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Abstract: Unconventional prefoldin RNA polymerase II subunit 5 interactor (URI1) has emerged
as an oncogenic driver in hepatocellular carcinoma (HCC). Although the hepatitis B virus (HBV)
represents the most common etiology of HCC worldwide, it is unknown whether URI1 plays a
role in HBV-related HCC (HCC-B). In the present study, we investigated URI1 expression and its
underlying mechanism in HCC-B tissues and cell lines. URI1 gene-promoter activity was determined
by a luciferase assay. Human HCC-B samples were used for a chromatin immunoprecipitation
assay. We found that c-MYC induced URI1 expression and activated the URI1 promoter through
the E-box in the promoter region while the HBx protein significantly enhanced it. The positivity of
URI1 expression was significantly higher in HCC-B tumor tissues than in non-HBV-related HCC
tumor tissues, suggesting that a specific mechanism underlies URI1 expression in HCC-B. In tumor
tissues from HCC-B patients, a significantly higher level of c-MYC was recruited to the E-box than in
non-tumor tissues. These results suggest that HBx and c-MYC are involved in URI1 expression in
HCC-B. URI1 expression may play important roles in the development and progression of HCC-B
because HBx and c-MYC are well-known oncogenic factors in the virus and host, respectively.
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1. Introduction

Hepatitis B virus (HBV) represents the most common etiology of hepatocellular carcinoma (HCC)
worldwide [1]. In Japan, the number of patients who die of HBV-related hepatocellular carcinoma
(HCC-B) has not changed over the last decade, even though several anti-HBV drugs that prevent the
onset of HCC-B are available [2]. The number of HCC-B patients is gradually and consistently increasing
at the global level, and this increase is more prominent in countries with a high socio-demographic
index score [1]. It has been shown that antiviral therapy with entecavir or tenofovir reduces HCC
development in chronic hepatitis B patients. However, the yearly HCC incident was still non-negligible,
even after five-years of treatment [3]. These facts emphasize the importance of developing a drug with
a novel mechanism of action.

The HB protein encoded by the HBV X (HBx) gene is a potent oncogenic factor that interacts
with numerous host transcription factors [4,5], of which c-MYC is one of the best characterized.
HBx increases cellular c-MYC stability by inhibiting the ubiquitination of c-MYC, and promotes
c-MYC-induced oncogenesis [6,7]. The HBx gene, driven by an HBV-native promoter, consistently
potentiates c-MYC-induced hepatocarcinogenesis in mice [8]. Clinically, HBV integration near the
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c-MYC gene was found at a significantly higher frequency in early-onset HCC-B than in late-onset
HCC-B [9]. These findings suggest that c-MYC and its target genes may facilitate the development of
novel therapeutics to treat HCC-B.

Unconventional prefoldin RNA polymerase II subunit 5 (RPB5) interactor (URI1) has emerged as
an oncogene in HCC that induces DNA damage in hepatocytes [10,11]. Its upregulation decreases
expression of enzymes required for NAD + biosynthesis, and thereby suppresses NAD + -dependent
DNA repair enzymes [10]. This URI1-induced DNA damage not only directly induces liver
tumorigenesis but also enhances Th17 cell-mediated inflammation, which leads to non-alcoholic
steatohepatitis and HCC [10,11]. Moreover, URI1 reportedly promotes metastatic invasion of HCC [12].
These observations suggest that URI1 plays critical roles in the development and progression of HCC.

The expression of URI1 in the liver is regulated by inflammation, nutrition, and hepatitis virus
infection [10,11]. Tummala et al. demonstrated that HBx enhances URI1 expression, and that HCC in
human URI1 transgenic mice has a similar overlap in transcriptional profiles with HCC-B in human
patients [10], suggesting that HBV employs URI1 to develop and progress HCC. However, another
group reported that HBx does not modulate the expression of URI1, but these proteins interact with
each other to promote the growth of HCC [13]. As the precise mechanism of URI1 expression in HCC-B
remains unclear, we investigated the mechanism underlying how HBx induces URI1 expression.

2. Results

2.1. URI1 Promoter Activation by HBx and c-MYC

A reporter assay showed that the URII promoter was significantly activated by HBx even when it
was shortened to —304 bp (Supplementary Figure S1A,B). The ENCODE project [14] revealed that this
region (GRCh37/hg19: chr19: 30,432,842-30,433,213) includes the biding site of c-MYC (Supplementary
Figure S2A) and a CACGCG non-canonical E-box, reportedly one of the major c-MYC-binding
sites [15], which was identified by the JASPAR database in the —109 to —104 region [16] (Supplementary
Figure S2B). Our examination of the effect of c-MYC on the URI1 promoter showed that c-MYC
increased the URI1 promoter activity, and HBx significantly enhanced the effect in both HuH?7 and
HepG2 cells (Figure 1A). Although weak promoter activation by HBx alone was observed (Figure 1A),
in contrast to the results shown in Supplementary Figure S1B, this may have been because the amount
of plasmid DNA required for co-transfection was reduced to half that required for single transfection.
While the promoter region encompassing —183 to +67 responded to HBx and c-MYC co-transfection,
this response was no longer observed with the promoter region from —99 to + 67 (Supplementary
Figure S1A,C). Removal of the putative E-box abrogated the response to HBx and c-MYC (Figure 1B,
Supplementary Figure S2B). These results suggest that HBx and c-MYC increased the activity of the
URI1 promoter through the non-canonical E-box.
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Figure 1. The unconventional prefoldin RNA polymerase II subunit 5 interactor (URI1) promoter
activation by HBx and c-MYC through E-box. (A) A reporter plasmid under the control of the URI1
promoter (—304/+67; Supplementary Figure S1A) was co-transfected into HuH7? (left) and HepG2
(right) cells with HBx- or c-MYC-expressing plasmids. (B) Reporter plasmids for the URI1 promoter
with wild-type or mutant E-boxes (E-box and AE-box, respectively; Supplementary Figure S1) were
co-transfected into HuH7 (left) and HepG2 (right) cells with HBx- or c-MYC-expressing plasmids.
Luciferase assays were performed 2 days post-transfection. pCMV-Flag, and pGL4.74[hRluc/TK] were
used as empty and transfection controls, respectively. Data are shown as mean +SD (n = 3-4). #;
p < 0.05 was determined by Tukey’s test.

2.2. Induction of URI1 Expression by HBx and c-MYC

Onits own, c-MYC markedly induced the expression of URITI mRNA in HuH7 cells (Supplementary
Figure S3A). In contrast, in HepG2 cells, marked induction of URIT mRNA was observed by HBx
rather than by c-MYC (Supplementary Figure S3A). However, the co-overexpression of c-MYC and
HBx significantly increased URIT mRNA expression, compared with either alone, in both cell lines
(Supplementary Figure S3A). URI1 protein expression was consistently increased by HBx and c-MYC
(Figure 2A). As previously reported [6,7], exogenous c-MYC protein (Flag-MYC) was stabilized more
in the HBx-expressing cells than in control cells (Figure 2A). HBx alone did not show a marked effect
on both mRNA and protein expressions of URI1 in HuH7 cells (Figure 2A, Supplementary Figure S3A).
This might be explained by the relatively low expression of the endogenous c-MYC protein in HuH?7
cells, in contrast to HepG2 cells (Figure 2A). The Hep3B and PLC/PRE/5 cell lines, which are derived
from HCC-B, also showed increased URI1 mRNA and protein expression by c-MYC overexpression
(Figure 2B, Supplementary Figure S3B). These results suggest that HBx induces URI1 expression in
HCC-B via the host oncoprotein c-MYC.
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Figure 2. URI1 protein expression induced by HBx and ¢-MYC. (A) Protein expression of URI1, c-MYC,
HA-tagged HBx (HBx-HA) and BTUB in control (CTRL) or HBx-overexpressing HuH7 and HepG2
cells at 2 days post-transduction of adenovirus vectors expressing c-MYC (MYC) or AcGFP (GFP).
Flag-MYC, FLAG-tagged c-MYC and endo-MYC, endogenous c-MYC. (B) Protein expression of URI1,
¢-MYC, HBx, and BTUB in Hep3B and PLC/PRF/5 cells at 2 days post-transduction of AAMYC (MYC)
or AAGFP (GFP).

URI1 Expression in HCC-B Tissues

Immunohistochemistry analysis of URI1 found that the positivity of URI1 expression was
significantly higher in HCC-B tumor tissues than in non-HBV-related HCC tumor tissues, while no

significant difference was observed in surrounding non-tumor-bearing liver tissues (Figure 3A).
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Figure 3. URIl expression in HCC-B tumor tissues. (A) Representative images of URI1
immunohistochemistry of URI1-positive HCC-B (upper left), URI1-positive non-HBV-related HCC
(lower left), and URI1-negative HCC-C (upper right). Scale bars, 500 um. Summary of URI1-positive
tissues is shown below the images. The p-values were calculated by Fisher’s exact test. (B) URI1
mRNA expression in HCC (T; filled bar) and normal liver (NT; open bar) tissues. N.S., not significant
(one-way ANOVA). (C) Kaplan—Meier analysis of the overall survival of patients with high or low URI1

expression levels in HCC tissues. The RNA-seq data were retrieved from the TCGA database.

RNA-seq data retrieved from The Cancer Genome Atlas (TCGA) and genotype-tissue expression
(GTEx) showed a tendency for increased expression levels of URI1 in HCC tissues, compared with
normal livers, although the difference was not statistically significant (Figure 3B). When HCC patients,
which include those with various risk factors, such as alcohol consumption (31.9%), HBV (27.8%),
HCV (15.8%), NAFLD (3.8%), and others [17], were stratified by mean expression of URI1, a lower



Int. ]. Mol. Sci. 2019, 20, 5714 50f11

overall survival rate was seen compared with low URI1 expression (Figure 3C). These observations
were similar to those reported previously [10].

2.4. Involvement of c-MYC in URI1 Expression in HCC-B

We performed a chromatin immunoprecipitation (ChIP) assay in paired tumor and non-tumor liver
tissues from HCC-B patients to investigate whether c-MYC plays a role in URI1 expression in HCC-B.
It was shown that c-MYC recruitment to the E-box in the URI1 promoter region was significantly
increased in HCC-B tumor tissues, compared with paired non-tumor liver tissues (Figure 4A,B),
suggesting that c-MYC is involved in the transcription of the URI1 gene in HCC-B.
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Figure 4. Recruitment of c-MYC to the URI1 gene promoter in HCC-B tumor tissues. (A,B) Following
chromatin immunoprecipitation (ChIP) with anti-c-MYC antibody, qPCR was performed with primers
indicated in the figure. #; p < 0.05 was determined by paired Student’s t-test. NT, non-tumor tissues and
T, tumor tissues from HCC-B patients. (C) Model describing HBx-induced URI1 expression through
¢-MYC in HCC-B. c-MYC induces URI1 expression through a non-canonical E-box in the URI1 promoter.
HBx potentiates this action by enhancing the intracellular stability of c-MYC.

3. Discussion

In the present study, we demonstrated that HCC-B tumor tissues frequently express URI1 proteins,
and that HBx activates the promoter of the URI1 gene. HBx does not harbor a DNA-binding domain,
it rather indirectly modulates a number of target genes by affecting epigenetic machineries or signal
transduction factors [18]. To identify the factor mediating HBx-induced URI1 expression, a search was
conducted for putative transcription factor binding sites in the URI1 promoter. Finally, we demonstrated
that c-MYC is involved in the mechanism underlying HBx-induced URI1 expression, and that the
E-box in the URI1 promoter is a biding site for c-MYC in HCC-B (Figure 4C). Although current
clinical guidelines prioritize the treatment of HCC, it is also suggested that patients with HCC-B
should undergo antivirus therapy prior to HCC treatment to reduce the risks of further liver injury,
HBYV reactivation, and HCC recurrence [19]. Therefore, the appropriate management of chronic HBV
infection in HCC is attracting attention. In this context, URI1 would be an ideal target for the treatment
of HCC-B because it is involved in both hepatitis and HCC [10,11].

The canonical E-box sequence consists of CACGTG, and is employed as a binding site for basic
helix-loop-helix transcription factors including c-MYC [20]. However, a genome-wide search for
¢-MYC binding sites in HeLa cells and human fibroblasts identified 1469 c-MYC target genes, and the
major consensus sequences found in those sites were CACGCG as well as CACGTG [15]. Our study
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demonstrated that the non-canonical CACGCG E-box functions as a c-MYC binding site in HCC-B,
and that c-MYC binds to the CACGCG motif in the NAMPT gene promoter in a breast cancer cell
line [21]. These findings suggest that transcriptional regulation via the CACGCG motif by c-MYC
may be a prevalent mechanism in tumors. However, because another MYC family member, N-MYC,
also reportedly binds to the CACGCG motif in the WDR5 gene promoter [22], we cannot rule out the
involvement of N-MYC, which plays a critical role in liver cancer stem cells [23].

URI1 is an RPBS5 interactor that inhibits a part of RNA polymerase II-directed transcription [24].
HBx also binds to RPB5, but not to URI1, and forms a trimeric complex with the general transcriptional
factor 1IB, leading to the transactivation of the HBV promoter [24,25]. Interestingly, it has been
demonstrated that URI1 and HBx compete with each other for transcription [24]. These results suggest
that URI1 may suppress HBV replication in the nucleus. However, we observed cytosolic localization
of URI1 in HepG2 control and HBx cells (A.T., personal communication), in agreement with a previous
report that found that URI1 inhibits nuclear localization of nuclear receptors by sequestering them in
the cytosol [10]. In HCC-B tumor tissues, immunostaining of URI1 was also detected mainly in the
cytosol, but also in the nucleus. Studies are currently underway to clarify the function of URI1 in the
development and progression of HCC-B.

URI1 is also reportedly involved in c-MYC regulation [26]. Under glucose deprivation, protein
kinase A phosphorylates URI1, which then suppresses O-linked N-acetylglucosamine (GlcNAc)
transferase (OGT). Phosphorylation of c-MYC at Thr57 induces its proteasomal degradation while
O-GlcNAcylation at Thr57 increases the protein level of ¢-MYC [27,28]. Thus, URI1-induced
OGT suppression depletes c-MYC protein [26]. Cancer cells require this regulatory mechanism
because c-MYC overexpression induces apoptosis of cancer cells under glucose deprivation [29].
In this context, URI1 induced by c-MYC may function as a negative-feedback regulator that allows
cancer cells to adapt to metabolic stress and survive under glucose deprivation. When glucose is
abundant, dephosphorylated URI1 stabilizes c-MYC proteins by activating OGT, thereby promoting
c-MYC-dependent tumorigenesis [26]. A recent paper reported that HBx also protects HCC cells from
glucose deprivation-induced metabolic stress by facilitating fatty-acid oxidation [30]. These findings
suggest that metabolic reprogramming may be one possible function of URI1 in HCC-B.

Sorafenib, a molecular targeted drug for HCC, was shown to be effective for patients with
well-preserved liver function (Child-Pugh A) although poor outcomes were significantly associated
with Child-Pugh B patients [31]. A natural substance, betulinic acid, sensitized pancreatic ductal
adenocarcinoma cells to sorafenib accompanying the downregulation of c-MYC [32]. Thus, it is also
worth it to investigate whether c-MYC-induced URI1 is involved in sorafenib resistance mechanisms
in HCC-B patients with decompensated cirrhosis.

The WNT/fB-catenin signaling pathway is an important driver for hepatocarcinogenesis [33].
However, the frequency of mutations in the CTNNBI gene is much lower in HCC-B than in
non-HBV-related HCC [34]. This is consistent with the finding that HBx activates WNT/[3-catenin
signaling [35]. In addition, it was shown that URI1 was involved in the activation of WNT/f3-catenin
signaling by a long non-coding RNA in cardiac fibroblasts [36]. Therefore, it might be plausible that
the activation of WNT/f-catenin signaling in HCC-B may depend on HBx and URII.

It is suggested that estrogen has a suppressive effect on HCC because it is known that the
prevalence of HCC is high in males, and low in premenopausal females [37]. It is also implied that there
are sex differences in response to HBV infection [38]. It was demonstrated that URI1 inhibits NAD
synthesis by suppressing the function of estrogen receptor in hepatocytes, leading to the development
of HCC [10]. The cell lines used in the study were all derived from male HCC. Thus, it is intriguing to
investigate the involvement of URI1 in the sex difference by using a female HCC-B cell line [39].

In conclusion, we revealed the HCC-B-specific mechanism that induces URI1 gene expression by
HBx through ¢-MYC. The precise pathogenic role of URI1 in HCC-B remains to be clarified. However,
given that URI1 plays critical roles in HCC, as previously reported, and that HBx and ¢-MYC are
well-known oncogenic factors, this transcriptional regulatory mechanism may be a potential therapeutic
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target for HCC-B. Because c-MYC may be involved in early-onset HCC-B [9], URI1-targeted therapy
may be a more effective treatment for early-onset HCC-B compared with other HCCs.

4. Materials and Methods

4.1. Materials

Hep3B and PLC/PRE/5 cells lines were obtained from the Cell Resource Center for Biomedical
Research, Institute of Development, Aging and Cancer at Tohoku University, and the Japanese
Collection of Research Bioresources Cell Bank, respectively. HuH7, HepG2, pCMV-Flag (RDB05956),
and pCMV-FlagMYC (RDB06671) were provided by the RIKEN BRC through the National Bio-Resource
Project of the MEXT, Japan. pcDNA3-Hbxadr-Hatag was a gift from Xin Wang (# 24930; Addgene,
Cambridge, MA, USA) [40]. pAcGFP1-C1 was purchased from Clontech (Palo Alto, CA, USA).
pGL4.10[1uc2], pGL4.74[hRluc/TK], and Dual-Luciferase Reporter Assay System were purchased
from Promega (Madison, WI, USA). BP clonase, LR clonase, pPDONR-221, and pAd/CMV/V5-DEST
were purchased from Thermo Fisher Scientific (Cleveland, OH, USA). Antibodies were purchased
as follows, anti-HA tag (16B12; BioLegend), anti-HBx (3F6-G10; Novus Biologicals, Centennial, CO,
USA), anti-c-MYC (9E1; Santa Cruz Biotechnology, Santa Cruz, CA, USA), anti-3-tubulin (3TUB;
G-8; Santa Cruz Biotechnology), anti-URI1 (SP215; Abcam, Cambridge, MA, USA), and horseradish
peroxidase-conjugated anti-mouse immunoglobin G (IgG) and anti-rabbit IgG antibodies (Cell Signaling
Technology, Danvers, MA, USA). Anti-c-MYC antibody (MC045)- and anti-mouse IgG-conjugated
agarose beads were purchased from Nacalai (Kyoto, Japan) and Novus Biologicals (Centennial, CO,
USA), respectively. Primers were purchased from Fasmac (Atsugi, Japan), and are summarized in
Supplementary Table S1.

4.2. Cell Culture

The cells were maintained in Dulbecco’s Modified Eagle Medium (Nissui, Tokyo, Japan)
supplemented with 4 mM of L-glutamine, and 10% fetal bovine serum in a humidified atmosphere at
37 °C and 5% CO;,. The medium for culture of PLC/PREF/5 cells was additionally supplemented with
4.5 g/L glucose. HBx-overexpressing HuH7 and HepG2 cells and their control cells were established by
stably transfecting pcDNA3-Hbxadr-Hatag and pCMV-Flag, respectively, followed by G418 selection.
HBx expression was confirmed by quantitative polymerase chain reaction (QPCR; Supplementary
Figure S3A).

4.3. Immunohistochemistry and ChIP Assay

Patients with HCC are summarized in Supplementary Table S2. Formalin-fixed paraffin-embedded
tissue specimens were cut into 4 um sections. After dewaxing in xylene, tissue sections were autoclaved
for 10 min in a citrate buffer, pre-incubated in 0.3% H,O,, and blocked for 20 min using diluted normal
blocking serum from a VECTASTAIN Elite ABC HRP kit (Vector Laboratories, Burlingame, CA, USA).
Sections were incubated with 1:100 diluted anti-URI1 antibody as a primary antibody followed by
an HRP-conjugated secondary antibody (Vector Laboratories). URI1 protein was visualized using
ImmPACT DAB substrate (Vector Laboratories) with a reaction time of 3 min.

Paired HCC-B and non-tumor liver tissues from five patients (Supplementary Table S3) were used
for the ChIP assay, which was performed as previously reported [41].

These studies were approved by the ethical committee of Tottori University (18A071).

4.4. Plasmid Construction

The promoter region of the human URI1 gene was amplified with KOD-plus-NEO (TOYOBO,
Otsu, Japan), and ligated into the luciferase plasmid. Mutagenesis reaction was performed by
QuikChange Lightning Site-Directed Mutagenesis Kits (Agilent Technologies, Santa Clara, CA, USA)
as previously reported [42]. Fragments of FLAG-tagged c-MYC and V5-tagged AcGFP were amplified
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by KOD-plus-NEO and transferred into the adenovirus plasmid using Gateway technology according
to the manufacturer’s instruction.

4.5. Reporter Assay, Western Blotting, gPCR

Promoter activity and protein and mRNA expression levels were determined as previously
reported [42]. Transfection was performed with Viofectin (Viogene, Taipei, Taiwan). Gene transduction
with an adenovirus vector was performed at a multiplicity of infection of 50 per day following cell
seeding. Protein and mRNA were recovered from the cells 48 hours post-transduction.

4.6. Analysis of TCGA Data Set

URI1 expression in TCGA and GTEx RNA-seq datasets of HCC and normal livers were analyzed
using GEPIA 2 [43]. The difference in gene expression and overall survival was analyzed by one-way
analysis of variance (ANOVA) and log-rank test, respectively. The data were accessed on June 27, 2019.

4.7. Statistical Analysis

Independent samples, of which numbers are over three, were analyzed, and all experimental
values were expressed as mean =+ standard deviation (SD). The differences between the two groups were
assessed by Student’s t-test or Tukey’s test. A p-value < 0.05 was considered statistically significant.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/22/5714/s1.
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Abbreviations

ChIP chromatin immunoprecipitation

GTEXx genotype-tissue expression

HBV hepatitis B virus

HCC hepatocellular carcinoma

HCC-B hepatitis B virus-related hepatocellular carcinoma
HCC-NB non-hepatitis B virus-related hepatocellular carcinoma
qPCR quantitative polymerase chain reaction

TCGA The Cancer Genome Atlas

URI unconventional prefoldin RPB5 interactor
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