
INTRODUCTION

The epidermal growth factor receptor (EGFR) family of recep-
tor tyrosine kinases are frequently overexpressed in human 
cancers and responsible for tumor cell proliferation, survival, 
adhesion, migration and differentiation [1]. Heregulin-β1 also 
known as neuregulin-1 (NRG-1) is a member of the EGF 
family of growth factors and acts as a ligand for ErbB family 
receptor tyrosine kinases [2]. The heregulin family of growth 
factors includes at least fifteen distinct proteins derived from 

differential splicing of the RNA of a single gene. Most hereg-
ulin proteins are soluble, secreted 44-kDa glycoproteins orig-
inating from transmembrane precursors, undergoing typical 
glycosylation and trafficking [3]. Among these, heregulin-β1 
is known as the most potent form which is able to activate 
ErbB-2 indirectly through binding to ErbB3 or ErbB4.
	 It has been shown that overexpression or aberrant ex-
pression of the ErbB receptor family proteins could cause 
antiestrogen resistance [4]. In addition, heregulin is involved 
in progression and metastatic potential of breast cancer 
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[2]. Heregulin-β1 was reported to activate matrix metallo-
proteinase-9 (MMP-9) [5], which was regulated by multiple 
signaling pathways such as extracellular signal-regulated 
protein kinase (ERK), p38, and protein kinase C (PKC) [5]. 
Heregulin-β1 overcame the inhibitory effects of gefitinib on 
growth and invasiveness of tamoxifen-resistant Michigan 
Cancer Foundation-7 (MCF-7) cells by promoting ErbB-2/
ErbB-3 heterodimerization and activation of phosphatidyli-
nositol 3-kinase (PI3K)/protein kinase B (Akt) [6]. Moreover, 
heregulin-β1 was found to induce angiopoietin-2 (Ang-2) 
up-regulation via the Akt and ERK signaling in human breast 
cancer cell lines [7]. Immunohistochemical analysis of ErbB-
2 and Ang-2 in human breast carcinomas has revealed that 
Ang-2 expression in breast cancer correlates with ErbB-2 
expression [7]. Heregulin-β1 enhanced aggregation of MCF-7 
cells by activating PI3K [8]. Heregulin-β1 up-regulates VEGF 
C, a critical activator of tumor lymphangiogenesis that has 
been strongly implicated in the tumor metastasis [9] and also 
urokinase plasminogen activator which is serine proteinase 
involved in the destruction of extracellular matrix separated 
from the epithelial and stromal compartments [10]. However, 
in order to better clarify the precise role of heregulin-β1, it is 
still important to identify its new downstream effector mole-
cules. 
	 Aberrant production of mitochondrial reactive oxygen spe-
cies (ROS) can have dramatic effects on cellular function, 
in part, due to oxidative modification of key metabolic pro-
teins localized in the mitochondrion. Manganese superoxide 
dismutase (MnSOD) is the major ROS detoxifying enzyme 
localized in the mitochondria. During the electron transport 
in the respiratory chain assembly of mitochondria, substan-
tial amounts of superoxide are generated as an obligatory 
byproduct [11]. In this context, MnSOD plays a pivotal role in 
cellular antioxidant defence to combat deleterious ROS pro-
duced in mitochondria.
	 The role of MnSOD in protecting carcinogenesis associat-
ed with oxidative damage has been extensively investigated 
and well-documented [12-14]. It has been reported that over-
expression of MnSOD ameliorates the malignant phenotype 
of human breast cancer cells [15]. However, some of recent 
studies have shown that MnSOD stimulates proliferation and 
metastatic potential of certain cancer cells [16-20] and also 
confers drug resistance against anti-cancer therapies [21,22]. 
In the present study, we found the possible association of 
heregulin-β1-induced MnSOD expression with oncogenic 
properties of the human breast cancer cells (MCF-7). 

MATERIALS AND METHODS

Materials 
Heregulin-β1 was purchased from Lab Vision (Fremont, CA, 
USA). RPMI 1640 medium, fetal bovine serum, and penicillin/
streptomycin/fungizone mixture were obtained from Gibco 
BRL (Grand Island, NY, USA). M-MLV reverse transcriptase 

and the luciferase assay system with reporter lysis buffer 
were supplied by Promega (Madison, WI, USA). [γ-32P]ATP 
was the product of NEN Life Science (Boston, MA, USA). 
Anti-Akt and anti-P-Akt were provided from Cell Signaling 
Technology (Beverly, MA, USA). anti-ERK, anti-P-ERK, and 
anti-Nrf2 were obtained from Santa Cruz Biotechnology Inc. 
(Santa Cruz, CA, USA). An antibody against MnSOD was 
supplied by Stressgen Biotechnologies (Victoria, BC, Can-
ada). Secondary antibodies were purchased from Zymed 
Laboratories Inc. (San Francisco, CA, USA). LY294002 and 
U0126 were supplied by Calbiochem (San Diego, CA, USA) 
and Tocris (Ellisville, MO, USA), respectively. The reporter 
gene fusion construct for human antioxidant response ele-
ments (ARE), GC-mutant ARE, as well as control plasmid 
pEF were kindly provided by Dr. Jeffery A. Johnson (Uni-
versity of Wisconsin-Madison, Madison, WI, USA). Hema-
glutinin-tagged full-length Akt (HA-Akt) and kinase-dead Akt 
(KD-Akt) were kindly provided by Dr. An-Sik Chung (Korea 
Advanced Institute of Science and Technology, Daejeon, Ko-
rea).

Cell culture 
The MCF-7 cells were maintained at 37°C in a humidified at-
mosphere of 5% CO2/95% air in RPMI medium supplement-
ed with 10% fetal bovine serum and 100 ng/mL penicillin/
streptomycin/fungizone mixture. Cells were grown to 60% to 
80% confluence and trypsinized with 0.05% trypsin contain-
ing 2 mM EDTA. Cells were plated at an appropriate density 
according to an each experimental scale. Twenty four hours 
in advance, cells were switched to serum-free RPMI for treat-
ment.

Colony forming and migration assays 
MCF-7 cells, treated with negative control and MnSOD siRNA 
(Ambion, Inc., Austin, TX, USA), were plated in 6-well plates 
at a density of 150 cells per well. The RPMI was changed 
every other day. After one week of incubation, the colonies 
were fixed in cold methanol and stained by 0.5% crystal violet 
for 1 hour. The stained colonies were washed with double 
distilled water (DDW) to remove the excess dye. For the mi-
gration assay, MCF-7 cells were transfected with control and 
MnSOD siRNA. After 48-hour incubation at 37°C, the cells 
were seeded onto Culture-Inserts® (ibidi, Regensburg, Ger-
many) to generate a wound gap. After additional incubation 
for 24 hours, the insert was gently removed. The progression 
of wound closure was visualized at 24 hours under the micro-
scope. 

Reverse transcriptase-polymerase chain 
reaction (RT-PCR) 
Total RNA was isolated from MCF-7 cells using TRIzol® re-
agent (Invitrogen, Carlbad, CA, USA) according to the man-
ufacturer’s instructions. RT-PCR was performed following 
standard procedures. PCR conditions for MnSOD and for the 
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house-keeping gene, glyceraldehyde-3-phophate dehydroge-
nase (GAPDH) were as follow: MnSOD, 27 cycles of 94°C for 
1 minute; 55°C for 2 minutes; 72°C for 3 minutes, GAPDH, 
26 cycles of 94°C for 1 minute; 56°C for 2 minutes; 72°C for 
2 minutes. The pairs of primers were as follows (forward and 
reverse, respectively): MnSOD, 5’-CCT GAA CGT CAC CGA 
GGA GAA G-3’ and 5’-CTC CCA GTT GAT TAC ATT AGT-3’; 
GAPDH, 5’-AAG GTC GGA GTC AAC GGA TTT-3’ and 5’-
GCA GTG AGG GTC TCT CTC CCT-3’. 
	 Amplification products were resolved by 1.0% agarose gel 
electrophoresis, stained with ethidium bromide, and photo-
graphed under ultraviolet light. Primers were purchased from 
Bionics (Seoul, Korea).

Western blot analysis 
After treatment, MCF-7 cells were washed with PBS and 
mixed with lysis buffer (50 mM Tris-HCl, pH 8.0, 2 mM EDTA, 
1% Triton X-100 with a protease inhibitor cocktail tablet) for 
15 minutes on ice followed by centrifugation at 12,000 g for 
15 minutes. The protein concentration of the supernatant 
was measured by using the bicinchoninic acid (BCA) re-
agents (Pierce, Rockford, IL, USA). Protein samples (50 μg) 
were loaded to SDS-PAGE gel and transferred to the polyvi-
nylidene difluoride (PVDF) membrane (Gelman Laboratory, 
Ann Arbor, MI, USA). The blots were blocked for 1 hour at 
room temperature in fresh blocking buffer (0.1% Tween-20 in 
PBS containing 5% non-fat dry milk). Dilutions of primary anti-
bodies were made in PBS with 3% non-fat dry milk, and blots 
were incubated at 4°C. Following three washes with PBST, 
the blots were incubated with horseradish peroxidase-conju-
gated secondary antibodies in PBS with 3% non-fat dry milk 
for 1 hour at room temperature. The blots were washed again 
three times in PBST buffer, and transferred proteins were in-
cubated with ECL substrate solution (Amersham Pharmacia 
Biotech Inc., Piscataway, NJ, USA) for 1 minute according to 
the manufacturer’s instructions and visualized with X-ray film.

MnSOD assay 
SOD activity was measured by modification of an indirect in-
hibition assay developed by Spitz and Oberley [23,24]. Xan-
thine-xanthine oxidase was utilized to generate a superoxide 
flux. The nitroblue tetrazolium (NBT) reduction by O2- to blue 
formazon was monitored at 560 nm at a room temperature. 
The assay mixture also contained catalase to remove H2O2 
and diethylenetriaminepentaacetic acid (DETAPAC) to che-
late metal ions which may interfere with the assay system 
by stimulating the redox cycling. Sodium cyanide (NaCN, 5 
mM) was added (for 45 to 50 minutes) to assess the MnSOD 
activity. As sodium cyanide inhibits Cu/ZnSOD, the remain-
ing activity measured in the cells in the presence of NaCN 
reflects only MnSOD activity. Each one-mL assay mixture 
contained the final concentration of following reagents: 50 
mM potassium phosphate buffer (pH 7.8), 1 mM DETAPAC, 
56 μM NBT, 0.1 mM xanthine, 0.05 unit xanthine oxidase, 

MnSOD standard and 330 μg protein sample.

Immunofluorescent analysis of MnSOD
Cells were plated on the chamber slide and treated with 
heregulin-β1. After fixation with paraformaldehyde, samples 
were incubated with blocking agents (0.1% Tween-20 in PBS 
containing 5% bovine serum albumin), washed with PBS and 
then incubated with a diluted (1:100) primary antibody for 
overnight. After washing with PBS, samples were incubated 
with a fluorescein isothiocyanate (FITC)-conjugated second-
ary antibody for 1 hour and examined under a confocal mi-
croscope (Leika, Germany). 

Preparation of nuclear proteins 
After treatment with heregulin-β1, cells were washed with ice-
cold PBS, scraped in 1 mL PBS and centrifuged at 12,000 
g for 30 seconds at 4°C. Pellets were suspended in 200 µL 
of hypotonic buffer A (10 mM HEPES, pH 7.8, 10 mM KCl, 2 
mM MgCl2, 1 mM dithiothreitol [DTT], 0.1 mM EDTA and 0.1 
mM phenylmethylsulfonyl fluoride [PMSF]) for 15 minutes on 
ice, and 12.5 µL of 10% Nonidet P-40 solution was added 
for 5 minutes. The mixture was centrifuged for 6 minutes at 
12,000 g. Supernatant was kept for Western blot analysis. 
The nuclei were washed once with 400 µL of PBS, suspend-
ed in 70 µL of buffer C (50 mM HEPES, pH 7.8, 50 mM KCl, 
300 mM NaCl, 0.1 mM EDTA, 1 mM DTT, 0.1 mM PMSF and 
10% glycerol) for 20 minutes on ice and centrifuged for 6 min-
utes at 12,000 g. The supernatant containing nuclear proteins 
was collected and stored at –70°C after determination of the 
protein concentration. 

Electrophoretic mobility shift assay
Synthetic double strand oligonucleotide containing the Nrf2 
binding domain (ARE) was labeled with [γ-32P]ATP by T4 
polynucleotide kinase and purified on a Nick column (Amer-
sham Pharmacia Biotech, Buckinghamshire, UK). The bind-
ing reaction was carried out in a total volume of 25 µL con-
taining 10 mM Tris-HCl (pH 7.5), 100 mM NaCl, 1 mM DTT, 1 
mM EDTA, 4% glycerol, 0.1 mg/mL sonicated salmon sperm 
DNA, 10 µg of nuclear extracts and 100,000 cpm of the la-
beled probe. An 100-fold excess of unlabeled oligonucleotide 
(competitor) was added where necessary. After 50-minute 
incubation at room temperature, 2 μL of 0.1% bromophenol 
blue was added, and samples were electrophoresed through 
a 6% non-denaturating polyacrylamide gel at 150 V for 2 
hours. Finally, the gel was dried and exposed to X-ray film. 

Transient transfection and the reporter gene 
assay
MCF-7 cells were plated at a confluence of 50% density in 
6-well plate and grown in RPMI supplemented with 10% 
heat-inactivated fetal bovine serum at 37°C in a humidi-
fied atmosphere of 5% CO2/95% air. Transient transfec-
tions were performed using the N-[1-(2,3-dioleolloxy)pro-
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pyl]-N,N,N-trimethylammoniummethylsulfate (DOTAP) liposo-
mal transfection reagents according to the instructions sup-
plied by the manufacturer (Roche Molecular Biochemicals, 
Mannheim, Germany). After 8- to 12-hour transfection, cells 
were treated with heregulin-β1 for additional 8 hours, and the 
cell lysis was carried out with the reporter lysis buffer. After 
mixing the cell extract with a luciferase substrate (Promega), 
the luciferase activity was measured by the luminometer (An-
toLumat LB 953; EG&G Berthold, Bad Widbad, Germany). 
The β-galactosidase assay was done according to the sup-
plier’s instructions (Promega β-Galactosidase Enzyme Assay 
System) for normalizing the luciferase activity.

Public data resources
Coexpression and clinical data from The Cancer Genome At-
las (TCGA) were analyzed using the cBioportal web interface 
(http://www.cbioportal.org) including RNA-seq gene expres-
sion profile, and correlation plots with Spearman’s correla-

tions are presented.

Statistical analysis
When necessary, data were expressed as means ± SD of at 
least three independent experiments, and statistical analysis 
for single comparison was performed using the Student’s 
t-test. The criterion for statistical significance was P < 0.05.

RESULTS

Heregulin-ββ1 stimulates the migration of MCF-7 
cells
Treatment with hregulin-β1 (50 ng/mL) for 24 hours enhanced 
the migrative capability of MCF-7 cells (Fig. 1A). In order to 
figure out the clinical relevance of heregulin-β1 to human 
breast cancer progression, we intended to identify its poten-
tial target molecule. For this purpose, we analyzed the cor-
relation between NRG1 (Heregulin-β1 gene) and each of the 
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Western blot analyses, respectively. (E) Immunocytochemical analysis was performed using an anti-MnSOD antibody after the treatment of MCF-
7 cells with 50 ng/mL heregulin-β1 for 24 hours. Images of the cellular fluorescence were acquired using a confocal laser-scanning microscope 
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upregulated genes in the metastatic breast cancer cohorts. 
There was a positive correlation between NRG1 and MMP-
1 or VEGF (Figure S1). NRG1 expression also correlates 
with MnSOD (Fig. 1B). Stimulation of MCF-7 cells with he-
regulin-β1 resulted in enhanced expression of MnSOD, but 
did not influence the expression of CuSOD (Fig. 1C, upper 
panel). In parallel with elevated expression of the mRNA tran-
script, the protein levels of MnSOD were also increased in 
a time-dependent manner (Fig. 1C, lower panel). Treatment 
of cells with heregulin-β1 (0, 1, 10, and 50 ng/mL) induced 
expression of MnSOD mRNA and protein in a concentra-
tion-dependent manner (Fig. 1D). To ascertain the induction 
of MnSOD by heregulin-β1, we conducted an immunocyto-
chemical analysis using the anti-MnSOD antibody. As illus-

trated in Figure 1E, the cellular accumulation of MnSOD was 
evident in MCF-7 cells treated with heregulin-β1. Next, we 
determined the effects of heregulin-β1 on the catalytic activity 
of MnSOD. Thus, there was marked induction of MnSOD ac-
tivity observed at 24 hours following treatment with 1, 10, or 
50 ng/mL heregulin-β1 (Fig. 1F).

Heregulin-ββ1 induces the expression of MnSOD 
via ERK and Akt signaling in MCF-7 cells
To further clarify the possible upstream signaling pathway(s) 
involved in the heregulin-β1-mediated MnSOD induction, we 
examined the activation of ERK and Akt, two major signaling 
enzymes involved in cell survival against oxidative stress. 
The pharmacologic inhibition of ERK (Fig. 2A) and Akt (Fig. 
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2B) with U0126 (MEK inhibitor) and LY294002 (PI3K inhib-
itor), respectively abrogated heregulin-β1-induced MnSOD 
expression (Fig. 2C and 2D). To verify the role of ERK and 
Akt in the induction of MnSOD expression by heregulin-β1, 
MCF-7 cells were transfected transiently with dominant-neg-
ative ERK (DN-ERK) or KD-Akt. Genetic inhibition of ERK 
and Akt signaling also abolished the expression of MnSOD 
induced by heregulin-β1 (Fig. 2E and 2F). 

Heregulin-ββ1 increases the nuclear 
translocation and ARE binding activity of Nrf2 
Many studies on gene structures of various antioxidant en-
zymes have revealed the presence of the ARE sequence in 
their gene promoter regions [25]. This prompted us to exam-
ine the effects of heregulin-β1 on the activation of Nrf2. Treat-
ment of MCF-7 cells with heregulin-β1 induces time-depen-
dent increase in the expression Nrf2 (Fig. 2G) and nuclear 
translocation (Fig. 2H). The nuclear localization of Nrf2 was 
also confirmed by the immunofluorescence staining (Fig. 2I). 
The heregulin-β1-induced ARE-binding activity of Nrf2 peak-
ed at 4 hours and gradually decreased thereafter (Fig. 2J). 
The specificity of ARE-binding activity of Nrf2 was verified by 
the competition assay using an excess of unlabeled ARE-oli-
gonucleotide (Fig. 2J). To determine a potential inducing 
effect of heregulin-β1 on Nrf2-dependent gene transcription, 
MCF-7 cells were transiently transfected with a reporter gene 
construct (ARE-Luc) containing the ARE binding site ligated 
to luciferase gene. When transfected cells were incubated 
with heregulin-β1 for 8 hours, there was approximately a 30-
fold increase in the Nrf2-ARE reporter gene activity (Fig. 2K). 
In addition, transient transfection with GC-MT-Luc, a construct 
containing a mutant form of the GC dinucleotide at the 3’-most 
end of the ARE core which is essential for ARE function, ren-
dered the cells much less responsive to the heregulin-β1-in-

duced ARE reporter gene activity. To determine whether Nrf2-
ARE signaling is necessary for MnSOD expression, MCF-
7 cells were transiently transfected with a dominant negative 
Nrf2 (DN-Nrf2) construct or control vector (pEF). As ERK and 
Akt were involved in heregulin-β1-induced SOD upregulation, 
we examined whether these kinases could mediate Nrf2 ac-
tivation. Pharmacologic inhibition ERK and Akt abrogated the 
nuclear accumulation of Nrf2 (Fig. 3A and 3B). Further, func-
tional knock out of Nrf2 by dominant negative gene mutation 
abrogated heregulin-β1-induced MnSOD expression (Fig. 
3C). Taken together, these findings indicate that Akt and ERK 
are essential upstream enzymes responsible for inducing the 
expression of MnSOD by heregulin-β1 via the Nrf2-ARE sig-
naling.

MnSOD plays a role in proliferation and 
migration of MCF-7 cells
The involvement of MnSOD in MCF-7 cell growth and prolif-
eration was evidenced by marked reduction in migration (Fig. 
4A) and colony formation (Fig. 4B) by siRNA knockdown of 
SOD gene. 

DISCUSSION

It is well known that transmission of intracellular signaling me-
diated by the human epidermal growth factor receptor (HER/
EGFR/ErbB) family of tyrosine kinase receptors (HER1/
EGFR, HER2/ErbB-2, HER3/ErbB-3, and HER4/ErbB-4) is 
involved in growth regulation of breast cancer cells. Her2/
ErbB-2 overexpression has been implicated in the pathogen-
esis and progression of breast cancer [26-28]. The growth 
factor heregulin, expressed in about 30% of breast cancer 
tumors, activates the ErbB-2 receptor via induction of het-
erodimeric complexes of ErbB-2 with ErbB-3 or ErbB-4 [27]. 
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Figure 3. Heregulin-ββ1-induced nuclear translocation of NF-E2-related factor 2 (Nrf2) is mediated by extracellular signal-regulated protein 
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heregulin-β1 (50 ng/mL) for 8 hours for immunofluorescence (A) and Western blot (B) analyses of Nrf2. Scale bar, 100 μm. (C) Effects of dominant 
negative mutant Nrf2 on manganese superoxide dismutase (MnSOD) expression.
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Receptor-bound heregulin-β1 was shown to be transported to 
the nucleus [29], independent of nuclear receptor transloca-
tion. Nuclear heregulin-β1 modulated the activity of c-Myc, a 
critical regulator of cell cycle progression, differentiation, and 
malignant transformation [29], and also stimulated cancer cell 
proliferation in vitro [30]. Heregulin-β1 was reported to induce 
metastasis- and angiogenesis-related genes such as MMPs 
[5,27], VEGF [9,28] and Ang-2 [7]. Although it is obvious that 
heregulin-β1 plays a critical role for the progression of breast 
carcinormas, its molecular composition and biological func-
tions remain elusive. 
	 In this study, we found that heregulin-β1 induced the ex-
pression and activity of MnSOD in MCF-7 cells. MnSOD 
is one of typical antioxidant enzymes, which catalyzes the 
conversion of superoxide (O2-) to hydrogen peroxide. Several 
lines of evidence suggest that some antioxidative enzymes 
play a key role in the proliferation and invasiveness of tumor 
cells as well [31-33]. Hydrogen peroxide, the end-product 
of SOD, has been recognized as an important messenger 
in cellular signaling network [34]. There has been some 
evidence supporting that hydrogen peroxide is involved in 
up-regulation of MMPs [31]. Because of hydrogen peroxide 
derived from its catalytic reaction, MnSOD may be involved 
in growth signaling and increased metastatic potential of can-
cer cells. In support of this notion, MnSOD was found to be 
responsible for proliferation and metastatic potential in cancer 
[16-19] and increased drug resistance in response to anti-
cancer therapies [21,22]. Interestingly, estrogen-independent 

breast cancer cell lines such as MDA-MB231 and SKBR3 ex-
hibit a relatively high level of constitutive MnSOD expression, 
compared to T47D and MCF-7 which are estrogen-depen-
dent cancer cell lines [20]. 
	 Localized in mitochondria, MnSOD may also affect pro- 
or anti-apoptotic molecules such as Bcl-2, Bad, and Bax. In 
line with this notion, we found that heregulin-β1 treatment 
enhanced the clonogenicity and migrative capability of MCF-
7 cells. Since heregulin-β1 increases cell proliferation, while 
up-regulating MnSOD, there might be some inverse associ-
ation between MnSOD and apoptosis. Some investigators 
have reported that MnSOD deficiency induces alteration of 
p53-mediated pathways in cancer cells [35], while others 
have suggested that MnSOD inhibits mitochondria-mediated 
cell death [36,37]. 
	 Mitochondria are known to play a role in cancer cell growth 
and transformation through ROS-releasing metabolic activity 
[38]. Kattan et al. [20] have demonstrated that accumulation 
of H2O2 produced by high-MnSOD level is mainly involved 
in breast cancer cell growth which was blunted by the anti-
oxidant N-acetyl-L-cysteine. H2O2, as an important mediator 
involved in cell proliferation, activates several distinct intra-
cellular signaling cascades required for cell cycle progression 
in human malignant cells including breast cancer [39]. Con-
sidering the important role of MnSOD in metastasis and pro-
liferation, the induction of this antioxidant enzyme is likely to 
contribute to the oncogenic effects of heregulin-β1 on human 
breast cancer growth and progression. 
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	 It is noticeable that heregulin-β1-induced MnSOD expres-
sion is mediated by Nrf2. Both human and mouse MnSOD 
genes harbor a putative NF-κB transcription regulatory ele-
ment [40,41]. Also present in the promoter regions of SOD 
gene are multiple copies of specificity protein-1 [42,43], AP-1 
[40], AP-2 [44] and ARE sequences [45]. However, there is 
paucity of data demonstrating MnSOD expression regulated 
by Nrf2 transcription factor. Our study suggests that Nrf2 may 
play a role in the up-regulation of MnSOD induced by hereg-
ulin-β1 in MCF-7 cells. It is generally accepted that Nrf2 is a 
transcription factor involved in antioxidant enzyme induction 
to protect cells against oxidative insults. However, uncon-
trolled hyperactivation of Nrf2 may provide survival advan-
tage of cancer cells and resistance to anticancer drugs, many 
of which provoke oxidative stress [46]. 
	 It is known that diverse upstream kinases, such as MAPKs 
[47,48], PKC [49] and PI3K [50], are responsible for regu-
lating activation of transcription factor Nrf2. Our data show 
that heregulin-β1 appears to activate Nrf2 transcription factor 
through phosphorylative activation of ERK and Akt. ERK 
activation is likely to impact invasion and migration through 
multiple mechanisms by influencing transcription of genes 
involved in cell survival and proliferation, as well as by directly 
regulating the enzymes that are necessary for cell locomo-
tion [51]. Akt plays an important role in all survival signaling 
through inactivation of a series of pro-apoptotic proteins [52]. 
Both Akt and ERK are important mediators of cell survival 
signal transduction. Therefore, the activation of Akt and ERK 
by heregulin-β1 could explain the positive effect of this growth 
factor on tumor growth.

	 In conclusion, heregulin-β1 induces activation of Nrf2 via 
the Akt and ERK signaling pathways leading to up-regula-
tion of MnSOD in MCF-7 cells (Fig. 5). It is noteworthy that 
MnSOD is up-regulated in heregulin-β1-treated MCF-7 cells, 
because highly metastatic estrogen-independent cells (MDA-
MB231 and SKBR3) express a significantly higher basal Mn-
SOD level compared to estrogen-dependent human breast 
cancer cell lines (MCF-7 and T47D) [20]. These findings sug-
gest that the assessment of MnSOD status in breast cancers 
might be useful during anticancer treatment. Elevated levels 
of MnSOD may influence the effectiveness of both radiation 
therapy and anticancer drugs that can generate ROS via re-
dox-cycling. Further studies will be necessary to investigate 
the role of Nrf2 and MnSOD in the breast cancer metastasis.
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