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Abstract: Calcium (Ca2+) signaling and the modulation of intracellular calcium ([Ca2+]i) levels
play critical roles in several key processes that regulate cellular survival, growth, differentiation,
metabolism, and death in normal cells. On the other hand, aberrant Ca2+-signaling and loss of [Ca2+]i

homeostasis contributes to tumor initiation proliferation, angiogenesis, and other key processes that
support tumor progression in several different cancers. Currently, chemically and functionally distinct
drugs are used as chemotherapeutic agents in the treatment and management of cancer among which
certain anti-cancer drugs reportedly suppress pro-survival signals and activate pro-apoptotic signaling
through modulation of Ca2+-signaling-dependent mechanisms. Most importantly, the modulation
of [Ca2+]i levels via the endoplasmic reticulum-mitochondrial axis and corresponding action of
channels and pumps within the plasma membrane play an important role in the survival and death of
cancer cells. The endoplasmic reticulum-mitochondrial axis is of prime importance when considering
Ca2+-signaling-dependent anti-cancer drug targets. This review discusses how calcium signaling is
targeted by anti-cancer drugs and highlights the role of calcium signaling in epigenetic modification
and the Warburg effect in tumorigenesis.

Keywords: Intracellular calcium; anti-cancer drugs; apoptosis; proliferation

1. Intracellular Calcium Homeostasis and Calcium Signaling

Intracellular calcium ([Ca2+]i) is an important second messenger involved in cellular functions of
muscles, neurons, immune cells, oocytes and others, modulating enzyme secretion, gene activation,
proliferation, apoptosis, cell cycle progression, fertilization, and release of neurotransmitters [1–3].
Aberrant [Ca2+]i-signaling has been implicated in diseases such as Alzheimer’s, cancer, congestive
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heart failure, and diabetes [4–6]. In cancer, [Ca2+]i-signaling is involved in various processes of
tumorigenesis such as proliferation, migration, angiogenesis, and evasion of apoptosis [7,8].

The concentration of Ca2+ in different compartments of a cell differs greatly ([Ca2+]i: 100 nM;
extracellular calcium [Ca2+]o: 1–1.5mM; in the endoplasmic reticulum (ER): 0.5–1 mM; in the
mitochondria: 100–200 nM (but can accumulate 10–20 fold upon activation) [9]. [Ca2+]i is tightly
maintained at a low concentration by numerous regulating mechanisms, that include both active and
passive mechanisms, e.g., channels or pumps on the plasma membrane, ER, mitochondria, and cytosol
(Figure 1) [10–13]. In addition to channels and pumps, [Ca2+]i is modulated by a heterogeneous group
of calcium binding proteins (CBP), including S100 proteins, calmodulin, and calcineurin. Binding of
Ca2+ with CBP regulates signal transduction and gene expression [14]. Undoubtedly, the nucleus acts
as a major compartment in which Ca2+ is sequestered. Nuclear Ca2+ has specific biological functions
involved in gene expression and regulation [15]. The involvement of the nucleus in [Ca2+]i-regulation
and its role in cell proliferation is extensively reviewed by Resende and colleagues [16]. Importantly,
some studies proposed nuclear calcium signaling as an independent entity producing localized
calcium-signaling and triggering the transcription of genes related to cell proliferation [17]. On the
contrary, it is reported that nuclear [Ca2+] is dependent on changes in [Ca2+]i [18,19].

[Ca2+]i-signaling is initiated by the entry of Ca2+ from an extracellular pool or by releasing
Ca2+ from ER stores or mitochondria. This increases [Ca2+]i from 100 nM (at rest) to approximately
1000 nM generating an “ON” signal for multiple processes. As a prolonged increase in [Ca2+]i may
be harmful, the [Ca2+]i signals are spatially and temporally regulated [7]. Calcium binding proteins
(Ca2+/calmodulin-dependent protein kinase II (CAMKII) and protein kinase C) decode the Ca2+

signals to various cellular processes [20,21]. With the completion of the cellular responses, an “OFF”
mechanism restores the low concentration of [Ca2+]i. [Ca2+]i-signaling is involved in both proliferation
and apoptosis. Ca2+-oscillations stimulate cell proliferation via Ca2+ sensitive transcription factor
(NFAT) and conversely, an increase in [Ca2+]i for a longer duration activates apoptosis [22].

Abnormalities in [Ca2+]i-signaling are associated with various cancers and is also implicated in
therapy resistance [23–25]. An extensive review by Cui et al. broadly outlines calcium regulating
proteins altered in specific cancer types and enlist those compounds targeting calcium-signaling [7].
In this review we analyze the anti-cancer action of selected agents targeting the calcium dependent
pathways regulating proliferation and apoptosis. Here, we emphasize the role of calcium-signaling
in proliferation and apoptosis and in addition, highlight calcium dependent modification of tumor
energy metabolism and epigenetic modification of genes by anti-cancer agents.

2. [Ca2+]i -Signaling in Cell Proliferation and Apoptosis

[Ca2+]i is a versatile second messenger in both proliferation and cell death. [Ca2+]i-signaling
involves the participation of various proteins combined differently depending upon the type of cellular
process initiated (Figure 1). [Ca2+]i-signaling is spatially and temporally distinct for proliferation
or apoptosis [26]. Transition of a normal cell to malignant cell involves altered function, translation,
and expression of various proteins involved in the calcium regulation and signaling. Therefore,
aberrant regulation of [Ca2+]i levels may lead to uncontrolled proliferation and inhibition of apoptosis
and thus contribute to carcinogenesis [27].

2.1. [Ca2+]i -Signaling and Cell Proliferation

[Ca2+]i-signaling mediated by the channels on the plasma membrane and by exchange of
Ca2+ between the spatially and temporally separated ER and mitochondria determines the type of
down-stream signaling which will be activated. The following section focuses on the association
between proliferation and extracellular calcium and the influence of Ca2+-channels on proliferation.
We will also discuss store-operated calcium entry, the sarco/endoplasmic reticulum calcium ATPase
(SERCA), and the ER and mitochondrial axis in proliferation.
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2.2. [Ca2+]o in Cell Proliferation

Extracellular calcium ([Ca2+]o) modulates various cellular processes via calcium channels and
extracellular calcium-sensing G-protein coupled receptors, which include calcium-sensing receptor
(CaSR) and GPRC6a [21]. Past studies describe [Ca2+]o as a key regulator of proliferation in chicken
fibroblast [28]. A significant difference in the proliferation rate of normal vs. transformed chicken
fibroblast is associated with changes of [Ca2+]o. Similar observations were made in mouse 3T3 cells,
with cell proliferation being dependent on [Ca2+]o, while a calcium driven mechanism initiated
DNA synthesis and cell cycle progression that ultimately resulted in cell division [29,30]. Moreover,
the influence of [Ca2+]o and its role in proliferation is reviewed in detail by Borowiec [30], emphasizing
that [Ca2+]o potentially exerts biological actions via sensor proteins on the plasma membrane. CaSR
senses [Ca2+]o and thus triggers the influx of Ca2+ through specific channels and regulates Ca2+

absorption and homeostasis in various organs. A reduction of Ca2+ influx by blocking calcium channels
at the plasma membrane (PM) or reduction of [Ca2+]o attenuates cell proliferation [31].
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Figure 1. Ca2+-signaling in proliferation and apoptosis. [Ca2+]i homeostasis of the cell is strictly
regulated by various channels and pumps on plasma membrane, ER, and mitochondria. Intracellular
calcium flux is indicated by arrows where red arrows indicate influx of Ca2+ ions, blue arrows indicate
Ca2+ efflux and sequestration of Ca2+ into the stores, and green arrows indicate cell signaling pathways
which are activated by [Ca2+]i. Primarily Ca2+ influx from the extra-cellular space is controlled
by VOC (voltage operated calcium channel), SOC (store-operated Orai channels), SMOC (second
messenger-operated channel), or ROC (receptor-operated channel), and Ca2+ efflux is mediated via
(NCX (Na+/Ca2+ exchanger) and PMCA (plasma membrane Ca2+-ATPase). Ca2+ release from the
ER stores is facilitated via RyR (ryanodine receptors) and IP3R (IP3 receptor). Uptake of calcium
from the cytosol is an energy driven process mediated by SERCA (sarcoplasmic/ER Ca2+-ATPase).
Additionally, mitochondria and associated proteins (including mitochondrial calcium uniporter (MCU),
voltage dependent anion channel (VDAC), and mitochondrial Na+/Ca2+ exchanger (mNCX) are also
related to [Ca2+]i-regulation. Mitochondrial-Ca2+ controls ATP synthesis, apoptosis, ROS generation,
and biosynthesis and can determine the fate of the cell. The concentration of Ca2+ in the cytosol is
maintained at a low level (100 nM) in comparison to the extra cellular Ca2+ (1mM). Any change in the
[Ca2+]i results in signal transduction initiating various cellular process such as apoptosis, proliferation,
and cell division. The type of signal depends on the duration, amplitude, localization, frequency,
and oscillation. Sustained high level of Ca2+ in the mitochondria causes the release of cytochrome c and
subsequently triggers death signals via caspase activation. More Ca2+ influx from the ion channels on
the plasma membrane can trigger either proliferation (via T-type) or apoptosis (via L-type). Increased
Ca2+ entry through the SOC channel promotes proliferation [32].
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2.3. Role of Ca2+ Channels and Pumps in Proliferation

Ion channels are characterized as protein microchannels regulating intracellular concentrations
of ions, contributing to the signaling pathways and influencing the overall behavior of cells [33].
Calcium selective channels are abundantly expressed on the plasma membrane which regulates
Ca2+-influx. Voltage-gated calcium channels (VGCCs) (also known as voltage operated channels (VOC)
(see Figures 1 and 2) sense the depolarization of membrane potentials and open their calcium-selective
channel pore, allowing Ca2+ entry into the cell, thus contributing to physiological processes [33,34].
Based on their electrophysiological properties, VGCCs are classified into 5 groups: L-type (Cav1),
T-type (Cav3), N-type (Cav2), P-type (Cav2), and R-type (Cav2). In non-excitable cells, VGCCs [33] are
associated with the regulation of cell proliferation and apoptosis [35]. Aberrant function of VGCCs
is related to the progression of different malignancies. Phan et al., in their review, discuss altered
VGCC family genes and its link to 19 different cancer types including brain, kidney, breast, and lung
cancers [34]. It highlights the downregulation of specific VGCC family-genes in different cancers and
emphasizes their role as tumor suppressor genes. Among the different VGCCs, L-type channels show
a strong association with proliferation and migration of cancer cells. Moreover, estrogen can modulate
the expression of ion channels. A higher expression of L-type channels (Cav1.3) correlates with an
increase in 17β-estradiol level in endometrial cancer (EC). The mechanism behind Ca2+-induced
cell proliferation involves the interaction of estrogen binding to G-protein coupled estrogen receptor
(GPER) causing the L-type channel to open and allow Ca2+-entry, followed by downstream activation
of the ERK1/2-CREB pathway promoting cell proliferation. L-type channels are also involved in
migration of EC cells [35,36]. Additionally, a high level of estrogen is associated with increased
breast cancer (BC) risk. The mechanism of estrogen-BC risk is linked to a pathway similar to EC
proliferation. Importantly, estrogen induced a dose-dependent increase in the expression of Cav1.3 in
MCF-7 cells. The silencing of G protein-coupled estrogen receptor 30 (GPER1/GPR30) mediated via
siRNA transfection abolished Ca2+-influx as well as proliferation in BC, which may be an indication of a
crucial role of Ca2+ entry through L-type channels in cell proliferation and breast cancer progression [29].
Furthermore, overexpression of the Calcium voltage-gated channel subunit alpha1 D gene (CACNA1D)
is associated with prostate cancer progression. Importantly, [Ca2+]i measurements showed that an
androgen stimulated Ca2+ influx was sensitive to nifedipine, indicating that L-type calcium channels
were responsible for the androgen-stimulated Ca2+-influx in LNCaP cells. Interestingly, blocking of
L-type channels resulted in decreased cell growth [37].

Similarly, T-type channels are important in various physiological processes like secretion of
transmitters and hormones [38]. At the cellular level, these channels regulate cell cycle progression,
proliferation, and survival [39,40]. Studies show varying expression of T-type channels in cell cycle
phases. A maximum expression (90% increase) of T-type channels is evident in the S-phase and at the
beginning of M-phase of the cell cycle. Moreover, increased expression of T-type channels is observed
in cancer of breast, bladder, lung, and liver [40]. Knockdown experiments of these channels in MCF-7
breast cancer cells resulted in two different outcomes: The silencing of Cav3.1 enhanced proliferation,
and the silencing of Cav3.2 decreased proliferation [41]. As a result, Cav3.1 gene appears to have
a tumor suppressor role while Cav3.2 possesses pro survival activity [41]. VGCCs are thus highly
expressed in various cancers and thus contribute to the regulation of carcinogenesis. Despite the fact
that molecular mechanisms of their activity is still not clear, VGCCs may represent a diagnostic marker
and therapeutic target in the cancer treatment [34]. Moreover, PMCA is a major efflux pathway in
[Ca2+]i-regulation, and impaired PMCA function results in Ca2+ overload and cell death. Glycolytic
inhibition and subsequent ATP depletion impairs PMCA function and induces cells to undergo
apoptosis [42].
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Figure 2. Intra-cellular calcium response to anti-cancer agents. This schematic representation shows the
effect of anti-cancer agents on calcium signaling and its downstream effect on apoptosis and proliferation.
Anti-cancer drugs can target different calcium channels and pumps on the plasma membrane, ER,
and mitochondria. ER-mitochondrial Ca2+ transfer plays an important role in apoptosis and many
anti-cancer drugs target ER to induce apoptosis. Anti-cancer drugs can also be anti-proliferative
(e.g., Doxorubicin) by targeting Ca2+-signaling that regulate various proliferation pathways and cell
cycle progression. Green arrows represent activation and red lines represent a block.

2.4. Store Operated Calcium Entry in Cell Proliferation

Store operated calcium channels (SOC) on the plasma membrane generate calcium signals in
a variety of cell types [43] and are considered to be the main calcium entry in non-excitable cells.
Moreover, SOC entry controls a wide range of physiological functions such as apoptosis, proliferation,
and migration [44]. Significantly, the activation of SOC entry is mediated via internal Ca2+-efflux [8].
Ca2+ stored in the ER and the mitochondria actively contributes to [Ca2+]i -signals as the Ca2+ influx
is triggered by a calcium release from the ER which is mediated through stimulation of surface
receptors [45]. Two important proteins, STIM1 on the ER (calcium sensor) and Orai1 (pore forming
protein) of the calcium release-activated channels (CRAC) on the plasma membrane are involved in SOC
entry. Ca2+-influx mediated by SOC entry activates “NFAT” transcription factor via STIM1 and Orai1,
driving the proliferation pathway [45]. Proliferation is also positively regulated by SOCE (store operated
calcium entry) through PI3K/Akt pathway [46]. A dysregulated STIM1/Orai1/SOC axis is implicated
in many pathological conditions such as SCID (severe combined immune deficiency syndrome);
cardiovascular and pulmonary diseases; and cancer of the breast, colon, and, esophagus [44]. In breast
cancer, STIM1 and STIM2 contribute to invasion, migration, and SOC-dependent TGFβ-mediated EMT
(epithelial-mesenchymal transition), and their overexpression significantly correlates with the poor
survival [47]. Breast cancer is associated with an increased level of Orai1 and knockdown of Orai1 using
siRNA in MCF-7 and MDA-MB-231 cells showed reduced SOC activity and decreased number of viable
cells [48]. Moreover, in the ER positive BC cell line MCF-7 and T47D knockdown of Orai3 resulted in
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cell cycle arrest at G1 phase and induction of apoptosis [49]. Furthermore, in colon cancer cells the
SOC-dependent migration was mediated by a complex of protein involving SK3/TRPC1/Orai1 [50].
Additionally, inhibition of SOC activity by non-steroidal anti-inflammatory drugs (NSAIDs) attenuated
proliferation in the HRT-18 colon cancer cell line [51]. As the SOC entry is considered to be primary
Ca2+ entry mechanism in most cancer types (thus contributing to cancer cell migration, invasiveness,
and metastasis), there is a high interest in development of selective SOC entry blockers to prevent
cancer metastasis [52,53].

2.5. SERCA in Cell Proliferation

SERCA is a calcium pump located in endoplasmic reticulum which maintains a low calcium level
and thus enables signaling of various physiological processes [54]. Inhibition of SERCA by thapsigargin
empties the ER-Ca2+ store and inhibits proliferation. Importantly, different isoforms of SERCA show
altered expression in different types of cancers. For instance, SERCA2 is linked to the malignant
progression of colorectal SW480 cells while its overexpression is associated with increased proliferation
and migration of cancer cells mediated via activation of MAPK and AKT signaling pathways [55].
A close link between SERCA inhibition by thapsigargin and the ER calcium pool content depends on
the epidermal growth factor (EGF) concentration, as was observed in LNCaP prostate cancer cells.
The results confirmed the increase of ER-Ca2+ in the presence of EGF (200 ± 19 µM) when compared
to control without EGF (90 ± 5 µM). In addition, higher expression of SERCA2b in the presence of
growth factors such as EGF, DHT (dihydrotestosterone) serum, and the ER-Ca2+-pool concentration
is important in regulating proliferation of LNCaP human prostate cancer cells [56]. A significant
difference in [Ca2+]i homeostasis is observed in normal human bronchial epithelial (NHBE) cells vs.
different lung cancers. Lung cancer cells showed lower ER-Ca2+-content which correlated with reduced
expression of SERCA2b and increased expression of IP3R and calreticulin (a calcium buffering protein
in the ER) [57].

2.6. ER and Mitochondrial Axis in Proliferation

High resolution microscopy images show a dynamic network of ER and mitochondria juxtaposed
at various domains. These are identified as microdomains with high [Ca2+]i related to IP3 mediated
Ca2+-release and are important determinants of [Ca2+]i-signaling, thus controlling survival, autophagy,
apoptosis, metastasis, and invasiveness [58,59]. Mitochondrial calcium homeostasis is essential for
cell survival and metabolic regulation [60,61]. Therefore, mitochondria play a dual role in death and
survival, and dysregulation of mitochondrial Ca2+-homeostasis is associated with various diseases
including cancer [62]. Importantly, mitochondrial calcium uniporter (MCU) is the channel enabling
accumulation of Ca2+ in the matrix [62]. Aberrant expression or functioning of MCU complex
contributes to cancer [62]. Significantly, integrity of the mitochondrial membrane, a sustained
mitochondrial membrane potential, mitochondrial Ca2+ homeostasis regulated by Na+/Ca2+ exchanger,
and MCU may ensure cell survival. Conversely, loss of mitochondrial potential, Ca2+ overload and
opening of the permeability transition pores (PTP) activates an apoptotic cascade [63].

2.7. [Ca2+]i and Apoptosis

Programmed cell death, also known as “apoptosis”, is crucial for such normal cell physiological
functions as turnover and cell death. There are two main signaling pathways (intrinsic and extrinsic)
that culminate in apoptosis [64]. Mitochondria have a dual role in cell death and survival which is
well documented. The intrinsic pathway is marked by mitochondrial Ca2+ overload, which results
in the release of cytochrome c. Cytochrome c then combines with APAF-1 and, along with ATP and
procaspase 9, forms the apoptosome, followed by activation of procaspase 9 to active caspase 9, which
triggers the activation of effector caspases downstream, ultimately resulting in the death of the cell.
In addition to caspases, calpains are another class of cysteine proteases which require calcium for
their activation. Importantly, calpains mediate apoptosis as a response of ER stress [61]. In fact,
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mitochondria, as the main provider of cellular energy, also function as a regulator of [Ca2+]i. There is a
calcium crosstalk in the domain between ER and mitochondria known as mitochondria-associated
membrane (MAM). Importantly, tumor cells modify their MAM which leads to alterations of tumor
homeostasis and consequently to promotion of migration, invasiveness, metastasis, resistance to
apoptosis, and induction of EMT [63]. Furthermore, [Ca2+]i homeostasis also may be influenced by
Bcl-2 proteins. Overall, members of the Bcl-2 family play an important role in cell death and survival
via modulation of Ca2+-transport at the ER, plasma membrane, or mitochondria [65].

Furthermore, VDAC1 (voltage-dependent anion channel 1), which is located on the outer
mitochondrial membrane (OMM), allows efflux and influx of ions and metabolites. It has a significant
role in cell survival and death. It facilitates mitochondrial-mediated cell death in association with
apoptotic proteins, causes the release of cytochrome c, and induces apoptosis. Furthermore, [Ca2+]i

rise elevates VDAC1 expression and positively modulate apoptosis [66,67]. SOCE is also involved
in apoptosis as SOC channels are activated or opened upon depletion of Ca2+ from the ER store.
This causes an influx of Ca2+ from the extracellular pool, resulting in increased [Ca2+]i which is related
to activation of apoptosis. The release of Ca2+ from ER store as well as influx of Ca2+ through the
SOC channels influence apoptosis. As reported by Wertz and Dixit, the release of Ca2+ from the
intracellular store alone activated apoptosis via caspase 3/7 in LNCaP prostate cancer cells [68]. Similarly,
Skryma et al. demonstrated no requirement for the Ca2+ entry from the store in thapsigargin-treated
LNCaP cells [22]. Importantly, the events that contributed to apoptosis following ER calcium depletion
led to ER stress and initiation of death signals [69]. In this finding an exclusive relationship between
ER-Ca2+ store/bcl-2/apoptosis was identified in LNCaP cells treated with thapsigargin [69]. Moreover,
inhibition of SERCA by thapsigargin in prostate and breast cancer cells led to drainage of the ER-Ca2+

stores, which was followed by reduction in cell proliferation and consequent apoptosis [69].

3. Targeting Calcium Signaling for Anti-Cancer Therapy

Anti-cancer drugs have multiple modes of action and, based on their mechanism of action, can
interfere at the DNA level, act as antimetabolites, inhibit enzyme synthesis, and inhibit microtubule
function. In the past decade, much attention has been drawn to calcium signaling. Altered calcium
signaling is crucial for the development and progression of cancer through the induction of proliferation,
invasion, and metastasis [70]. Figure 2 and Table 1 summarize anti-cancer drugs and their [Ca2+]i

mediated induction of cell death.
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Table 1. Interference of anti-cancer agents with different mechanisms of calcium homeostasis. This table illustrates which calcium mediating processes are involved,
the actual concentrations (doses) needed, the experimental model, and whether apoptosis or proliferations are involved.

Drug Class Drugs Axis/Mechanism of Induction of Cell Death Concentration Range Apoptosis Proliferation Cell Line References

Platinum agents
(cytotoxic
alkylating agent)

Cisplatin
[Ca2+]i ↑↑ by influx of extra cellular calcium.
[Ca2+]i ↑↑ / ER stress / mitochondrial Ca2+ over load / caspase
3 activation.

1 µM
5 µg/ml ↑↑ ↓↓

MCF-7
SH-SY5Y
HeLa-S3

[31,71–73]

Anti-metabolites 5-Fluorouracil

Ca2+-CaM-p53 activation, Ca2+ influx partially through L-type
Ca2+ channel.
Ca2+ entry through TRPV1 / mitochondrial ROS production /
caspase 8.

768µM,
25 µM ↑↑ ↓↓

HCT116
MCF-7 [74,75]

Inorganic arsenic
compounds As2O3

IP3R, RyR / [Ca2+]i ↑↑ / DNA damage / caspase 3.
↑↑ER–mitochondrial Ca2+ transfer.
↓↓ ERK1 and ERK2

1 µM ↑↑ ↓↓

SH-SY5Y
Pml-/- mice
NB4 cells
U937

[31,76–78]

Anthracyclines Doxorubicin [Ca2+]i modulation - ERK1/2 inactivation, activation of pro
apoptotic BIM pathway and mitochondrial Ca2+ overload.

500 nM–1 µM ↑↑ ↓↓ MDA-MB-231 [79]

Taxanes Paclitaxel
Docetaxel

In activation of PMCA2/calcineurin A and activation of calcineurin
A /NFAT pathway/ ↑↑ pro-apoptotic protein Fas ligand.
External calcium influx, inhibition of bcl2/ IP3R-ER-[Ca2+]i.

1 nM
10-6 M ↑↑

MDA-MB-231
MCF-7
MDA-MB-468

[80,81]

Natural compounds

Chalcones
Quercetin
EGCG
Piceatannol
Etoposide;
(semi-synthetic)
Resveratrol
Curcumin
Saikosaponin-d

Ca 2+ / ER stress / caspase 12.
G-protein / IP3R-ER-[Ca2+]i, / modulation of p53 / transcription of
pro-apoptotic genes.
SERCA↓↓ activity / [Ca2+]i ↑↑ / increased mitochondrial
Ca2+ uptake.
SERCA ↓↓ / [Ca2+]i ↑↑ / ER stress / Autophagy mediated cell death.

30–40 µM
50–100 µM

10 µM
↑↑

L1210
MDA-MB-231
MYCN2
HeLa
SW480 (colon)
MCF-7

[55,82–86]

Camptothecin
analog Topotecan Increased [Ca2+]i, altered expression of calcium regulating proteins. 0.01 µM ↑↑ ↓↓ SH-SY5Y [87]

Hormonal receptor
modulator Tamoxifen

[Ca2+]i ↑↑ by influx of extra cellular calcium and release of Ca2+

from multiple stores.
VGCC

5–10 µM ↑↑

MCF-7
MG63
ZR-75-1
SCC
BFTC

[88–92]

DNA methylation
and HDAC
modulators

TSA
Azacitidine
Digitoxin
Pyrithion zinc
Disulfiram

↑↑SERCA3 / apoptosis.
SOC / [Ca2+]i ↑↑ / CamK / via MeCP2 / reactivation of tumor
suppressor genes.

50 nM–5 µM ↑↑

KATO-III
(gastric
carcinoma)
YB5 (colon)

[93,94]
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3.1. [Ca2+]o Influences Drug Efficiency

[Ca2+]o influences the mechanism of action of paclitaxel in inducing apoptosis in breast cancer cells.
Apoptosis induced by low dose paclitaxel is independent of [Ca2+]o whereas for high dose paclitaxel,
normal [Ca2+]o is critical for inducing apoptosis in MDA-MB-468 TNBC cells, which is mediated via
capacitative Ca2+-entry [81]. Similarly, low [Ca2+]o reduced anti-cancer action of tamoxifen (TM) on
HepG2, human hepatoblastoma cells. To understand the route of Ca2+ entry, Ca2+ channel blockers
nifedipine and verapamil were used, but neither of them reversed the effect of TM, while flufenamic
effectively reversed the effect of TM. A non-selective cation channel (NSCC) blocker caused significant
inhibition of TM-induced apoptosis, indicating NSCC as the main route of Ca2+-influx [95]. Modifying
the [Ca2+]o improved the cytotoxic action of CDDP and topotecan [87].

3.2. Anti-Cancer Drugs-Induced [Ca2+]i Modulation Triggers Apoptosis

3.2.1. Platinum Drugs

Cisplatin (CDDP; cis-diamminedichloridoplatinum) is used in treatment of solid tumors and
modulates [Ca2+]i. It blocks voltage gated channels at higher concentrations [96] but allows calcium
entry through other channels [31] and releases calcium from the stores [97]. In neuroblastoma (NB) cells,
CDDP alters the expression of key calcium regulating proteins such as RyR and IP3R [98]. HeLa cells,
when treated with CDDP for 16 h, showed an increase in [Ca2+ ]i followed by an increased expression of
VDAC1 and oligomerization of VDAC1-triggered cytochrome c release and concomitant apoptosis [67].
An increased expression of VDAC1 sensitizes cancer cells to anti-cancer drugs via Ca2+-dependent
mechanism. A study in HeLa S3 cells revealed a rise in [Ca2+]i following CDDP treatment, which
correlated with the activation of calpain, an important molecule in the induction of apoptosis [31].
Increase in CDDP concentration caused an increase in [Ca2+]i in MCF-7 breast cancer cells [72]. S100A9,
a calcium-binding protein, is associated with cancer progression and has been reported to influence
squamous cervical cancer cells’ sensitivity to CDDP treatment. Here, down-regulation of S100A9
protein resulted in increased cell death potentiated by altering pro survival AKT/ERK-FOXO1-Nanog
signaling pathway [99]. Another study emphasized the role of NCX and NCXK (K+ dependent
Na+/Ca2+-exchangers) in cisplatin chemotherapy of ovary carcinoma cells. In this study using A2780
ovarian cancer cell line, the expression of NCX 3 NCKX4, NCKX5, and NCKX6 isoform was higher in
the CDDP resistant cell line. NCX inhibitor KB-R7943 (10 µM) significantly improved CDDP sensitivity
there by confirming the role of NCX in therapy resistance [100]. Most of the anti-cancer drugs have
side effects. Oxaliplatin, a platinum-based drug, undergoes activation with the release of oxalate
and the generation of oxalate metabolite is often associated with oxaliplatin associated peripheral
neuropathy. Schulze et al. examined the mechanism of oxaliplatin mediated calcium signaling and its
role in oxaliplatin-induced peripheral neuropathy. A prolonged exposure to the drug induced changes
in the ER calcium load and IP3R mediated calcium signaling, though there was no activation of cellular
temperature sensors—TRP channels [101]. Strategies to selectively target cancer cells by sparing the
normal cells is a wise approach. The new platinum drug [Pt(O,O′-acac)(γ-acac)(DMS)] (PtAcD) is
selectively toxic on the breast cancer cell line and less toxic on normal breast cells due to differentially
activated JNK and p38 [102]. Research on next generation platinum drugs (e.g., (Pt(IV) carboxylate
complexes) are underway with more efficacy and less side effects.

3.2.2. Anti-Metabolites

5-Fluorouracil (5-FU), an anti-metabolite which interferes with DNA synthesis and repair, is used
for treatment of breast, skin, pancreatic cancer, etc. Its mechanism of apoptosis induction in HCT116
involved the Ca2+-influx from extracellular space, which was detected as early as 1.5 h after exposure
to 5-fluorouracil. Consequently, activated p53 was detected after 5 h of 5-FU treatment followed
by activation of caspase and induction of apoptosis. Elevation of [Ca2+]i is an early event in the
apoptosis of HCT116 mediated via Ca2+-CaM-p53 axis [74]. Another study reported the involvement
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of TRPV 1 channel in 5-FU induced cell death in MCF-7 cells, which involved rise in [Ca2+]i followed
by mitochondrial ROS production and caspase activation [75]. TRPV1 is a non-specific cation channel
sensitive to temperature, pH, and capsaicin.

3.2.3. Inorganic Arsenic Compounds

Arsenic trioxide (As2O3) is an anti-cancer drug used for the treatment of hematologic cancers
such as chronic myelogenous leukemia (CML) [103]. Various studies have reported As2O3 modulating
different Ca2+-dependent/independent signal transduction pathways, resulting in the induction of
apoptosis, inhibition of angiogenesis, and proliferation [104]. Receptors on the ER (IP3R and ryanodine
R) are involved in the induction of apoptosis by elevating [Ca2+]i. Treatment with 1 µM As2O3

in SH-SY5Y NB cells elevated [Ca2+]i by ER-Ca2+ store depletion [24]. Calcium imaging showed
three types of signals: A slow and steady increase in [Ca2+]i, transient calcium elevation, and spikes.
Mechanistic studies have revealed increased H2O2 level, Bax expression, growth arrest at the G1
phase of the cell cycle, and inhibition of vascular endothelial growth factor (VEGF) upon As2O3

treatment [105,106]. Missiroli et al. [77] elucidated a Ca2+-dependent mechanism that coordinately
regulated apoptosis and autophagy in cancer. They investigated pml, a tumor suppressor gene
related to the pathogenesis of acute promyelocytic leukemia. PML protein and its association with
ER-mitochondrial contact sites were important in repressing autophagy, and treatment with As2O3

was shown to reduce the autophagy efficiency by modulating PML protein in NB4 leukemia cells [77].
Similar to CDDP treatment in HeLa cells, increased expression of VDAC1 is observed with As2O3

treatment in SKOV-3 cells (human ovarian carcinoma) and A549 cells (human lung adenocarcinoma
alveolar basal epithelium).

3.2.4. Anthracyclines

Studies on doxorubicin, a chemotherapeutic drug belonging to the category anthracyclines,
reported contrasting observations on the effect of Ca2+ on doxorubicin cytotoxicity. A counteracting
mechanism of Ca2+ concentration on doxorubicin activity was reported by Nguyen et al. [107].
Here, [Ca2+]o concentration dependently suppressed the cytotoxic activity of doxorubicin in MCF-7
breast cancer cell line. High [Ca2+]o (100 and 140 mM CaCl2) almost completely rescued the cells
treated with 0.2 µg/mL of doxorubicin (LD50). Mechanism revealed that Ca2+ activated V-ATPase
(Vacuolar-type H+-ATPase), reduced the bioavailability of drug by acidifying the intracellular organelles
and sequestering doxorubicin into subcellular compartments [107]. The finding emphasizes the
observation that high [Ca2+]o confers insensitivity to doxorubicin treatment. In another study, silencing
of PMCA2 calcium channel increases the sensitivity of MDA-MB-231 to doxorubicin treatment.
Doxorubicin and simvastatin treatment in breast cancer cells caused a persistent release of Ca2+,
resulting in activation of proapoptotic BIM pathway and subsequent overload of mitochondrial Ca2+

triggering apoptosis. In addition, both drugs significantly reduced the activation of pro survival
pathway ERK1/2 signaling, which is calcium-dependent in doxorubicin treatment [79].

3.2.5. Taxanes

Paclitaxel is an anti-cancer drug used for the treatment of solid tumors. In neuroblastoma cells
(SH-SY5Y), paclitaxel at a low concentration (sub-micromolar concentration) induced Ca2+-oscillations
independent of [Ca2+]o or mitochondrial calcium but dependent on IP3R mediated calcium influx from
ER. The molecular basis of paclitaxel induced cytosolic Ca2+-oscillation is due to the enhanced binding
of protein neuronal Ca2+-sensor 1 (NCS-1) to IP3R [108]. Conversely, in MD-MBA-468 breast cancer
cells under normal [Ca2+]o, Ca2+ entered from the extracellular pool following low dose paclitaxel
(10−7 M) treatment and was independent of ER store, but high dose paclitaxel (10−6 M) induced
Ca2+-influx extracellularly and a gradual depletion of ER store occurred, culminating in apoptosis.
The mechanism of paclitaxel-mediated apoptosis is dependent on [Ca2+]o and dosage of the drug [81].
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3.2.6. Glucocorticoids

Glucocorticoid (GC), a class of drugs that have multiple physiological effects such as immune
suppression, cytotoxicity, and anti-inflammatory effects, is commonly used for hematological
malignancies like leukemia, lymphoma, and myeloma [109]. GC modulates [Ca2+]i homeostasis
in B lymphocytes, while [Ca2+]i has a complex role in the induction of apoptosis by glucocorticoids.
Release of Ca2+ from the stores initiates apoptosis in GC-treated lymphocytes. Here, Ca2+-dependent
proteases such as calpain were activated, and blocking of calpain activation prevented GC-induced
cell death [109]. Similar to doxorubicin, [Ca2+]i attenuated dexamethasone sensitivity in acute
lymphoblastic leukemia (ALL) cells. Dexamethasone increased [Ca2+]i mainly by SOC-operated
calcium entry [110].

3.2.7. Natural Compounds

Analysis of studies based on some natural compounds showed a Ca2+-dependent anti-cancer
effect (see Table 1 and Figure 2). For example, Resveratrol induced Ca2+-dependent apoptosis
through a biphasic [Ca2+]i-rise involving mitochondria, activation of calpain, and decreased SERCA
activity [85,111]. Saikosaponin-d, a natural SERCA inhibitor, induced Ca2+ dependent autophagy
mediated cell death via CaMKKb-AMPK-mTOR pathway [86]. In another study, epibrassinolide,
a polyhydroxylated sterol derivative, induced Ca2+ sequestration and thus caused an alteration in the
ER pathway, consequent ER stress, and progress to apoptosis [112]. Using a model of endometriosis,
Park et al. described that luteolin exerts antiproliferative and apoptotic effects in pre-neoplastic
human endometrial cells VK2/E6E7 and End1/E6E7. The anti-cancer effects of luteolin were linked
with an increase in cytosolic calcium levels, ROS production, and lipid peroxidation in cells and
altered regulation of PI3K/AKT and MAPK cell signaling, as well as the expression of CCNE1 [113].
Using the same model and cells, the same group showed that delphinidin exerts proapoptotic and
antiproliferative effects mediated by MAPK and PI3K/AKT signaling proteins. These effects were
accompanied by a decrease in the phosphorylation of ERK1/2, AKT, p70S6K, S6 and an increase in
the phosphorylation of p38 MAPK and p90RSK [114]. Delphinidin induced apoptosis in human
endometrial cells by decreasing the mitochondrial membrane potential and increasing the [Ca2+]i.

Safrole-mediated apoptotic cell death in HSC-3 cells was associated with an increase of cytosolic
Ca2+ levels, a decrease in the mitochondrial membrane potential, and activation of Fas-dependent
pathways [115]. Curcumin induced apoptosis in HepG2 cell, which was associated with the disruption
of mitochondrial membrane potential and disturbance of intracellular free Ca2+ concentration [116].
Natural products are potential drug candidates which can be considered for combination therapy as
this strategy can increase sensitivity to chemotherapy by targeting multiple pathways and, therefore,
reduce the side effects.

3.2.8. Hormonal Receptor Modulator

Tamoxifen (TM) is an estrogen receptor modulator commonly used for breast cancer prevention and
treatment. Data from several sources have identified [Ca2+]i modulation by tamoxifen, consistent with
cytotoxicity in tumor cells [89,91,92]. In ZR-75-1 human breast cancer cells, treatment with tamoxifen at
a concentration above 2 µM induced an early [Ca2+]i rise due to release from stores as well as entry from
extracellular space [91]. A detailed study by Zhang et al. on calcium dynamics in tamoxifen-treated
breast cancer cells and glioma cells revealed increase in [Ca2+]i level and spatial expansion of
calcium waves by 30–150%. Mechanistic studies revealed tamoxifen-induced calcium-depended
cytotoxicity facilitated via enhanced purinergic signaling [88]. Furthermore, in human osteosarcoma
cells a sustained increase in [Ca2+]i due to release of calcium from multiple stores (phospholipase
C-independent manner) was recorded following 1 µM tamoxifen treatment [90]. The antiproliferative
effect of tamoxifen in human non-melanoma skin cancer cells A431, DJM-1, and HSC-1 is also related
to an increase of [Ca2+]i [92].



Int. J. Mol. Sci. 2019, 20, 3017 12 of 22

3.2.9. Epigenetic Modulators

Recent studies discovered a prominent role of epigenetic deregulation linked to cancers.
The most important epigenetic changes, DNA methylation and histone post-translational modification
(methylation and acetylation), result in gene silencing of tumor suppressor genes (TSG) or up/down
regulation of other genes. A recent article highlights the role of [Ca2+]i-signaling in re-activating tumor
suppressor genes via CamK. Reactivation of silenced TSG by epigenetic drug azatidine revealed a
novel mechanism, which traced back to Ca2+-dependent activation of CamK and subsequent release
of MeCP2 methyl-binding protein from promotion of the silenced genes [94]. Epigenetic silencing of
gene ATP2A3, which codes for SERCA3, is down-regulated in gastric and colon tumors. Treatment of
KATO-III cells with butyrate, trichostatin A, and 5-azacytidine increased the expression of SERCA3 and
was correlated with increased apoptosis and decreased viability [93]. Mitochondrial Ca2+-overload is
suggested as a key trigger for programmed cell death. MCU, together with its regulatory subunits,
mitochondrial calcium uptake 1 (MICU1) and mitochondrial calcium uniporter regulator 1 (MCUR1),
which are responsible for mitochondrial-Ca2+ entry, provide novel molecular tools to evaluate this
process. Regarding epigenetic modulations of these mechanisms, recent data have also demonstrated
that miR-25 reduces mitochondrial Ca2+ uptake via MCU, resulting in suppression of apoptosis. It is
shown that down-regulation of MCU in human colon cancer cells correlates with miR-25 aberrant
expression, pointing the importance of mitochondrial Ca2+ regulation in apoptosis.

3.3. Calcium Dependent Modulation of Aerobic Glycolysis by Anti-Cancer Agents

Warburg effect (aerobic glycolysis) is a mechanism observed in tumor energy metabolism
promoting tumor growth and survival. Here, cells observe excess uptake of glucose and break down of
glucose to pyruvate and lactate even in the presence of oxygen and a functional mitochondria [117,118].
Hence cancer cells exhibit altered Ca2+-dependent ATPase function. Chakraborty et al. (2017)
documented that Mitochondrial Calcium Uptake 1 (MICU1/CBARA1), the gatekeeper of mitochondrial
Ca2+-uptake, forces aerobic glycolysis and chemoresistance in ovarian cancer cells [119]. Another study
showed that an increased expression of transient receptor potential canonical channel (TRPC5) enhances
[Ca2+]i level and results in chemoresistance and suppressed apoptosis in human colorectal cancer (CRC)
cells [120]. In the follow-up of this study, Wang et al. demonstrated the crucial role of glycolysis in
TRPC5 induced chemoresistance in CRC cells through maintaining [Ca2+]i homeostasis [121]. In vitro
studies using dichloroacetate (DCA) demonstrated a shift in the metabolism from glycolysis to glucose
oxidation in HeLa cells [122]. The changes in the metabolism modality led to increased intracellular
H2O2 and pH levels, a drop in mitochondrial membrane potential, and the increase of caspase 3 and 9.
Regarding mechanism of action, the increased Kv1.5 expression and decreased [Ca2+]i appointed a
positive feedback loop that caused the decrease in tonic inhibition of caspases. CDDP in combination
with DCA exhibited synergy [122]. In vitro studies conducted in human PDAC cell lines (pancreatic
cancer) treated with glycolytic inhibitors BrPy 500 µm (3-bromopyruvate) and sodium iodoacetate
2 mm (IAA) resulted in glycolytic inhibition and ATP depletion. As a result, ATP depletion lead
to impaired PMCA function and [Ca2+]i overload inducing cell death [42] (Figure 2). Furthermore,
dexamethasone and prednisolone belonging to the class of glucocorticoids in ALL proved to shift
cells’ energy metabolism by suppressing glycolysis and increasing the anti-cancer cancer effect of
etoposide [123].

3.4. Calcium Modulators in Combination with Anti-Cancer Agents

Tumor heterogeneity can be attributed to the cancer stem cell, tumor microenvironment, gene
mutation, and epi-genetic changes. Consequently, cancer cells exposed to chemotherapeutic drugs
are often not completely eliminated, and a few cells survive, generating resistant cancer cells.
Originally, cancer was treated using single drugs but with the relapse and development of resistance
to chemotherapy more trials with drug combinations yielded improved results. Hence, for an
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effective treatment, the tumor is exposed to a combination of anti-cancer agents targeting different
pathways [124]. An important mechanism by which anti-cancer drugs induce cytotoxicity is by
interfering with [Ca2+]i either by binding or bringing conformational changes to calcium modulating
proteins, including channels and pumps located at the plasma membrane, ER, or cytosol [23,25].
A considerable amount of literature has been published on the effect of calcium modulators on
cell proliferation and apoptosis [125]. Over the years, research has emphasized the use of calcium
modulators for the enhancement of anti-cancer drug efficiency [7]. A report in 1989 claimed a synergistic
action of nifedipine with CDDP in B16a-Pt (cisplatin resistant murine tumor cell line) by a mechanism
independent of VGCCs [126]. A novel approach using Riluzole, an activator of Ca2+-activated K+

channel (KCa3.1) and an inhibitor of Kv11.1 increased the CDDP drug uptake and reversed CDDP
resistance in the colorectal cancer cell line [127]. An extensive in vitro study in neuroblastoma
chemotherapy using CDDP and topotecan showed enhanced cytotoxic effects with combinations of
pharmacological modulators of [Ca2+]i regulating proteins [87]. Synergistic action with a panel of
calcium channel modulators (cyclosporine A, thapsigargin, dantrolene, 2-APB) in CDDP/topotecan
treatment showed promising results in neuroblastoma cell lines SH-SY5Y, NLF and IMR-32 [87].
For example, thapsigargin showed the highest cytotoxic effect by facilitating store-operated calcium
entry and triggered apoptosis via ER-mitochondrial axis. Similarly, among the other modulators
tested were cyclosporine A and 2-Aminoethoxydiphenyl borate (2-APB), which also induced ER
stress and enhanced the cytotoxic effect of both CDDP and topotecan in neuroblastoma cell. 2-APB
activates SOC mediated Ca2+-entry at a lower concentration, inhibits IP3R, and modulates TRP
channels. Live cell calcium imaging studies performed in MCF-7cells pre-treated (30 min) with calcium
channel modulators (caffeine, nimodipine, and ionomycin) showed decrease in CDDP-induced [Ca2+]i

rise [72]. 1,2-Bis(2-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid tetrakis (acetoxymethyl ester)
BAPTA-AM is a membrane-permeable calcium chelator widely used for [Ca2+ ]i-signaling studies.

A study in HeLa cells (human cervical cancer) indicated that combined treatment with (BAPTA-AM)
or 2-APB attenuated CDDP-mediated [Ca2+]i rise and apoptosis [31]. The above observations show
the role of specific calcium channels in CDDP mediated [Ca2+]i rise. As in the case of dexamethasone,
BAPTA-AM synergistically enhanced the cytotoxicity of dexamethasone in ALL cell lines [110]. On the
contrary, another group reported that doxorubicin efficiency was compromised in the presence of
BAPTA-AM in MDA-MB-231 breast cancer cells by preventing the inhibition of ERK1/2 phosphorylation,
and was consistent with the attenuation of [Ca2+ ]i rise and decrease in cell death [79]. Huang et al.
identified a [Ca2+]i-dependent apoptotic mechanism in PC3 human prostate cancer cells exposed to
thapsigargin (1–10 µM). Here, the rise in [Ca2+]i was attributed to both Ca2+-influx from extracellular
environment and depletion of ER stores [128]. Combination treatment with TRAIL (70 and 35 ng/mL)
and thapsigargin (0.3 and 0.6µM) induced apoptosis and inhibited migration, invasion, and adhesion
of ESCC cell lines (esophageal squamous cell carcinoma), demonstrating that this combination induces
both apoptosis and inhibits metastasis [129]. In MCF-7 and MDA-MB-468 cells, apoptosis was triggered
mainly due to a secondary and a delayed (12–36 h) calcium response to thapsigargin (1 µM) [130].
Calcium modulating drugs can be used for enhancement of anti-cancer drug effect, whether it can
mitigate side effects of anti-cancer treatment should be explored. Nifedipine, a dihydropyridine-type
Ca2+-channel blocker improved the blood circulation and reduced hypoxia and hence achieved a
better drug delivery towards tumor in an isolated limb perfusion experiment performed in rat bearing
tumors [131]. Similarly, verapamil, a calcium channel blocker, improved the sensitivity of tumor to
radiation by modifying the tumor vasculature [132].

Collectively, the combination of calcium channel modulators with anti-cancer drugs can have a
beneficial effect with some combination of drugs.

4. Conclusions and Future Directions

Cancer research reveals that [Ca2+]i-signaling has substantial effects on proliferation and apoptosis.
Prolonged increase in [Ca2+]i triggers apoptotic cascade and is the principle behind the action of
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many anti-cancer drugs. In the context of cancer, many drugs such as CDDP, topotecan, and As2O3

induce apoptosis depending on extra- and intracellular calcium. The modification of either [Ca2+]o or
[Ca2+]i by calcium chelating agents can significantly augment the action of anti-cancer drugs such
as doxorubicin and dexamethasone. This observation is relevant in a clinical context as caution
should be exercised when using calcium-altering drugs and diets. Calcium signaling plays a dual
role in cell survival and death. ER–mitochondrial Ca2+ fluxes are crucial in steps (cancer hallmarks)
leading to cancer growth, and it is the most targeted site for many of the anti-cancer drugs (Figure 2).
ER-mitochondrial Ca2+-flux, SOC entry, channels, and pumps on the PM coordinately control the
fate of the cell. Hence, components of the calcium tool kit are potential targets of anti-cancer drugs.
Nuclear calcium controls gene regulation, but its dependence on cytosolic calcium is a subject of debate.
Hence, a drug which modulates [Ca2+]i may or may not affect nuclear calcium, but there is no adequate
information on this.

Dysregulated expression of many calcium regulation proteins is associated with migration,
proliferation, apoptosis, angiogenesis, and invasion in cancer. However, it is beyond the scope of this
review to discuss all the calcium signaling components dysregulated in various cancers. A growing
body of evidence emphasizes targeting altered calcium homeostasis in cancer as a potential tool in
cancer chemotherapy by modulating either the expression of calcium regulating proteins or their
function. CDDP and topotecan are drugs identified to modulate the expression of IP3R and ryanodine
in cancer chemotherapy, however, there are multiple calcium channel inhibitors/activators, which
block/activate the function of various channels and thus modulate the apoptosis and proliferation of
the cells. In this regard, many combinations of classical drugs with calcium channel regulators have
improved efficacy within cancer chemotherapy. Moreover, a wide variety of drugs derived from natural
compounds have proapoptotic and antiproliferative modes of action, such as topotecan, anthracyclins,
and taxanes, and all modulate calcium signaling. Curcumin, safrole, luteolin, delphinidin, and other
phytochemicals can potentially serve as molecules for developing novel anti-cancer drugs targeting
proliferation and apoptosis in cancer cell via regulation of cytosolic Ca2+-levels. Reversing the glycolytic
phenotype may trigger apoptosis in tumor cells, and thus represents an attractive therapeutic tool for
anti-cancer clinical strategies. Selective targeting of the key functional enzymes of glucose metabolism
through the elevation of [Ca2+]i level, which could lead to [Ca2+]i overload and promote apoptosis, is a
new challenge for oncological research. Targeting epigenetic pathways is a newer approach in cancer
chemotherapy, and using the calcium signaling pathway to reactivate silenced genes was recently
introduced. In this regard, certain calcium-modulating agents have been proven to epigenetically
increase the protein phosphorylation included in apoptosis/cell-cycle signaling, which is repressed in
several cancers such as in the liver, pancreatic, breast, or prostate.

An increasing number of studies have identified and listed various proteins in the calcium
signaling tool kit which are altered in various cancers [1]. Studies emphasize the important role of
calcium cell signaling and various calcium regulating proteins in cancer development. However,
further investigations are needed to explore precise molecular mechanisms of their anti-cancer action.
Developing drugs against targets involving the calcium signaling tool kit is challenging as these
proteins are ubiquitously present in all types of cells. It is important to critically classify those targets
that are relevant to each type of cancer.
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Abbreviations

[Ca2+]i intracellular calcium
[Ca2+]o extra cellular calcium
ALL acute lymphoblastic leukemia
APAF-1 apoptotic protease activating factor 1
As2O3 arsenic trioxide
ATP adenosine triphosphate
BrPy 3-bromopyruvate
Calreticulin calcium buffering protein in the ER
CamK Ca2+/calmodulin-dependent protein kinase
CaSR calcium sensing receptor
CDDP cis-diamminedichloridoplatinum(II)
CML chronic myelogenous leukemia
CRAC channel Calcium release-activated channels
CREB cAMP response element-binding protein
DJM-1 a human skin squamous carcinoma cell line
EC endometrial cancer
EGF epidermal growth factor
EGCG Epigallocatechin gallate
EMT epithelial–mesenchymal transition
ER endoplasmic reticulum
ERK1/2 extracellular signal–regulated kinases
GC glucocorticoid
GPER G protein-coupled estrogen receptor
HSC-1 a human skin squamous carcinoma cell line
IAA sodium iodoacetate
IP3R inositol trisphosphate receptor
IAA sodium iodoacetate
MAPK mitogen-activated protein kinase
MCU mitochondrial calcium uniporter
mTOR mechanistic target of rapamycin
NB neuroblastoma
NCS-1 neuronal Ca2+ sensor 1
NHBE normal human bronchial epithelial
NSAID non-steroidal anti-inflammatory drugs
Orai1 calcium release-activated calcium channel protein 1
PMCA plasma membrane calcium ATPase
PML promyelocytic leukemia protein
PTP permeability transition pore
RyR ryanodine receptors
SCID severe combined immune deficiency syndrome
SERCA sarco/endoplasmic reticulum Ca2+-ATPase
SK3 small-conductance calcium-activated potassium channel
SOC store operated channel
STIM1 stromal interaction molecule 1
TGFβ transforming growth factor beta
TM tamoxifen
TF transcription factor
TSA trichostatin A
TRPC1 transient receptor potential channel 1
TRPV1 transient receptor potential vanilloid 1
V-ATPase vacuolar-type H+ -ATPase
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VDAC1 voltage-dependent anion channel
VGCC voltage gated calcium channel
VGEF vascular endothelial growth factor
VOC voltage operated calcium channel
2-APB 2-Aminoethoxydiphenyl borate
5-FU 5-Fluorouracil
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