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Abstract

The range of natural inputs encoded by a neuron often exceeds its dynamic range. To overcome 

this limitation, neural populations divide their inputs among different cell classes, as with rod and 

cone photoreceptors, and adapt by shifting their dynamic range. We report that the dynamic 

behavior of retinal ganglion cells in salamanders, mice, and rabbits is divided into two opposing 

forms of short-term plasticity in different cell classes. One population of cells exhibited 

sensitization—a persistent elevated sensitivity following a strong stimulus. This novel dynamic 

behavior compensates for the information loss caused by the known process of adaptation 

occurring in a separate cell population. The two populations divide the dynamic range of inputs, 

with sensitizing cells encoding weak signals, and adapting cells encoding strong signals. In the 

two populations, the linear, threshold and adaptive properties are linked to preserve 

responsiveness when stimulus statistics change, with one population maintaining the ability to 

respond when the other fails.

Adaptive systems adjust their response properties to the statistics of the recent input1. 

However, a fundamental tradeoff exists between optimizing for the current environment, and 

being able to respond reliably when the environment changes. Due to statistical limitations 

of how long it takes to estimate the recent stimulus distribution2,3, the timescale of 

adaptation greatly exceeds the integration time of the response in many sensory 

systems1,4–7. As a consequence, when stimulus statistics change suddenly, as often occurs in 

natural scenes8, sensory neurons often fall below threshold or saturate, until they 

successfully measure and adapt to the statistics of the new environment.

In the retina, a transition from a high to a low contrast environment reveals this tradeoff, 

when the decreased sensitivity caused by high contrast prevents the neuron from firing for 

some time after the contrast decreases7,9,10. Adapting primate retinal ganglion cells are 

known to recover their activity after high contrast with a prolonged time constant of ~ 6 s11. 
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However, human psychophysical performance recovers faster at early timescales (< 1 s), 

matching an ideal observer model, indicating that some adapting neural pathway can signal 

quickly even after exposure to high contrast12. We recorded from retinal ganglion cells in 

amphibian and mammalian retina during sudden changes in the statistics of the stimulus to 

examine how neural populations maintain responsiveness when the environment changes.

RESULTS

Adaptation and Sensitization in retinal ganglion cells

We measured the average firing rate response of salamander, mouse, and rabbit ganglion 

cells to a contrast transition by presenting a spatially uniform visual stimulus. The intensity 

was drawn from a Gaussian white noise distribution with a constant mean and a standard 

deviation that alternated between high and low temporal contrasts (Fig. 1a). Even after a 

short high contrast presentation, many ganglion cells failed to respond for seconds after the 

transition to low contrast as their firing rate slowly recovered, consistent with previously 

reported properties of contrast adaptation4,6,7,9,13 (Fig. 1a,b).

We found, however, that some neurons responded rapidly after a transition to low contrast 

(Fig. 1a), even after a long high contrast presentation (Fig. 1b). These cells exhibited an 

elevated response following high contrast that persisted for several seconds, gradually 

decreasing during low contrast. This decay had an average (± standard deviation) time 

constant of 2.4 ± 1.1 s in salamanders, 1.3 ± 0.3 s in mice, and 4.1 ± 2.7 s in rabbits.

To measure how the sensitivity of the two populations changed during low contrast, we 

computed a linear-nonlinear (LN) model of each neuron's firing rate9 (see methods) 

(Supplementary Fig. 1). We compared the nonlinearities computed early (Learly) and late 

(Llate) after the transition to low contrast (bars in Fig. 1a). For the two populations of 

ganglion cells, the change in firing rate arose from a change in average sensitivity, defined 

as the average slope of the nonlinearity (Fig. 1c). For salamanders, cells that elevated their 

activity at the transition to low contrast doubled their average sensitivity (2.1 ± 0.3) during 

Learly relative to Llate. In part, a change in threshold underlaid this change in average 

sensitivity. Because the presence of a strong stimulus elevated the sensitivity to a subsequent 

weak stimulus, we term this property sensitization, by analogy to behavioral sensitization14.

Sensitizing cells were found in salamanders (Fig. 1 a,c) (32%, 80 out of 250 cells), mice 

(Fig. 1 a,c) (12%, 5 out of 41 cells), and rabbits (21%, 8 out of 39 cells) (Supplementary Fig. 

2a,b). A similar ratio of salamander ganglion cells has been reported in abstract form to 

respond to contrast decrements (C.A. Burlingame, A.Y. Dymarsky, M.J.Berry II, Soc 

Neurosci. Abstr. 506.11, 2007). Recording from many cell types in the salamander, we 

found that adapting and sensitizing cells formed two distinct classes (Fig. 1d). For each 

species, we used the nonlinearities during Learly and Llate to compute the average loss of 

sensitivity. The sensitivity loss in adapting cells during Learly correlated with the fraction of 

sensitizing cells in the species (Supplementary Fig. 2c), suggesting that sensitizing cells 

compensate for the sensitivity loss due to adaptation.
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Sensitization occurred over a broad range of spatial frequencies and stimulus sizes 

(Supplementary Fig. 3). By measuring sensitivity after different high contrast durations, we 

found that after 0.55 s of high contrast, a cell reached 63 % of its peak sensitization (τ = 0.55 

s) (Fig. 1e). Thus, significant sensitization is expected even during brief fixations. After the 

transition to low contrast, increased activity was not instantaneous, but reached a peak in 

0.98 ± 0.03 s. This delay may reflect the statistical limitation necessitating sufficient 

temporal integration for any system to adapt to a contrast decrement2,4,12.

We tested whether the two forms of plasticity generalized to statistics other than contrast by 

changing the mean luminance while keeping the contrast fixed. Each cell type showed 

consistent sensitizing or adapting behavior for changes in both stimulus parameters 

(Supplementary Fig. 4a,b, and Fig. 1f).

Adapting and sensitizing populations encode the same signals

Although adaptation and sensitization slowly modulated the average firing rate, retinal 

ganglion cells encode visual information on a much finer timescale using reproducible firing 

events—intervals of high firing probability lasting < 0.1 s in duration9. We compared firing 

events for adapting and sensitizing cells recorded simultaneously by repeating an identical 

stimulus sequence during Learly and Llate. During Llate, 94 % of adapting cell firing events 

occurred synchronously with a sensitizing cell firing event (Fig. 2a,b). Consistent with the 

changing nonlinearities, during these individual common firing events the activity of 

adapting cells during Learly decreased by 41 ± 3 % relative to Llate (n = 28), whereas the 

activity of sensitizing cells increased by 93 ± 8 % (n = 12). Thus, the two populations 

coordinated their encoding such that they responded to the same visual stimuli, with the 

representation shifting more to the sensitizing population during Learly.

To examine the specific messages encoded by sensitizing and adapting cells, we measured 

how the plasticity of a cell corresponded to its linear spatio-temporal receptive field (Fig. 

2c,d). For all salamander Off-type cells—~90 % of the cells in the salamander retina15—the 

adaptive index divided each cell type into two groups, composed of both adapting and 

sensitizing cells. Within a cell class, the spatial receptive fields of adapting and sensitizing 

cells overlapped (Fig. 2e), but maintained a minimum spacing between members of the same 

class (Fig. 2f)16. This indicates that a mixed group of cells with highly similar linear 

receptive fields15, splits into two classes with different short-term plasticity, each of which 

appears to tile the retina. Thus, adapting and sensitizing populations represent the same 

stimuli. In mice, sensitizing cells also comprised different cell types, including both On and 

Off classes (Supplementary Fig. 5a). In addition, some adapting and sensitizing cells in mice 

and rabbits had very similar temporal properties (Supplementary Fig. 5b).

Because sensitizing cells compensate for the loss of sensitivity in the adapting population 

during low contrast, we tested whether the reverse was true during high contrast. During 

Hearly, 0.5 – 5 s after a transition to high contrast, the nonlinearity of sensitizing cells 

saturated (Supplementary Fig. 6), reaching 98 ± 1 % of their estimated maximal firing rate, 

and their sensitivity dropped to 10 ± 4% of the peak sensitivity (n = 3). Adapting cells did 

not saturate, however, and only reached 79 ± 4 % of their maximal rate while retaining 63 ± 
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8% of their peak sensitivity (n = 11). Thus, adapting cells compensated for saturation in the 

sensitizing population at the transition to high contrast.

Sensitizing cells preserve weak signals, adapting cells preserve strong signals

To measure the functional benefit of having the two opposing forms of plasticity, we 

quantified the discriminability (d') in the combined population of sensitizing and adapting 

cells after a decrease in contrast (see methods). This measure derives from the Fisher 

information, an upper bound on the information available by any unbiased decoding 

scheme17. Discriminability, and Fisher information, increases with the slope of the 

nonlinearities at each input (Fig. 3a), but decreases with the variability of the response at 

that input. It also depends on correlations between cells, which can either increase or 

decrease information18. We used simultaneously recorded populations of adapting and 

sensitizing cells to account for the nonlinearities, variability, and covariance as a function of 

distance between cells (Supplementary Fig. 7) (see methods). Discriminability in the 

adapting population alone decreased 44.2 ± 1.9 % during Learly relative to Llate. However, 

for the combined population of sensitizing and adapting cells, discriminability only 

decreased 16.8 ± 2.3 % during Learly. Thus, the addition of sensitizing cells to the population 

substantially reduced the loss of discriminability when the contrast of the environment 

changed.

We then examined this improvement in discriminability in the full population at each 

separate stimulus, and found that the addition of sensitizing cells to a population of adapting 

cells enhanced the discriminability of weak signals (Fig. 3b). The improvement produced by 

including sensitizing cells during Learly was 1.8 times the improvement during Llate. 

Discriminability improved most in the region of reduced threshold of the nonlinearities of 

sensitizing cells, indicating that this reduction during Learly further enhanced the encoding of 

weak signals. Conversely, the addition of adapting cells to a population of sensitizing cells 

enhanced discriminability of strong signals (Fig. 3b). As expected, this contribution of 

adapting cells increased during Llate as their threshold decreased and sensitivity increased.

The dynamics of adapting and sensitizing cells decayed towards a steady-state response that 

depended on the contrast. To understand the endpoint of this adaptive process, we measured 

the steady-state nonlinear response curve from LN models computed across a ten-fold range 

of contrasts (Fig. 4a). Compared to adapting cells, sensitizing cells had a threshold closer to 

the mean (Fig. 4a,b). Thus, across all contrasts the two populations divided the range of 

inputs, with sensitizing cells encoding weak signals, and adapting cells encoding strong 

signals.

Consistent with this division of labor, sensitizing cells had a larger center and weaker 

surround than did adapting cells (Fig. 2c). This difference likely enables sensitizing cells to 

improve their signal to noise ratio for weak inputs by spatial averaging, as occurs for 

ganglion cells during low luminance conditions19,20.
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Ideal normalization and contrast estimation

To explain the relationship between contrast and the steady-state dynamic range of adapting 

and sensitizing cells, we considered that an ideal encoder that maximizes information from a 

stimulus distribution should change its sensitivity inversely with the contrast1. This ideal 

normalization is thought not to occur in the retina because ganglion cells reduce their 

sensitivity by a fraction less than the change in contrast. This can be seen by comparing 

nonlinearities whose input has been normalized by the contrast (Fig. 4b top)7,21. We found, 

however, that a model, Mα (see methods), using ideal normalization does account for steady-

state adaptation, causing the normalized curves to nearly overlay, if one considers that the 

rescaling occurs after a threshold (Fig. 4b bottom). This type of normalization could occur if 

the stimulus passes through a threshold, such as from voltage-dependent Ca channels in 

bipolar cell presynaptic terminals22, and then rescaling occurs about that threshold (Fig. 4c).

Estimation of contrast in an uncertain environment

A change in stimulus statistics, as has recently occurred during Learly, necessarily brings 

uncertainty as to the new range of inputs2–4. As seen in the different dynamics of their firing 

rates (Fig. 1a) and nonlinearities (Fig. 1c), the two populations make different choices 

during that time of uncertainty, and then adjust their response to the new contrast. Thus, we 

can view the initial placement of the nonlinearity as corresponding to an initial estimate of 

the contrast. The model Mα represents an idealized relationship between contrast and the 

optimized response of a cell to that contrast. We therefore used the model as a lookup table 

to identify the contrast estimate given the nonlinearity of a cell at different times during low 

contrast (Fig. 4d). We mapped nonlinearities for each cell at different time intervals to a 

given estimated contrast by finding the most similar nonlinearity in the steady-state model 

Mα. During Learly, adapting cells overestimated the contrast at 1.6 ± 0.1 times the actual 

value (n = 12), and sensitizing cells underestimated the contrast at 0.5 ± 0.1 times the actual 

value (n = 6).

Variability and threshold correspond in the two populations

We next sought to explain why sensitizing cells raised their threshold during prolonged 

exposure to the low contrast environment, rather than maintaining a continued higher firing 

rate during low contrast. For optimal encoding of an input, the level of noise can influence 

the placement of threshold, with higher noise necessitating a higher threshold23. Sensitizing 

cells had lower variability than adapting cells as measured by the Fano factor, or variance to 

mean ratio, by a factor of 1.86 ± 0.17 (Supplementary Fig. 8a). This may occur in part due to 

their different receptive field sizes, which would predict, assuming independent noise from 

photoreceptors, that their variability would differ by the ratio of the receptive field areas, 

which was 2.07 ± 0.06 (26 sensitizing and 74 adapting cells).

We then examined the parameters of the model Mα, which resembles an ideal observer 

model of human perception having ideal contrast normalization with a threshold set by 

internal noise12. Compared to adapting cells, sensitizing cells had a lower initial threshold, α 

(by a factor of 1.96) and a lower final threshold, θ, (by a factor of 3.6) (Supplementary Fig. 

8b), possibly constrained by the different variability in the two populations. Because of this 

connection between variability and threshold, and the defined relationship of the steady-state 
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threshold with contrast (Fig. 4a–c), we considered that after a change in contrast, the 

threshold might then become optimized in the steady state to convey greater information 

about the current stimulus.

Sensitizing cells decrease activity but convey more information

These observations led us to propose that during low contrast, from Learly to Llate, 

information transmission improved for both adapting and sensitizing cells, even though the 

firing rates of the two populations moved in opposite directions. We thus measured the 

mutual information during Learly and Llate for adapting and sensitizing cells by presenting 

pulses of eight different intensities during Learly and Llate (Fig. 5a). As expected, adapting 

cells conveyed less information during Learly than sensitizing cells, and increased their 

information transmission between Learly and Llate. Remarkably, we found that sensitizing 

cells also conveyed more information during Llate than Learly (Fig. 5b) even though their 

activity decreased during Llate (Supplementary Fig. 9a). Thus, the increase in threshold for 

sensitizing cells from Learly and Llate improves information transmission. This increase in 

mutual information was consistent with the population measurement of discriminability 

(Fig. 3b), in that the sensitizing population alone lost 8.4 ± 4.0 % of its discriminability 

during Learly. Thus although both sensitizing and adapting cells lose information at the 

transition to low contrast, sensitizing cells lose much less.

This loss of information in the sensitizing population despite the increase in firing rate can 

be explained by comparing the variability during Learly and Llate. A lower threshold during 

Learly exposed an increase in noise at the weakest stimuli for sensitizing cells (Fig. 5c), but 

not for adapting cells (Supplementary Fig. 9c), confirming that subthreshold noise limits the 

steady-state placement of threshold. Previously, it has been shown that higher firing rate 

correlates with greater information transmission24,25. Here, however, the decay in activity in 

sensitizing cells actually improves the encoding of the low contrast stimulus.

To further examine how encoding changed for individual stimuli, we computed the 

stimulus-specific information26 (see methods), during Learly and Llate. This measure reflects 

the contribution of each specific stimulus to the mutual information. During both Learly and 

Llate, adapting and sensitizing cells favored different ends of the input signals (Fig. 5d), with 

sensitizing cells conveying the greatest amount of information about the weakest stimuli 

during Learly. This was consistent with the measure of discriminability, which showed that 

the additional discriminability conveyed by the two populations separated during Learly (Fig. 

3b). However, across all stimuli, information transmission improved from Learly to Llate. 

Thus, after the initial opposing thresholds chosen by sensitizing and adapting cells, both 

populations improved their information transmission with more prolonged exposure to a 

steady environment.

Discussion

These results give an explanation for the opposing dynamics of sensitizing and adapting 

cells. A decrease in contrast creates the greatest ambiguity as to the statistics of the stimulus, 

because the new range of inputs only contains weak signals that fall within the most 

probable values of the previous distribution2,4. The addition of sensitizing cells to the 
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population improves the encoding of weak signals, with the greatest improvement being 

after the contrast decrease (Fig. 3b). However, neither population perfectly encodes the new 

distribution after the contrast decreases (Fig. 5 b,d), a condition compelled by the 

uncertainty that accompanies a transition to an environment of weak signals2,4. But by 

positioning their sensitivity at different sides of the steady-state value, sensitizing and 

adapting cells bracket the target sensitivity by underestimating or overestimating, 

respectively, the steady-state sensitivity (Fig. 4d). Thus, during the time of greatest 

statistical uncertainty the two populations span the range of inputs. Because this initial 

position deviates from optimal, both sensitizing and adapting cells then increase their 

information transmission by adopting their steady-state positions (Fig. 5b,d). Therefore, the 

coordinated dynamics of adapting and sensitizing cells (Fig. 1a) represent a tradeoff between 

the immediate encoding of an uncertain distribution and the delayed optimization for that 

distribution.

Dynamic changes within the circuitry of the inner retina underlie contrast adaptation9,27–29. 

Two adapting pathways, one excitatory and one inhibitory could combine to produce 

sensitization (Fig. 6). In this scheme, high contrast causes inhibitory transmission to adapt. 

Then, at the transition to low contrast, the residual lowered inhibition raises sensitivity (Fig. 

6b,c). This model of sensitization indicates that sensitizing cells receive a negative version 

of an adapting cell's response. This causes the two populations to encode different signals, in 

particular during the time when each population has the highest likelihood of failing to 

encode the stimulus. The model also indicates that the source of increased variability during 

sensitization lies prior to the initial threshold in the excitatory pathway, as decreased 

inhibition prior to this threshold could result in greater transmission of noise.

A neuron with a response curve that spans its distribution of inputs will encode those inputs 

efficiently1. However, to perform this task dynamically would require that the neuron 

maintain its threshold to encode the weakest signals, and its maximal response to encode the 

strongest, making both ends of the response curve vulnerable to saturation should the 

stimulus distribution change. Here, we have shown that the retina divides this problem in 

two, with linear filtering, threshold placement, and dynamic plasticity combining to encode 

a specific range of inputs. Low threshold cells with weaker surrounds sensitize to reliably 

encode weak signals. High threshold cells with stronger surrounds adapt to reliably encode 

strong signals. When one population saturates, the other compensates. The ability to 

coordinate opposing forms of dynamic encoding allows a neural population to avoid the 

inherent losses of any single type of plasticity.

Methods

Experimental preparation

We recorded from retinal ganglion cells of larval tiger salamanders, mice and rabbits using 

an array of 60 electrodes (Multichannel Systems) as described9. Ringer solution (124 mM 

NaCl, 2.6 mM KCl, 2 mM CaCl2, 2 mM MgCl2, 1.25 mM NaH2PO4, 26 mM NaHCO3, 22.2 

mM glucose) perfused the mouse retina at 32 – 35 °C and the solution maintained a pH of 

7.35 – 7.4 by aeration with 95/5 % O2/CO2. Ames' medium perfused the rabbit retina at 37 

°C.
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A video monitor projected the visual stimuli at 30 Hz using Psychophysics Toolbox in 

Matlab. Stimuli were uniform field with a constant mean intensity, M, of 8 – 10 mW/m2 and 

were drawn from a Gaussian distribution unless otherwise noted. Contrast is defined as σ 

=W/M, where W is the standard deviation of the intensity distribution, unless otherwise 

noted. To measure changes in firing rate for adapting and sensitizing cells (Fig 1a), for 

salamander, 80 trials were presented, alternating between 4 s high (35 %) and 16 s low 

contrast (5 %). For mouse, 104 trials were presented of 15 s high (30 %) and 15 s low 

contrast (9 %). For the measurement of the average time to the first spike after the transition 

to low contrast (Fig. 1b), results were pooled over 5 experiments, with > 50 trials for each 

cell. To measure the development of sensitization (Fig. 1e), conditions were interleaved in 

blocks of 17 trials for a total of 102 trials in each condition.

Linear-Nonlinear models

LN models (Supplementary Fig. 1) consisted of the light intensity passed through a linear 

temporal filter, which describes the average response to a brief flash of light, followed by a 

static nonlinearity, which describes the threshold and sensitivity of the cell. To compute the 

model, the stimulus, s(t), was convolved with a linear temporal filter, F (t), which was 

computed as the time reverse of the spike triggered average stimulus, such that

(1)

A static nonlinearity, N (g), was computed by comparing all values of the firing rate, r (t) 

with g(t)and then computing the average value of r (t)over bins of g(t). The filter, F (t), was 

normalized in amplitude such that it did not amplify the stimulus, i.e. the variance of s and g 

were equal9. Thus, the linear filter contained only relative temporal sensitivity, and the 

nonlinearity represented the overall sensitivity of the transformation. Adapting and 

sensitizing cells were equally well fit by an LN model. Model and data had a correlation 

coefficient of 56 ± 2 % for adapting cells, and 61 ± 3 % for sensitizing cells.

The sigmoidal function used to fit the nonlinearities was

(2)

where x0 is the basal firing rate, m is the maximal firing rate, x1/2 is the x value at 50 % of 

maximal firing, and r controls the maximal slope.

Adaptive index

The adaptive index was , where rearly and rlate are the firing rates during a 3 

s window beginning during Learly and Llate, respectively. Only cells that responded during 

rearly and rlate were included.
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Receptive fields

Spatio-temporal receptive fields were measured in one or two dimensions by the standard 

method of reverse correlation30 of the spiking response with a visual stimulus consisting of 

either lines or squares. The spatio-temporal receptive field was approximated as the product 

of a spatial profile and a temporal filter31. The normalized distance between receptive fields 

(Fig. 2f) was the spacing, S = d/(r1 + r2), where d is the distance between the center of the 

two cells, and r1 and r2 are the radii of the two cells along the line connecting their centers.

Discriminability

The average discriminability between nearby stimuli17 as a function of the stimulus was 

estimated as:

(3)

where IF, the Fisher information, was computed as,

(4)

Total discriminability was computed as d' = ∫ d'(g)dg. The vector N′(g) is the derivative of 

the nonlinearity for a population of cells with respect to the filtered stimulus g, Qg is the 

covariance matrix as a function g, and the function Tr is the trace of a matrix18. 

Nonlinearities, Ng, were sigmoidal fits to the measured nonlinearities. The diagonal terms of 

Qg, which were the variance of each cell as a function of the stimulus g, were empirically 

well fit by a combination of multiplicative noise β that depended on g, and additive noise γ 

that was independent of g. This relationship was fit to the data (Fig. 5c and Supplementary 

Fig. 9c) for sensitizing and adapting cells during Learly and Llate,

(5)

Only sensitizing cells had significant additive noise. The off-diagonal terms of Q(g), the 

covariance between cells, were well fit by the geometric mean of the two variances weighted 

by distance (Supplementary Fig. 7a),

(6)

The correlation coefficient c(dij) decayed exponentially as a function of distance between 

two cells (Supplementary Fig. 7b). Different functions c(dij) fit during Learly and Llate for 

pairing within and between adapting and sensitizing cells. The fractional loss in 

discriminability during Learly was . Distance values dij were taken from a 

complete population of sensitizing and adapting cells spanning ~1 mm (Fig. 2e). Error was 

computed by multiple random draws from a set of 21 adapting and 13 sensitizing cells.
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Models of contrast normalization

Nonlinearities, Nσ (g), were computed across 12 steady-state contrasts ranging from 3 – 36 

%. The basic model of normalization by the contrast, Mσ, was computed as:

(7)

where σ is the contrast, and a single function N̂( ) was chosen to minimize the error between 

model and data, Eσ, defined as the average rms difference between the model and the set of 

nonlinearities, Nσ. The model of normalization following a threshold, Mα, was computed as:

(8)

where Uα is a threshold function. In practice, because the threshold of Uα was nearly always 

lower than that of N̂, Uα could be substituted with a simpler form having a single parameter, 

α,

(9)

The nonlinearity N̂( ) and α were similarly chosen to minimize the error, Eα. The model 

normalizing each curve separately, Mfull, was computed as:

(10)

where in addition to a single N̂( ), a separate α and c were chosen for each Nσ to minimize 

the error, Efull. For all models sigmoid fits to the data were used for Nσ. We compared the 

relative performance of Mα to Mσ and Mfull by computing (Eσ − Eα)/Eσ − Efull. Relative to 

Mσ, the single parameter model Mα captured 92.6 ± 1.0 % for adapting cells (n=40) and 85.6 

± 1.8 % for sensitizing cells (n = 12), of the error reduction produced by Mfull, which 

contained 22 parameters.

Thresholds were computed from a fit to a nonlinearity using the equation:

(11)

where θ is the threshold, and a is the slope above threshold. The line above threshold was fit 

below saturating levels of the nonlinearity.

Information theory

To gather sufficient data to compute the mutual information after a transition to low 

contrast, Learly intervals occurred in different periods than Llate. To gather data for Learly, the 

stimulus alternated between 20 s of identical high contrast pulses and 2 s of low contrast 

containing 8 randomly chosen stimulus intensities. To gather data for Llate, the stimulus 
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consisted of a continuous 44 s sequence of random low contrast pulses. Learly and Llate 

conditions were alternated every 180 s. The response to stimulus pulses separated by 0.5 s 

was defined as a series of spike counts in bins of duration 150 ms (Fig. 5a), or in durations 

ranging from 10 – 150 ms (Supplementary Fig. 9b). Each response spanned a window of 

150 ms, which included all spikes from a given pulse of the stimulus. Mutual information 

was computed by taking the difference between the total response entropy, H (R), and the 

noise entropy, H (R|S), where the entropy (H) is

(12)

The stimulus specific information (ISSI) was computed as:

(13)

This measure is the average reduction of uncertainty gained from a measurement of the set 

of responses given a particular stimulus s26. The weighted average ISSI over all stimuli is the 

mutual information between stimulus and response. All information measurements were 

corrected for limited data by computing the information for fractions of the data and then 

extrapolating the result to infinite data32,33 (see Supplementary Fig. 9d).

Sensitization model

The model for sensitization was generated to reproduce the qualitative behavior of 

sensitizing cells. Excitatory and inhibitory adapting pathways were linked by a synaptic 

pathway. A prime candidate for the proposed inhibitory pathway could be the signal passed 

through amacrine cells, inhibitory interneurons in the retina34. Variables correspond to 

symbols in Fig. 6. The biphasic linear filter for both pathways matched the time to peak of 

sensitizing cells,

(14)

For the inhibitory pathway, a linear-threshold function contained a threshold set at the mean 

of the input g(t),

(15)

Brackets 〈…〉 denote the average quantity. Adaptation occurred through a feedforward 

divisive operation. This adaptation could either occur at the level of a bipolar or amacrine 

cells9. The input u(t)was convolved with an exponential filter, FA, and then u(t) was divided 

by the result. A constant term in the denominator set the magnitude of adaptation,

(16)

The time constant of FA, representing the timescale of integration of the contrast, was 2 s,
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(17)

The connection between the two pathways contained a temporal filter LQ defined as an alpha 

function with a time to peak of 150 ms,

(18)

This delay could result from the action of metabotropic GABA receptors35. The connection 

between the two pathways also contained a saturating nonlinearity NQ,

(19)

the effect of which was to diminish the modulation of inhibitory transmission at high 

contrast, and amplify the modulation at low contrast. This saturation could arise from either 

synaptic depression or receptor desensitization36. An alternative source of the inhibitory 

pathway could be that adaptation is in the bipolar cell, and the delay and saturation (LQ and 

NQ) are produced by the filtering and membrane properties of an intervening amacrine cell9.

The two pathways combined linearly,

(20)

The pathways combined prior to the excitatory pathway threshold indicating that the 

amacrine cell might synapse presynaptically onto a bipolar cell terminal. The nonlinearity 

NE in the excitatory pathway was a linear-threshold function with threshold α, representing 

the initial threshold α in the model Mα in Fig. 3,

(21)

with α set to 0.025. Finally, the excitatory input y(t) was passed through another stage of 

divisive adaptation, and the result thresholded by an output nonlinearity NF. The threshold θ 

represented the final threshold θ of the model Mα from Fig. 3,

(22)

θ was set to 0.005.

Error indicates standard error of the mean, computed across cells, unless otherwise noted.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Adaptation and sensitization in separate neural populations. (a) Stimulus intensity 

alternating between high and low contrast during a single trial (top), for salamander (left) 

and mouse (right). Firing rate response for adapting (middle) and sensitizing (bottom) cells, 

averaged over all trials, each with a different stimulus sequence. Color indicates response to 

low contrast. (b) Average time to first spike after a transition from high to low contrast (n = 

2 – 12 cells). (c) Nonlinearities of an LN model (see methods) for cells in (a) calculated 

during intervals indicated by bars in (a) for salamander (left) and mouse (right). The interval 

Learly was defined as 0.5 – 2 s after the transition to low contrast, and Llate was 10 – 16 s for 

salamander and 10 – 15 s for mouse. (d) Adaptive indices (see methods) for 190 ganglion 

cells from 16 salamander retinas. The distribution is significantly bimodal (Hartigan's dip 

test, P < 0.05). (e) High contrast (35 %) was presented for 1, 2 or 5 s, followed by low 

contrast (3 %) for 15 s. The average change in firing rate between Learly and Llate is shown 

normalized by the average rate for low contrast in all conditions (n = 5 cells). Black line is 

an exponential fit to the data. (f) For the same cells, the adaptive index was computed 

separately for changing contrast at a fixed luminance, and compared to the adaptive index 

when changing the mean luminance a factor of 16 at a fixed contrast of 10 % (see 

Supplementary Fig. 4).
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Figure 2. 
Sensitizing and adapting populations encode common stimulus features. (a) Average 

response of salamander adapting and sensitizing cells to 26 trials of the same stimulus 

repeated during Learly and Llate after 4 s of high contrast (35%). Low contrast was 3–5 %. 

Firing rate binned at 10 ms. (b) Absolute difference in time between events in all pairs of 

fast Off-type adapting cells (n = 28) and sensitizing cells (n = 12). Events defined as times 

when a cell's firing rate, binned at 10 ms, exceeded 20 Hz. (c) Average temporal (top) and 

spatial (bottom) filters for adapting (n = 142), and sensitizing (n = 48) fast Off cells, mapped 

in one dimension. Curves obscure the error bars located at the peak and trough of the 

temporal filters and along the spatial filters. Spatial filters normalized to their peaks. (d) 

Fractions of adapting and sensitizing cells of different cell types, as classified by a cell's 

temporal filter (n = 209 fast Off, 16 medium Off, 20 slow Off, 9 On) (Supplementary Fig. 

10). (e) Spatial receptive field centers of fast Off adapting and sensitizing cells recorded 

simultaneously. Receptive fields displayed at one standard deviation of a 2-D Gaussian fit. 

(f) Histogram of spacing (see methods) between nearest neighbors of fast Off adapting (n = 

615) and sensitizing cells (n = 171).
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Figure 3. 
Improvement of discriminability in a combined population of sensitizing and adapting cells. 

(a) Nonlinearities for adapting (n = 21) and sensitizing (n = 13) cells during Learly (left) and 

Llate (right). (b) Discriminability between nearby stimuli d'(g) as a function of the stimulus 

(see methods) in the full population minus d'(g) for the adapting population alone (blue) or 

minus d'(g) for the sensitizing population alone (red) during Learly (left) and Llate (right). All 

values were normalized by the area of the total d' in the full population during Llate.
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Figure 4. 
Sensitizing cells specialize to encode weak signals; adapting cells encode strong signals. (a) 

Twelve different contrast levels (3 – 36 %) were randomly interleaved for at least 110 s and 

three repeats, and the first 10 s of data in each contrast was discarded. Nonlinearities are 

shown for an adapting (top) and sensitizing (bottom) cell for the different contrasts. Each 

row is a different nonlinearity, displayed in a color scale. Black dots indicate one standard 

deviation above the mean for each contrast level. Nonlinearities calculated from the data 

(left), and as predicted using a model described in panel (c) (right). (b) Normalized 

nonlinearities from cells in panel (a). For each contrast, the nonlinearity was scaled along 

the abscissa by the input standard deviation (top) or shifted by a common factor (α) and then 

scaled along the abscissa by the contrast (bottom). (c) Model Mα. Input values were passed 

through a threshold function, which shifted the mean value by a factor, α, then were rescaled 

by the contrast (σ), and then passed through a secondary nonlinearity with threshold θ to 

recreate the range of nonlinearities shown in (a). The secondary nonlinearity is the average 

nonlinearity for a cell after shifting by α and rescaling. (d) Nonlinearities Ni (g) were 

computed for each 3 s bin. For each bin, an estimate of the contrast was determined as the 

contrast σ for which the steady-state nonlinearity of the model Mα (σ) had the smallest 

mean-squared difference to Ni (g). Low contrast (5 %) followed 40 s of high contrast (35 

%).
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Figure 5. 
Sensitizing and adapting cells increase information transmission using opposing changes in 

firing rate. (a) Stimulus used in the calculation of mutual information and the stimulus 

specific information (SSI) for low contrast. 20 s of identical high contrast pulses were 

followed by Learly, which was 2 s of 8 randomly presented low contrast pulses. For Llate, 

every 180 s, 44s seconds of continuous, randomly organized, low contrast pulses was 

presented. (b) Mutual information during Llate versus Learly. Llate occurred from 22 – 44 s 

after high contrast, and Learly occurred from 0.5 – 2 s after high contrast. All sensitizing cells 

had a higher firing rate during Learly than Llate (Supplementary Fig. 9a). A bin size of 150 

ms was used, but the increase of information during low contrast is independent of bin size 

(Supplementary Fig. 9b). (c) Average mean and variance during Learly (lighter colors, 

thicker lines) and Llate (darker colors, thinner lines) for the sensitizing cells in (b), shown as 

a function of the stimulus pulse amplitude. d) Stimulus specific information ISSI for each of 

the 8 different low contrast stimuli. In (c) and (d), flash amplitude is the Michelson contrast, 

(Imax – Imin)/(Imax + Imin), of the 8 brief flashes in the low contrast stimulus.
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Figure 6. 
Model of sensitization. (a) Sensitization results from the difference between two adapting 

pathways, one excitatory and one inhibitory. In each pathway, the stimulus is passed through 

a linear filter, L, a threshold, N, and then an adapting block, A. The adapting block is a 

feedforward module. In the inhibitory pathway, the input u(t) is convolved with an 

exponential filter, FA yielding FA * u (see methods). The input u(t) is then divided by the 

filtered input FA * u, such that the output of the adapting block v(t) has a smaller amplitude 

than the input u(t). A temporal filter, LQ, and saturating function, NQ, is applied to the 

inhibitory pathway before the two pathways are combined. (b) Response of the model to an 

input that repeated, and was identical during Learly and Llate. (c) Average responses over 

many white noise sequences, shown at different stages in the model. (v) In the inhibitory 

pathway, the response decreases during high contrast, and recovers during low contrast. (w) 

The synaptic functions decrease the response modulation during high contrast. (y) The 

decrease in inhibition at the transition to low contrast elevates activity in the excitatory 

pathway. (z) The final adapting block, AE, in the excitatory pathway yields adaptation during 

high contrast, and preserves sensitization during low contrast.
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