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ABSTRACT

MicroRNAs (miRNAs) are key contributors to gene
regulatory networks. Because miRNAs are pro-
cessed from RNA polymerase II transcripts, insight
into miRNA regulation requires a comprehensive un-
derstanding of the regulation of primary miRNA tran-
scripts. We used Bru-seq nascent RNA sequencing
and hidden Markov model segmentation to map pri-
mary miRNA transcription units (TUs) across 32 hu-
man cell lines, allowing us to describe TUs encom-
passing 1443 miRNAs from miRBase and 438 from
MirGeneDB. We identified TUs for 61 miRNAs with
an unknown CAGE TSS signal for MirGeneDB miR-
NAs. Many primary transcripts containing miRNA se-
quences failed to generate mature miRNAs, suggest-
ing that miRNA biosynthesis is under both transcrip-
tional and post-transcriptional control. In addition to
constitutive and cell-type specific TU expression reg-
ulated by differential promoter usage, miRNA synthe-
sis can be regulated by transcription past polyadeny-
lation sites (transcriptional read through) and pro-
moter divergent transcription (PROMPTs). We iden-
tified 197 miRNA TUs with novel promoters, 97 with
transcriptional read-throughs and 3 miRNA TUs that
resemble PROMPTs in at least one cell line. The
miRNA TU annotation data resource described here
reveals a greater complexity in miRNA regulation
than previously known and provides a framework for
identifying cell-type specific differences in miRNA
transcription in cancer and cell transition states.

INTRODUCTION

MicroRNAs (miRNAs) play critical roles in conferring ro-
bustness to cellular processes including timing of cellular
development, hematopoiesis, organogenesis, apoptosis, cell
proliferation, circadian rhythm and differentiation (1–4).
Dysregulation of miRNA expression has been implicated
in the onset and progression of many diseases, including
cancer (5–9). The primary function of miRNAs is to modu-
late gene expression by targeting mRNAs for translational
repression, deadenylation and degradation (10–12). It has
been estimated that half of all protein-coding transcripts are
under miRNA regulation (13).

Most miRNA genes are transcribed by RNA polymerase
II generating primary transcripts containing 5′-caps and
3′ poly(A) tails (14,15). These primary transcripts (pri-
miRNAs) are variable in length and rapidly processed in
the nucleus by the microprocessor complex consisting of
DROSHA and DGCR8 into ∼60–80 nucleotide precursors
(pre-miRNAs) (16–19). The pre-miRNAs are exported to
the cytoplasm where they are further processed into mature
miRNAs by DICER (12,20–24). The mature miRNAs are
then loaded along with Argonaute proteins (AGOs) into
RISC complexes (RNA-induced silencing complexes) that
bind primarily to the 3′ UTR of mRNA targets (10,25).

The steady-state expression level of miRNAs can be
regulated at many steps: initial transcription, processing
into mature miRNAs, and turnover of both pri-miRNAs
and mature miRNAs (19,26,27). Because pri-miRNAs are
rapidly processed into pre-miRNA and subsequently into
mature miRNAs, it has been difficult to identify the tran-
scription start and end sites (TSSs and TESs) of pri-miRNA
transcription units (TUs) to obtain accurate miRNA gene
annotations (26). Such TU annotations of miRNAs are

*To whom correspondence should be addressed. Tel: +1 734 764 3330; Email: ljungman@umich.edu
Correspondence may also be addressed to Thomas E. Wilson. Tel: +1 734 764 2212; Email: wilsonte@umich.edu

C© The Author(s) 2019. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work
is properly cited. For commercial re-use, please contact journals.permissions@oup.com

http://orcid.org/0000-0003-1553-6695


2 NAR Genomics and Bioinformatics, 2020, Vol. 2, No. 1

critical for understanding the transcriptional regulation of
miRNA genes. In lieu of identifying full-length transcripts,
annotations of miRNA genes have been performed indi-
rectly by assessing chromatin features suggestive of pro-
moters upstream of the miRNA genes (28) and by ana-
lyzing data from Cap analysis gene expression sequencing
(CAGE-seq) and RNA-seq (29,30). Other approaches to
study pri-miRNAs have been to suppress the activity of
DROSHA (31) or capture nascent RNA using in vitro GRO-
seq or PRO-seq (32).

In this study, we used nascent RNA Bru-seq to map pri-
mary miRNA transcripts across 32 diverse human cell lines,
which allowed systematic assessment of the various TUs en-
compassing known miRNAs. The data revealed multiple in-
tergenic miRNA TUs initiating from their own promoters
as well as miRNA genes relying on transcriptional read-
through from upstream genes or divergent promoter up-
stream transcription (PROMPTs). About 108 TUs (21.3%)
were expressed in all lines, with >68% of those falling within
protein-coding genes. About 340 TUs showed variable ex-
pression patterns between cell lines indicative of different
modes of regulation in different cellular contexts.

MATERIALS AND METHODS

Cell lines and cell culture

A list of cell lines used in this study is provided in Sup-
plementary Table S1. BxPC3, UML49, UM5, GM12878,
GM12891 and HCT116 were grown in RPMI (RPMI 1640,
10% FBS, 100 U/ml penicillin and 100 U/ml streptomycin).
A2058, HEK293, A375, A673, MiaPaCa, panc1, U2OS,
UM16, UM28 and UM59 were grown in DMEM (DMEM,
10% FBS, 100 U/ml penicillin and 100 U/ml streptomycin)
and MEM growth media (Minimal Essential Medium, 10%
FBS, 1× MEM amino acids, 1× non-essential amino acids,
2 mM L-glutamine, 1× antibiotic–antimycotic, 1× MEM
vitamin mixture and 0.15% (w/v) sodium bicarbonate) was
used for HEPB3, HepG2, MCF7, U87, UMUC9 and hu-
man fibroblasts HF, CSB and XPC. HPDE were grown
in keratinocyte serum-free medium (Invitrogen Life Tech-
nologies, Inc., Carlsbad, CA) supplemented with 50 �g/ml
bovine pituitary extract (Invitrogen) and 5.0 ng/ml recom-
binant human EGF (Invitrogen); HPNE were grown in
three volumes of DMEM and one volume of medium M3,
with the mixture supplemented with 5% fetal calf serum and
10 ng/ml EGF; HAP1 and K562 were grown in IMDM
with 10% FBS and antibiotics; SHEP1 in 1:1 mix of MEM
and F12 media with 10% FBS. iPSCs were reprogrammed
from HF (33). Typically, 4 × 106 cells were harvested per
sample in 2–3 10cm plates (∼80% confluency), yielding
∼80–100 �g of total RNA.

Bru-seq nascent RNA sequencing and read mapping

For Bru-seq, cells were incubated in media containing
bromouridine (Bru) (Aldrich) at a final concentration
of 2 mM for 30 min at 37◦C to label nascent RNA.
Following labeling, cells were lysed directly in Trizol
followed by isolation of total RNA, immunocapturing of
Bru-labeled RNA using anti-BrdU antibodies, preparation

of strand-specific DNA libraries with the Illumina TruSeq
Kit (Illumina) and deep sequencing using the Illumina
sequencing platform, all as previously described (34,35).
Sequenced reads were strand-specific, single-ended, and
of read lengths from 51–65 bp. Reads were pre-mapped
to the ribosomal RNA (rRNA) repeating unit (GenBank
U13369.1) and the mitochondrial and EBV genomes (from
the hg38 analysis set) using Bowtie2 (2.3.3) (36). Unaligned
reads were subsequently mapped to human genome build
hg38/GRCh38 using STAR (v 2.5.3a) (37) and a STAR
index created from GENCODE annotation version 27 (ftp:
//ftp.ebi.ac.uk/pub/databases/gencode/Gencode human/
release 27/gencode.v27.basic.annotation.gtf.gz) (38). This
strategy allowed mapping of reads throughout the genome,
including any spliced reads found in purified nascent RNA.
Uniquely mapped reads were counted in 1 kb genomic bins
and bin RPKM values calculated as previously described
(34,35). For cell lines where multiple replicates were avail-
able, the mapped reads were merged for more robust TU
calling. Read statistics for each cell line and library are
provided in Supplementary Table S1.

Genome segmentation and identification of transcription
units

We previously described a Hidden Markov model (HMM)
for ab initio identification of transcription segments, defined
as contiguous spans of the genome with a similar nascent
RNA read density such as occurs in a gene. Briefly, the
model used 17 logarithmically distributed Bru-seq bin input
states constructed individually for each sample based on its
1 kb bin RPKM values. GENCODE genes acted as putative
segments to train emission probabilities for 10 logarithmi-
cally distributed bin output states of different transcription
levels (34,35). Solving the HMM by the Viterbi algorithm
assigned an output transcription state to every 1 kb genomic
bin. Runs of adjacent bins of the same state were fused into
transcription segments.

HMM output segments included both transcribed and
non-transcribed regions of the genome. To identify tran-
scribed segments with a read density statistically deviant
from the random genomic background in a sample, we first
estimated the background read density (reads per bp) us-
ing all reads that aligned outside of any annotated GEN-
CODE genes. Our logic was that most intergenic regions are
not highly transcribed and reads found there have a higher
probability of being artifacts. The average number of such
reads expected to occur randomly in any genomic segment
was calculated as this intergenic read density multiplied by
the segment length. Modeling genomic segments as Poisson
processes allowed us to calculate a P-value for the number
of reads actually observed in a segment using the R expres-
sion 1 – ppois(observed, expected). HMM segments with a
P-value <0.001 were considered to be transcribed above the
genomic background.

We next parsed transcribed segments into non-
overlapping transcription units (TUs), defined as genomic
regions likely to be traversed by a single transcribing
RNA polymerase molecule in a significant fraction of
cells. We first fused all adjacent transcribed segments into

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_27/gencode.v27.basic.annotation.gtf.gz
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preliminary TUs, noting that such spans included segments
transcribed at different levels according to the HMM. Seg-
ment fusion is necessary and appropriate due to variable
efficiency of read recovery in different regions of single
genes, and because transcription extends well beyond the 3′
ends of annotated genes with a progressive decrease in bin
RPKM (a ‘peak-valley’ configuration with respect to the
RPKM of fused segments in the direction of transcription).
Single genes can also have multiple TSSs resulting in a
‘valley-peak’ configuration, in which case we sought to
call the longest isoform, i.e. the 5′-most TSS, as the TU.
However, unattended segment fusion can lead to errors at
closely adjacent genes, especially when they show similar
transcription levels, because transcription past the 3′ end
of the upstream gene can result in a run of bins of similar
read density that continues into the downstream gene.
Accordingly, we computationally split preliminary TUs at
the downstream peak in a ‘peak-valley-peak’ configuration
when the downstream peak either (i) corresponded to a
second known gene in the GENCODE annotation or (ii)
had an RPKM value >10-fold higher than the preceding
valley. Aggregate RPKM values were finally calculated for
each HMM segment and each fused TU.

Importantly, the process used to call TUs was largely
independent of gene annotations. GENCODE genes were
only used to train the initial HMM, to establish a back-
ground read density for determining segment transcription
probabilities, and to split TUs that had a high likelihood of
being inappropriately fused. As a result, called TUs need
not begin or end at annotated gene boundaries and can in-
clude previously unannotated genes. TU calling is imperfect
due to the nature of nascent RNA sequencing data and the
fact that TU endpoints were only resolved to 1 kb resolu-
tion. Nevertheless, TUs are a powerful tool for revealing
the spans of RNA polymerase traversal that produce pri-
miRNAs.

miRNA sources and categorization

Genomic locations of mature miRNA sequences were ob-
tained from miRBase database (Release 22.1, n = 1918,
ftp://mirbase.org/pub/mirbase/22.1/genomes/hsa.gff3) (39).
A smaller subset of mature miRNAs were also obtained
from MirGeneDB2.0 (n = 557, http://mirgenedb.org/static/
data/hsa/hsa-all.bed) (40). These 557 MirGeneDB miR-
NAs overlap with 507 unique miRBase miRNAs. Both
miRBase names and the corresponding MirGeneDB names
(when available) are provided in figures and in Supple-
mentary Table S2 in the format ‘miRBase/MirGeneDB’.
The GENCODE annotation (v27) was used to deter-
mine the biotype (https://www.ensembl.org/info/genome/
genebuild/biotypes.html) of the transcript(s) overlapping
each miRNA, which was simplified into three types:
protein-coding (PC), long-non-coding (LNC) and other
biotypes (OT, for anything besides PC and LNC). The re-
lationship between each miRNA and the Bru-seq TU en-
compassing it were further categorized, for each cell line in-
dividually, into the following classes:

(i) if the TU completely overlapped an annotated tran-
script that contained the miRNA, the TU was classi-

fied as ‘abs’, to signify absolute overlap of a gene, suf-
fixed with the miRNA GENCODE type (PC, LNC,
or OT);

(ii) if the TU overlapped <80% of the annotated tran-
script, the TU was classified as ‘partial’, suffixed with
the GENCODE type (PC, LNC or OT);

(iii) if the miRNA was downstream of an annotated tran-
script and the TU completely overlapped that tran-
script, the TU was classified as ‘abs’ suffixed with
‘IGds’ to signify that the miRNA is intergenic and
downstream of an annotated transcript;

(iv) if the miRNA was upstream of an annotated tran-
script and the TU completely overlapped that tran-
script, the TU was classified as ‘abs’ suffixed with
‘IGus’ to signify that the miRNA is intergenic and up-
stream of an annotated transcript;

(v) if the TU overlapped <80% of the annotated tran-
script and the miRNA was downstream of an anno-
tated transcript, the TU was classified as ‘partial’ suf-
fixed with ‘IGds’;

(vi) if the TU overlapped <80% of the annotated tran-
script and the miRNA was upstream of an annotated
transcript, the TU was classified as ‘partial’ suffixed
with ‘IGus’;

(vii) if the miRNA fell within an annotated transcript but
the TU began in and completely overlapped a differ-
ent upstream transcript (i.e. it is the transcriptional
read-through of an upstream transcript that overlaps
with the miRNA inside a downstream transcript), the
TU was classified as ‘part features’;

(viii) if the miRNA did not overlap with an annotated tran-
script, the TU overlapping the miRNA was classified
as ‘novel’; and

(ix) if the miRNA did not have an overlapping TU, it was
considered to be ‘not transcribed’.

If the start sites of TUs fell within ±5 kb of transcrip-
tion start sites (TSSs) of known transcripts, the TU were
classified as having a ‘known promoter’, all others were
classified as ‘novel promoter’. If the TU overlapped two or
more genes, and the miRNA lay within or downstream of
the second gene in the direction of transcription, the pro-
moter type could not be ascertained and was classified as
‘NA promoter’. A visual characterization of these various
classifications has been provided in Supplementary Figure
S1A.

miRNA-seq (small-RNA) data for GM12878,
HCT116, K562 and MCF7 cell lines and H3K4Me3
data in seven cell lines were obtained from ENCODE
(https://www.encodeproject.org). Gene Ontology analysis
was performed using the topGO package in R (41). miRNA
promoter names and transcription start site coordinates, as
determined from CAGE-seq peaks, were obtained from file
human.promoters.tsv downloaded from the FANTOM5
site http://fantom.gsc.riken.jp/5/suppl/De Rie et al 2017/
vis viewer novel/#/human (42–45). The coordinates were
converted to hg38 assembly using the UCSC liftOver tool
(https://genome.ucsc.edu/cgi-bin/hgLiftOver).

ftp://mirbase.org/pub/mirbase/22.1/genomes/hsa.gff3
http://mirgenedb.org/static/data/hsa/hsa-all.bed
https://www.ensembl.org/info/genome/genebuild/biotypes.html
https://www.encodeproject.org
http://fantom.gsc.riken.jp/5/suppl/De_Rie_et_al_2017/vis_viewer_novel/#/human
https://genome.ucsc.edu/cgi-bin/hgLiftOver
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RESULTS

Identification of inter- and intragenic miRNA TUs across 32
cell lines

We applied HMM-based ab initio segmentation to 65 high
quality Bru-seq nascent RNA sequencing data sets from
32 human cell lines, including 22 cancer cell lines (A2058,
A375, A673, BxPC3, HAP1, HCT116, HEPB3, HEPG2,
K562, MCF7, miaPaCa, panc1, SHEP1, T47D, U2OS,
U87, UM16, UM28, UM5, UM59, UML49 and UMUC9)
and 10 non-cancer cell lines (HEK293, csb, GM12878,
GM12891, HME, HPDE, HPNE, iPSC, HF1 and xpc)
(Supplementary Table S1). In Bru-seq, cells are incubated
with bromouridine for 30 min to label any RNA synthe-
sized during that time. The nascent, Bru-labeled RNA is
then immunocaptured, converted to cDNA and sequenced.
Sequencing reads were mapped to the human reference
genome (hg38) and contiguous transcription spans (i.e.
TUs) were identified genome-wide using HMM segmenta-
tion. The process identified miRNA-associated TUs with
statistically significant transcription for 1443 of the 1918
miRNAs annotated in miRBase in at least one cell line.
(Supplementary Table S2). TU endpoints, lengths, tran-
scriptional intensities in RPKM units, class, promoter
types and the presence or absence of antisense transcription
and PROMPTs were determined, per cell line, for all TUs
that included these 1443 miRNAs (Figure 1A, red bars).
However, most subsequent analyses and calculations were
performed using the smaller subset of 438 TUs associated
with 507 miRNAs obtained from the MirGeneDB database,
which have been validated against a stricter set of criteria
(40).

MirGeneDB miRNA transcription among cell lines dis-
played a bimodal nature, with 138 (27.2%) having a called
TU in at least 30 of the 32 cell lines, and 151 (29.78%)
having a called TU in two cell lines or fewer (Figure
1A, blue bars). There were 108 (21.3%) annotated miR-
NAs transcribed in all 32 cell lines, while 69 (13.6%)
were never transcribed in any cell line. Of the 69 miR-
NAs, roughly half (29/69, 42%) showed transcription in
the antisense direction in at least some cell lines (Fig-
ure 1A (left pie chart)). This percentage shrank to 29.6%
(32/108) for miRNAs that were transcribed in all 32 cell
lines, suggesting transcription on the opposite strand as a
possible means of suppressing TU expression (Figure 1A
(right pie chart)). Transcription in the antisense direction
could result from either (i) presence of a gene (e.g. Fig-
ure 3B, ACADVL gene antisense to MIR324) or (ii) cap-
turing bin(s) upstream of a downstream gene (for exam-
ple, MIR 3613 as seen in our web resource https://bruseq.
org/backdoor/projects/miRNA/miRNA.html) or (iii) tran-
scriptional readthrough from an upstream gene (for exam-
ple, MIR616 and MIR93/MIR25/MIR106B).

The bimodal nature of miRNA transcription suggests
potentially two classes of miRNAs, one serving housekeep-
ing functions, the others with functions that are more spe-
cialized, as has been previously suggested (46). Potential ex-
amples of the latter class include 39 miRNAs transcribed in
only one cell line with an unambiguous median TU RPKM
of at least 0.3 (Supplementary Table S2 and Figure 1B). It is

possible that miRNAs that were rarely or never transcribed
may represent false miRNA annotations or miRNAs ex-
pressed in cell types other than those sampled here. In this
regard, we note that miRBase miRNAs were more likely
to never be transcribed than MirGeneDB miRNAs (Fig-
ure 1A, blue versus red bar at x = 0). The TU lengths of
miRNAs that were always transcribed (n = 108) were also
similar across cell lines, with a median length around 100
kb (Figure 1C).

A majority (74/108, 68.5%) of the TUs overlapping uni-
versally transcribed miRNAs corresponded well to protein-
coding transcripts (category abs PC, Figure 1D). Genome-
wide analysis also showed these miRNAs to be enriched
in annotated genes (protein-coding or long-non coding,
P-value < 2.2e-16). Gene ontology (GO) analysis of the
genes harboring universally transcribed miRNAs revealed
DNA binding and mRNA processing as highly enriched
functions, as compared to a background set of 907 genes
that overlap with an miRNA regardless of their transcrip-
tion state (Supplementary Figure S1B–D). Nevertheless,
the types, lengths and transcriptional levels (RPKM) of
most TUs were similar across all cell lines, suggesting that
at least the most commonly expressed miRNAs tend to
share common transcriptional control mechanisms. (Sup-
plementary Figure S1E–G). We did not observe a difference
in miRNA transcription between cancer and non-cancer
groups of cell lines (Supplementary Figure S1H). However,
we found 30 and 24 miRNAs to be uniquely transcribed
in cancer and non-cancer groups, respectively (Supplemen-
tary Figure S1I). Nineteen out of twenty-four miRNAs in
the non-cancer group were exclusively transcribed in iPSCs
(Supplementary Figure S1J).

TUs can be extremely long with multiple miRNAs

miRNA TUs can be very long. The longest MirGeneDB
miRNA TU measured ∼1.55 Mb, encompassing MIR582
in the GM12878 cell line, while being less than half that
length (765 kb) in the UML49 cell line (Supplemen-
tary Table S2). TUs for two intergenic miRNAs were
128 kb (MIR138-1/MIR138-P1, Figure 2A) and ∼1.28
Mb (MIR873/MIR873-v1/MIR873-v2 and MIR876, Fig-
ure 2B, Supplementary Figure S2A) in HPDE and HME
cell lines, respectively. One large cluster of miRNAs located
on chromosome 14 (Figure 2C) was transcribed as a single
TU over ∼250 kb in length, suggesting that all of these miR-
NAs may be processed from a single primary transcript.
Indeed, BruUV-seq, whose signal accumulates immediately
downstream of active promoters (47), verified the presence
of only one major TSS at this locus (Figure 2C; bottom). In-
cluded in this TU are also multiple snoRNAs and a known,
annotated lncRNA MEG3.

A critical importance of pri-miRNA TU length is that
it, together with miRNA placement within a TU, deter-
mines the timing of miRNA expression relative to tran-
scriptional initiation. Timing (tabulated in Supplementary
Table S2) can be predicted based on the assumption that
miRNA processing occurs co-transcriptionally (48) and
that RNA polymerases move through DNA at an approx-
imate average rate of 2–3 kb/min (49–53). For example,

https://bruseq.org/backdoor/projects/miRNA/miRNA.html
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Figure 1. Identification and properties of miRNA transcription units (TUs). (A) Histogram of miRNA transcription frequency among 32 cell lines for the
miRbase set (n = 1918, red bars) and the MirGeneDB subset (n = 507, blue bars). For miRNAs that were not transcribed in any cell line (n = 69, left
pie chart), or those transcribed in all cell lines (n = 108, right pie chart), pie charts illustrate whether transcription through the miRNA was found in the
antisense direction in all, some or no cell lines. (B) Boxplots showing Bru-seq transcription levels (RPKM) of TUs of all MirGeneDB miRNAs transcribed
in 32 cell lines (n = 438). (C) Distribution of TU lengths (bp) for 108 miRNAs transcribed in all cell lines. (D) For miRNAs transcribed in all cell lines
(n = 108), a pie chart shows the types of TUs observed (‘abs PC’ indicates protein coding genes; ‘multiple types’ means different TU types were seen in
different cell lines; see ‘Materials and Methods’ section for other definitions).

although MIR873/MIR873-v1/MIR873-v2 and MIR876is
encompassed by a 1.28 Mb TU in HME (Figure 2B, and
an even longer TU in case of U2OS cell line (1.49 Mb, Sup-
plementary Figure S2A)), it is located 351 kb downstream
of its promoter so is expected to have an ∼176-min delay
from initiation to processing. Moreover, the processing of
various RNA elements in the TU in Figure 2C is expected
to occur in a temporal order according to their location in
the TU.

miRNA transcription due to differential promoter usage

There are many reasons why miRNAs may show differential
transcription between cell lines. One obvious explanation is
cell type-specific activation of pri-miRNA promoters. Some
miRNA TUs are initiated from multiple promoters allow-
ing different cells to express the same miRNA-containing
gene in response to distinct regulatory signals. We identi-
fied novel promoters for 197 miRNAs in the MirGeneDB
data set based on a comparison with the underlying GEN-
CODE annotation. The number of miRNAs with a novel

promoter reduced to 180 when we excluded those where
a primary miRNA CAGE promoter peak from the FAN-
TOM5 data set was found within ±1 kb of our TU start
site (42–45).

de Rie et al. (44) annotated TSSs of pri-miRNAs that
were identified from CAGE-seq data (one per miRNA). To
compare our Bru-seq TUs to these CAGE TSSs, we calcu-
lated the distance from each genomic miRNA to either the
Bru-seq TU start site or the CAGE pri-miRNA TSS coor-
dinate, and then calculated the difference between these two
distances as a measure of TSS correspondence. Plotting the
minimum of this difference value across all cell lines for each
miRNA demonstrated that the Bru-seq TU start site was in
close proximity (within ±2 kb) to the CAGE TSS signal in
at least one of our cell lines for most miRNAs (sharp peak
around 0 in Supplementary Figure S2B). Thus, there is an
excellent correspondence of the CAGE and Bru-seq data
sets. However, plotting the median of the difference value
demonstrated that our typical TU start site over multiple
cell lines was frequently farther away from the miRNA than
the CAGE TSS (Supplementary Figure S2C). Importantly,
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Figure 2. Differential miRNA TU lengths and promoter usage. (A) Genomic view of the ∼128 kb long TU for the intergenic miRNA MIR138-1/MIR138-
P1 in HPDE cells. The orange bar below the Bru-seq trace represents the span of the called TU by the segmentation algorithm. (B) Similar view of the ∼1.28
Mb long TU for the intergenic miRNAs MIR876 and MIR873/MIR873-v1/MIR873-v2 in HME cells. (C) The ∼250 kb long TU for the miRNA cluster
on chr14 in human fibroblasts, with the lower panel showing a single TSS picked up by the BruUV-seq technique. (D) Depiction of MIR100/MIR10-P2a
transcription over all 32 cell lines. Genes represent GENCODE transcript spans. Line plots show the aggregate transcription level over all 32 lines on the
top (green) and bottom (red) strands. Heat maps show one row for each cell line over all genome bins on the top (top panel) and bottom (bottom panel)
strands, where darker blue indicates a higher level of transcription. Finally, cyan lines show all unique TU spans called in any cell line, and thick brown lines
show the span of TU overlap groups. Images of this type can be viewed for any miRNA at https://bruseq.org/backdoor/projects/miRNA/miRNA.html.

Bru-seq TUs represent the longest span of contiguous tran-
scription at a locus based on nascent RNA data, in contrast
to de Rie et al. who used the highest expressed promoter
among the set of all candidate pri-miRNA promoters (iden-
tified based on all transcripts annotated in GENCODE v19
(human) or NCBI Entrez Gene database, followed by man-
ual curation) as the pri-miRNA promoter (44). As a re-
sult, Bru-seq data reported here expand the known diver-
sity in the set of sometimes multiple TSSs used by indi-
vidual miRNAs, by exposing alternative promoters that are
farther away from the miRNA. We also identified TUs for
61 MirGeneDB miRNAs that lacked a CAGE TSS (Sup-
plementary Table S2). For example, the intergenic miRNA
MIR219A-1/MIR219-P1 was transcribed in all 32 cell lines.

In an extreme case of multiple promoter usage, Bru-
seq identified at least six distinct TU start sites for
MIR100HG/MIR10-P2a HG (host gene) that could give
rise to the mature MIR100/MIR10-P2a (Figure 2D, which
is presented in the heat map format used by our online re-
source, and Supplementary Figure S2D). Using matching
BruUV seq data from three cell lines, we were able to iden-

tify many more TSSs that were corroborated by H3K4Me3
signal in seven cell lines from ENCODE (Supplementary
Figure S2D, bottom). Finally, a distinct group of miR-
NAs is regulated autonomously from their own promoters.
For example, in four pancreatic cancer cell lines (BxPC3,
panc1, UM5 and UM59), miRNAs MIR182/MIR96-P2,
MIR96/MIR96-P1 and MIR183/MIR96-P3-v1/MIR96-
P3-v2 are transcribed as part of a single TU on the nega-
tive strand with a common, novel promoter (Supplementary
Figure S2E).

miRNA transcription due to 3′ transcriptional read-through

Transcription termination of RNA Pol II entails synthe-
sis past the annotated transcription end site (TES) of
genes with subsequent cleavage of nascent transcripts and
polyadenylation (54–56). The degree of this transcriptional
read-through can vary between genes and cell lines, lead-
ing to miRNA expression diversity since 59 intergenic miR-
NAs are annotated within 50 kb downstream of protein-
coding genes. For example, GM12878 and MCF7 cells ap-
pear to generate MIR296 as part of read-through transcrip-

https://bruseq.org/backdoor/projects/miRNA/miRNA.html
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Figure 3. miRNA regulation by transcription read-through and PROMPTs. (A) Bru-seq transcription in the GNAS-AS1 gene (left panel) with transcrip-
tional read-through crossing MIR296 in GM12878 and MCF7 cell lines but not HCT116 and K562 cell lines. Small RNA-seq data (right panel) shows
correlated expression of mature MIR296 in GM12878 and MCF7. (B) Similar depiction of transcriptional read-through from DVL2 leading to expres-
sion of MIR324 across multiple cell lines. (C) A PROMPT from gene POLR3D results in transcription of MIR320A (top panel), as verified by the small
RNA-seq data (lower panel).
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tion from the upstream gene GNAS-AS1 (Figure 3A, left
panel). To determine whether read-through transcription
results in production of mature MIR296 miRNA, we ob-
tained ENCODE small RNA-seq data from these cell lines
(Supplementary Table S1). Mature MIR296 was detected
in only GM12878 and MCF7 cells, matching the predic-
tions from the called read-through TUs (Figure 3A, right
panel). An additional example of apparent transcription
read-through resulting in mature miRNAs is MIR331 (Sup-
plementary Figure S3A). Even when annotated as inter-
genic, some miRNAs are transcriptionally linked to up-
stream genes via read-through transcription and thus, its
location may have been evolutionary selected for as it may
share a functional relationship with the upstream gene.

Read-through transcription further exposes miRNAs to
regulatory complexity due to TU overlaps. For example,
MIR324 is transcribed by read-through transcription of
the gene DVL2 (Figure 3B, left panel) and is also ex-
pressed in GM12878, K562, HCT116 and MCF7 cells (Fig-
ure 3B, right panel). However, the ACADVL gene on the
strand opposite to MIR324 is also transcribed in all four
cell lines. Presumably, transcription of MIR324, via DVL2
read-through, and ACADVL is mutually exclusive at any
given time in a single cell due to potential conflicts be-
tween opposing RNA polymerases. In this way, miRNA
read-through expression could be secondarily regulated by
transcription of nearby genes in a cell type-specific manner.

Differential miRNA transcription due to upstream promoter
divergent transcription

The promoters of many protein-coding genes produce di-
vergent promoter upstream transcripts, or PROMPTs, pro-
ceeding away from the gene promoter on the opposite
strand (57–59). PROMPTs are typically unstable and their
functional roles remain unclear. We found 14 TU’s spread
across 30 cell lines that resembled PROMPTs for miRNAs
in the miRBase database. For example, HCT116 cells tran-
scribe MIR320A as part of a 4 kb long PROMPT that pro-
ceeds divergently away from the POLR3D gene, resulting
in the expression of MIR320A (Figure 3C). MIR320A was
present in the miRBase but not the MirGeneDB data sets,
presumably due to it being classified as a non-canonical
miRNA (60).

Taken together, regulation of miRNA transcription is re-
markably diverse and through evolutionary selection, these
miRNAs have been placed under transcriptional control
of nearby genes with which they presumably share func-
tional relationships. Many miRNAs are found within in-
trons of protein-coding genes and transcribed as those genes
are transcribed. Other miRNAs reside outside the span of
protein-coding genes but are nevertheless regulated through
transcription from these genes by 3′ transcriptional read-
through or through transcription of PROMPTs. Further-
more, the positioning of miRNAs on the opposite strand of
protein-coding genes could create transcriptional interfer-
ence.

Only a subset of TUs generate mature miRNAs

Primary transcription of miRNAs is necessary but not
sufficient for the expression of mature miRNAs. Further

comparisons of primary TUs determined by Bru-seq and
mature miRNAs determined by small RNA-seq from
GM12878, HCT116, K562 and MCF7 cell lines demon-
strated a notable discordance. For example, all cell lines
transcribed the TP53-regulated MIR34A host gene (61)
(Figure 4A, left panel), except K562 that has a known
p53 mutation. However, only HCT116 and MCF7 cells
expressed mature MIR34A/MIR34-P1 despite strong
primary transcription in GM12878 (Figure 4A, right
panel). This suggests that MIR34A/MIR34-P1 is either
processed much less efficiently or turned over much more
quickly in GM12878 cells. Six miRNAs (MIR17/MIR17-
P1a, MIR18A/MIR17-P2a, MIR19A/MIR19-P1,
MIR20A/MIR17-P3a, MIR19B1/MIR19-P2a and
MIR92A1/MIR92-P1a) were transcribed together as one
TU in GM12878 cells, but only MIR17/MIR17-P1a,
MIR18A/MIR17-P2a and MIR20A/MIR17-P3a were
detected as mature miRNAs (Figure 4B). Many other
miRNA clusters also showed differential processing, such
as MIR30B/MIR30-P2c and MIR30D/MIR30-P1c (Sup-
plementary Figure S4A). Thus, cells can regulate the final
expression of mature miRNAs with respect to the specific
identity of the individual miRNAs, even when they are
transcribed together. We also found rare examples where a
mature miRNA was detected in small RNA-seq data even
though a TU was not called by our algorithm, but in most
cases low levels of transcription could be observed upon
visual inspection (e.g. MIR203A/MIR203-v1/MIR203-v2
in HCT116 cells, Supplementary Figure S4B).

To further explore the contribution of post-
transcriptional regulation to miRNA biogenesis, we
compared the transcription levels of TUs (RPKM) against
the expression of mature miRNA (counts) using the
MirGeneDB data set (Figure 4C and Supplementary
Figure S4C). Primary and mature miRNA expression
consistently correlated poorly across cell lines (the corre-
lations (Spearman) were similar across the four cell lines),
again suggesting that post-transcriptional processing and
turnover play important roles in regulating steady-state
levels of miRNAs. The correlations worsened across all
four cell lines when all the miRNAs from the miRBase
data set were taken into consideration (Supplementary
Figure S4D). We further found that the read counts of ma-
ture miRNA forms were highly correlated across cell lines
for miRNAs that were transcribed in all four lines based
on Bru-seq (Figure 4D). Thus, the post-transcriptional
regulation of miRNAs appears to be more linked to the
miRNA itself rather than being cell line specific.

TUs and cellular reprogramming

We finally compared TU profiles of two specific cell lines
in our study, human fibroblasts and the same cell line con-
verted into induced pluripotent stem cells (iPSCs) (33).
Close to 300 miRNAs, TUs were transcribed in each of the
two cell lines (292 and 278 in iPSCs and fibroblasts, respec-
tively, Figure 5A), with around one-third (34.2% and 30.9%
for iPSCs and fibroblasts respectively) transcribed uniquely
in the two cell states indicating cell-state specificity. iPSCs
showed specific enrichment of TU types encompassing in-
tergenic miRNAs. miRNAs upstream of annotated genes
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Figure 4. Only a subset of TUs generate mature miRNAs. (A) Bru-seq (left panel) reveals transcription of the MIR34A/MIR34-P1 host gene in three
cell lines, but small RNA-seq data (right panel) reveal expression of mature MIR34A/MIR34-P1 in only two cell lines. (B) Bru-seq (upper panel) reveals
transcription through the entire MIR17 host gene, yet only MIR17/MIR17-P1a, MIR18A/MIR17-P2a and MIR20A/MIR17-P3a are processed into
mature form (indicated in red) in GM12878 (lower panel). (C) Bru-seq transcription levels (RPKM) of TUs are plotted against expression levels (counts) of
mature miRNAs for GM12878 (left) and HCT116 (right) cell lines, with some included miRNAs labeled. Spearman correlation coefficients were calculated.
(D) Correlation plots of mature miRNA expression for miRNA transcribed in each of GM12878, HCT116, K562 and MCF7 cell lines.

(abs IGus, n = 47), novel (n = 6), miRNAs downstream
of annotated genes (abs IGds, n = 2), lncRNAs (abs LNC,
n = 5) and others (n = 15) accounted for roughly three-
quarters of the uniquely transcribed TUs. Several miRNAs
have been identified to be uniquely expressed in pluripotent
cells both in vivo and in vitro, such as the MIR302/367 (or
MIR430/MIR92-P2a according to MirGeneDB nomencla-
ture) cluster (62) (Figure 5B). Fibroblasts, also saw an en-
richment of distinct miRNAs in the lncRNA and intergenic
categories, with a significant contribution from the large
miRNA cluster on chromosome 14 discussed above (Figure
2C).

DISCUSSION

MicroRNAs have many important roles in regulating gene
expression during normal cellular homeostasis, develop-
ment and in response to cellular stresses. Dysregulation
of miRNAs is implicated in pathological conditions such
as cancer, so there is a need to obtain new knowledge
about the regulation of miRNA biosynthesis to better un-
derstand miRNA biology and combat diseases. Due to the
poor annotation of intergenic miRNAs, it has been diffi-
cult to elucidate what transcription factors are responsi-
ble for regulating their initial synthesis. Furthermore, as-
sessment of the relative contribution of transcription and
post-transcriptional regulation to miRNA expression has

not been directly explored. In this study, we identified and
mapped the nascent TUs that generate miRNAs in human
cells. Since pri-miRNA transcripts are rapidly processed
into shorter intermediates, traditional RNA-seq techniques
based on steady-state RNA are not suitable to map the
full-length miRNA transcripts. Therefore, we used Bru-seq
nascent RNA sequencing and a segmentation algorithm to
map miRNA TUs across 32 cell lines.

Considering that the mature form of miRNAs is only ∼23
nt long, it is striking that some miRNA TUs are extremely
long, up to 100,000 times larger than the miRNA itself. As-
suming a transcription elongation rate of 2–3 kb/min (50–
53), it would take up to 5 hours to transcribe past MIR876
in U2OS cells (Supplementary Figure S2A, Supplementary
Table S2). This transcriptional exercise might appear to
be wasting both time and energy. However, transcriptional
length can act as a biological clock spacing initiation of the
gene with the completion of its product for optimal biolog-
ical effectiveness (63). Thus, to delay the inhibitory effect of
miRNAs on their mRNA targets may be crucial for a partic-
ular biological pathway and therefore these miRNA genes
may have evolved to have very long TUs.

A large number of miRNAs are intragenic, located within
protein-coding and non-coding genes. Their transcription
and function may therefore be linked to their host genes. As
transcription passes through an intron containing a partic-
ular miRNA, Drosha will begin processing the pri-miRNA
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Figure 5. Altered miRNA TUs in response to cellular reprogramming. (A) Set analysis showing the overlap of TUs between human fibroblast and iPSC cell
lines, plotted as a Venn diagram. Three pie charts show the TU type distributions for iPSC only TUs (100, top left), human fibroblasts only TUs (86, top
right) and TUs common to both (192, bottom left). (B) TU span for the MIR302/367 (or MIR430/MIR92-P2a according to MirGeneDB nomenclature)
cluster in iPSCs and human fibroblasts.

(48). However, there are examples of intragenic miRNA
genes that have their own promoters that are regulated inde-
pendently of the host gene’s promoters, which might be dif-
ficult to detect in nascent RNA samples (see below) or that
could be masked if the host genes were also transcribed at
a high level (29,64). For miRNAs not located within genes,
we found three different transcription mechanisms. First,
the miRNA gene may be transcribed following activation
of its own autonomous promoter. Second, it is transcribed
as a result of transcriptional read-through of an upstream
gene. Third, it is transcribed as part of run-on transcription
from a PROMPT (Figure 3C). It is possible that the loca-
tions of miRNAs in the genome may have been sculpted in
specific ways during evolution so that miRNAs that have a
functional relationship with the genes leading to their tran-
scription can be co-regulated even when the miRNA does
not reside within the gene body. Differential promoter us-
age can uncouple genic miRNAs from transcription of the
parent gene and expose a miRNA to multiple modes of ex-

pression regulation that are integrated across all of its pro-
moters, depending on the exact placement of the miRNA.

A previous study using metabolic labeling of nascent
RNA concluded that steady-state levels of miRNAs are pri-
marily controlled by the synthesis of the miRNAs (65). In
our study, the correlations between synthesis of the pri-
mary miRNA and the expression of the mature miRNAs
were surprisingly low across four cell lines for both inter-
genic and intragenic miRNAs (Figure 4; Supplementary
Figure S4C and D). The reason for this discrepancy between
the two studies is not clear, but we show clear examples
where pri-miRNA synthesis occurred without expression
of the mature miRNA, indicating that differences in post-
transcriptional regulation play a significant role in miRNA
regulation (Figure 4A). It is possible that the recruitment of
the microprocessor complex to sites of transcription could
be gene- and cell type-specific resulting in selective miRNA
processing as pri-miRNAs are synthesized. Additionally,
degradation may differ greatly across different miRNAs
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both by direct modifications of the miRNAs as well as
through mRNA target-directed miRNA degradation (65–
67). We also found rare examples where a called pri-miRNA
TU was paradoxically not necessary for mature miRNA ex-
pression (Supplementary Figure S4B), which could result
from insufficient read-depth of the Bru-seq experiments. We
might also miss a true TU if it was small and closely flanked
the genomic miRNA, making the pri-miRNA very small,
short-lived and difficult to sequence and/or computation-
ally detect at our 1 kb bin resolution.

It is interesting that although we broadly sampled from
both normal and cancer cell lines, most expressed miRNAs
had similar TUs across all cell lines (Supplementary Figure
S1G). Furthermore, the number of active TUs was not sig-
nificantly different between the cancer and non-cancer cell
line groups (Supplementary Figure S1H). Nevertheless, a
limitation of this work is that all pri-miRNA TUs were es-
tablished using cell lines cultured in vitro, representing a lim-
ited number of cell types and tissue sources, which limit the
potential biological diversity of the TUs we characterized.
Among the 69 miRNAs that were not expressed in any of
our cell lines, we provide continued evidence that some of
these may not be true miRNAs (Figure 4C; Supplementary
Figure S4C and D), but others are likely to require further
characterization in a wider spectrum of biological samples.

CONCLUSIONS

By using nascent RNA mapping in 32 cell lines, we have pro-
vided a data resource and public visualization tool (see ‘Ma-
terials and Methods’ section) that describes the transcrip-
tion profile of 438 MirGeneDB miRNAs, including 61 with
previously unknown CAGE TSS signal. We believe this ap-
proach will be very valuable for future assessments of tran-
scriptional regulation of miRNAs following cellular expo-
sure to stimuli or stresses, during cell state transitions and
in normal and disease states.

DATA AVAILABILITY

Tables of TU endpoints and categories grouped by miRNA
and cell line are provided in Supplementary Table S2.
Bru-seq read data are available from the Gene Expres-
sion Omnibus (GEO) via accession number, GSE132392.
Some Bru-seq data sets have been previously reported
(GSE75398 for HF1 BruUV-seq data, GSE115310 for iPSC
Bru-seq data). We have finally created a public web resource
available at https://bruseq.org/backdoor/projects/miRNA/
miRNA.html for visualization of Bru-seq and BruUV-seq
signal surrounding all miRNA genes for all cell lines char-
acterized in this study, with heat map views and spans of
called TUs relative to GENCODE gene annotations and
previously established CAGE TSSs.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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