurs on a closed cycle, creating finite amplitude limit cycles whose

periods rapidly decrease from infinity moving upward and rightward into region I. See

(Perl et al., 2011, Figure 4), but note that a different parameterization is used in that paper.

The extreme sensitivity of the period and waveform of these oscillations are largely

responsible for the broad spectral content and ‘uncontrollable’ aspects of infant cries

produced by the model.

No general methods exist for finding homoclinic bifurcation curves analytically, although

they can be approximated in the neighborhood of multiply-degenerate fixed points such as

the Takens-Bogdanov point. In fact a bifurcation set topologically equivalent to the present

one has been found in a version of the forced van der Pol oscillator (Holmes and Rand,

1978), cf. Guckenheimer and Holmes (1983, §2.1).
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