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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disorder, and represents the most common
cause of dementia. In this study, we performed several different analyses to detect loci involved
in development of the late onset AD in the Russian population. DNA samples from 472 unrelated
subjects were genotyped for 63 SNPs using iPLEX Assay and real-time PCR. We identified five
genetic loci that were significantly associated with LOAD risk for the Russian population (TOMM40
rs2075650, APOE rs429358 and rs769449, NECTIN rs6857, APOE ε4). The results of the analysis
based on comparison of the haplotype frequencies showed two risk haplotypes and one protective
haplotype. The GMDR analysis demonstrated three significant models as a result: a one-factor, a two-
factor and a three-factor model. A protein–protein interaction network with three subnetworks was
formed for the 24 proteins. Eight proteins with a large number of interactions are identified: APOE,
SORL1, APOC1, CD33, CLU, TOMM40, CNTNAP2 and CACNA1C. The present study confirms
the importance of the APOE-TOMM40 locus as the main risk locus of development and progress
of LOAD in the Russian population. Association analysis and bioinformatics approaches detected
interactions both at the association level of single SNPs and at the level of genes and proteins.

Keywords: Alzheimer’s disease; APOE; case–control study; GWAS; SNP

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder and the most common cause
of dementia. The disease is characterized by the loss of neurons and synaptic connections
in the cortex and certain subcortical areas. AD is clinically characterized by decline in
progressive executive function, perceptual speed, short-term memory and other cognitive
capacities [1]. Degradation of cognitive functions has a major impact on an individual’s
quality of life. According to the World Alzheimer Report 2018, there are over 50 million
people suffering from AD or other dementias in the world [2]. Each year, approximately
5–7 million new cases of AD are registered in the geriatric population [3].

Two forms of AD are traditionally distinguished: early onset (EOAD, onset
<65 years old) and late-onset (LOAD, onset >65 years old). EOAD accounts for 1–6%
of AD cases. These cases are familial and are associated with classical Mendelian patterns
of inheritance. The amyloid precursor protein (APP), presenilin1 (PSEN1), and presenilin2
(PSEN2) genes are primarily implicated in EOAD. As for the later onset form of the dis-
ease, both genetic and environmental factors are considered to impact the disease risk
profile. LOAD constitutes approximately 95% of AD cases [4]. Heritability for LOAD is
estimated to be between 58% and 79%, on the basis of a twin study design [5]. The genetic
complexity of LOAD should not be underestimated. Due to general efforts, it has become
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clear that pathogenesis of LOAD is multi-faceted and is not limited to one set of simple
molecular interactions.

Common neurological and psychiatric disorders, including AD, schizophrenia, bipolar
disorder, Parkinson’s disease are now the subject of intensive studies. Over the last few
decades great progress in researching of susceptibility genetic loci to common mental
and neurological diseases has been made using new technologies and methods: genome-
wide association studies (GWAS), large meta-analysis, whole-exome/genome sequencing
(GWAS, meta-analysis, NGS).

Alzheimer’s disease and schizophrenia are two common diseases of the brain with
significant differences in neuropathology, etiology and symptoms. Data on the common
links in the pathogenesis of AD and schizophrenia are accumulating [6]. Thus, statistical
evidence has shown that AD and schizophrenia have a specific molecular background.
Transcriptome studies have found a similar pattern of gene expression in the superior
temporal gyrus in AD and schizophrenia [7]. Recently, GWASs have identified many
genomic loci characterized by small effect sizes associated with LOAD: CLU, CR1, PICALM,
BIN1, ABCA7, CD33 and others [8–10]. It is important to keep in mind that genetic asso-
ciation studies have often produced false findings, and thus need validation in multiple
sample sets. On the other hand, it is known that most GWAS SNPs in the associated
loci with disease cannot be explained on the basis of known pathological mechanisms.
Next-generation sequencing has assisted the identification of rare susceptibility modifying
alleles in APP, TREM2, and PLD3 [11]. However missing heritability for LOAD remains
extensive. While great progress has been made with respect to understanding the genetic
landscape of LOAD, the connection between the genes and variants promoting to the risk
of the disease remains unclear. The data accumulation and the use of new bioinformatics
approaches including those implemented in publicly available resources can help with this
problem. The biological roles in metabolic pathways of all newly identified variants, as
well as functionally related genes, can be assessed using ALIGATOR, KEGG, GO, STRING,
GeneMANIA [12–16]. Exploring potentially new protein interactions in common mental
and neurological diseases using bioinformatic strategies presents potential interest. Genetic
risk factors could be analyzed and integrated in terms of biological pathways and functions
to better understand the contribution of genetics to the general background of neurological
and mental diseases. Protein interaction data, derived from the GWAS database, can be
used to build protein–protein interaction (PPI) networks from genes associated with AD,
schizophrenia and cognitive performance. PPI network analysis could be an effective and
powerful approach to identify potential biological pathways or key genes involved in the
link of neurological and mental diseases.

In addition to the complexities of LOAD associated with numerous interconnected
environmental and genetic factors, the genetic architecture of LOAD differs between ethnic
groups. Our prior study estimated genetic diversity of sixteen native populations of
North Eurasia using a panel of genetic markers significantly associated with AD and
Schizophrenia [17].

Here we follow up on our prior research in a new cohort of the AD group and
controls. In the present study, we aimed to analyze 63 of the previously reported statistically
significant SNP markers associated with AD in approximately 450 Russian samples from
well-characterized LOAD case–control set. In addition, our focus was on the identification
of the molecular and functional pathways of these SNP markers using various statistical
and bioinformatics resources.

2. Materials and Methods
2.1. Samples

This study involved 185 unrelated LOAD patients (mean age 72.15 ± 7.87 years)
recruited and evaluated at the Department of Neurology and Neurosurgery (Siberian State
Medical University, Tomsk, Russia). Subjects were included in the study after a diagnosis
of LOAD according to the International Classification of Diseases, Tenth Revision, Clinical
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Modification (ICD-10-CM), the diagnostic and statistical manual of mental disorders, fourth
edition, text revision (DSM-IV TR) [18] and the NINCDS-ADRDA Alzheimer’s Criteria
(the National Institute of Neurological and Communicative Diseases and Stroke and the
Alzheimer’s Disease and Related Disorders Association) [19]. Structural imaging based
on magnetic resonance is a part of the clinical assessment of patients with suspected
AD. The presence of focal symmetrical medial temporal atrophy has predictive value for
AD. Our study included the cases with MRI images showing the characteristic atrophy
of the hippocampus. Cases had a minimum age at disease onset of 65 years. Control
group consisted of 287 unrelated cognitively normal elderly Russian participants (mean
age 71.8 ± 5.7 years). The same procedures for the control group were performed as
for the case group to exclude the LOAD diagnosis. Accordingly, history, neurologic
examinations, magnetic resonance images of brain volumes were examined for the control
group. Additionally, the MoCA test was conducted for the control group to exclude
mild cognitive impairment. The MoCA was developed to be more sensitive to mild
cognitive impairment in geriatric populations than other screeners (like the Mini Mental
State Examination-MMSE). MoCA scores ranged between 0 and 30 points, and the higher
scores indicated the better cognitive performance. In our study, the control group included
people with the MoCA score ≥ 23. Controls were recruited and evaluated at the Nebbiolo
Center for Clinical Trials (Tomsk).

All of the studied individuals, cases and controls were of the same ethnic (Russians)
and geographical origins, living in the Tomsk region of the Russian Federation. Table 1
presents the main demographic parameters of the studied groups. The study protocol was
approved by the Scientific Ethics Committee of the Research Institute of Medical Genetics
(Tomsk National Research Medical Center of the Russian Academy of Sciences) (protocol
number 2017/108). Individuals or legal guardians signed a written informed consent form
after the study objectives and procedures had been explained.

Table 1. Demographic parameters of the studied groups.

Parameter
Patients with LOAD,

n = 185
Control Group,

n = 287

Gender: Women 120 (64.86%) 200 (69.69%)

Gender: Men 65 (35.14%) 87 (30.31%)

Mean age 72.15 ± 7.87 71.8 ± 5.70

Race Caucasoid Caucasoid

Population Russians Russians

2.2. Genotyping

Genomic DNA was extracted from the peripheral venous blood using phenol–chloroform
extraction method. For this study, two multiplex panels of SNP markers that showed
repeated association with cognitive performance, AD or/and schizophrenia in the GWAS
were formed (see Table 2). Genetic markers were selected based on certain and clear
criteria. First of all, we selected loci reaching a genomic value (p < 5.00 × 10−7) for the
phenotype (cognitive functions, AD and/or schizophrenia in GWAS). The next requirement
concerned the type of marker: only SNPs were selected. The minor allele frequency (MAF)
should have been ≥ than 5% in at least one population group of the HapMap project or the
1000 Genomes project. Selected markers should form multiplexes using the Assay Design
Suite v2.0 genotyping tool (https://agenacx.com/online-tools/, accessed on 6 August
2021). All patients and controls were genotyped for 62 SNPs using iPLEX Assay following
the recommended protocol by the manufacturer (Agena Bioscience™, San Diego, CA, USA).
In addition to 62 SNPs, genotyped by MALDI/TOF mass spectrometry, rs7412 of APOE
was genotyped by real-time PCR using the TaqMan® SNP Genotyping Assay (Applied
Biosystems, Foster City, CA, USA).

https://agenacx.com/online-tools/
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Table 2. Frequencies of the 58 SNPs analyzed for LOAD.

Gene. SNP ID Allele a Functional Consequence
(NCBI)

Position
(GRCh38)

Minor Allele Frequency MAF

Cases Controls HapMap

CHD6 rs1010304 G/A intron variant 20:41473007 0.06 0.05 0.06

NCAPD3 rs1031381 T/C intron variant 11:134218788 0.40 0.43 0.42

MPC2 rs10489202 T/G intron variant 1:167933841 0.21 0.20 0.22

CSMD1 rs10503253 A/C intron variant 8:4323322 0.23 0.27 0.26

CCDC60 rs11064768 G/A intron variant 12:119380704 0.08 0.07 0.07

NT5C2 rs11191580 C/T intron variant 10:103146454 0.09 0.09 0.11

LOC105378889-PRMT6 rs12125971 T/C intergenic variant 1:106921021 0.08 0.08 0.07

LOC101928778-
LOC105371627 rs12140439 A/C intergenic variant 1:177753772 0.29 0.30 0.34

TENM4 rs12290811 A/T intron variant 11:79372576 0.12 0.12 0.14

LUZP2 rs12361953 G/T intron variant 11:24589584 0.14 0.14 0.15

CADM2 rs12494658 C/T intron variant 3:85825326 0.24 0.30 0.28

SNX29 rs12922317 G/A intron variant 16:11983775 0.40 0.35 0.35

LOC105373605 rs12989701 A/C intron variant 2:127130409 0.10 0.15 0.15

CTNNA2 rs13034462 G/T intron variant 2:79892368 0.03 0.04 0.05

BRD1 rs138880 C/A intron variant 22:49824963 0.21 0.21 0.23

DCHS2 rs1466662 A/T intron variant 4:154426241 0.35 0.35 0.69

CLU rs1532278 T/C intron variant 8:27608798 0.44 0.39 0.38

TOMM40 rs157580 G/A intron variant 19:44892009 0.34 0.36 0.35

LOC730100 rs1606974 A/G intron variant 2:51646461 0.08 0.06 0.07

NKAPL rs1635 T/G missense variant 6:28259826 0.07 0.06 0.05

LSM1 rs16887244 G/A intron variant 8:38173827 0.23 0.21 0.21

POM121L2 rs16897515 A/C missense variant 6:27310241 0.09 0.11 0.12

CNTN4 rs17194490 T/G intron variant 3:2506102 0.18 0.15 0.14

ARHGAP31 rs17203055 G/A intron variant 3:119365484 0.11 0.10 0.12

TCF4 rs17512836 C/T intron variant 18:55527730 0.008 0.02 0.05

CADM2 rs17518584 C/T intron variant 3:85555773 0.34 0.32 0.30

TCF4 rs17594526 T/C intron variant 18:55391007 0.01 0.02 0.05

GPR89P-
TRV-AAC1-5 rs17693963 C/A intergenic variant 6:27742386 0.06 0.06 0.08

TOMM40 rs2075650 G/A intron variant 19:44892362 0.26 0.28 0.16

CLU rs2279590 T/C intron variant 8:27598736 0.44 0.40 0.39

ZNF365 rs2393895 C/A intron variant 10:62579087 0.23 0.23 0.20

CSMD1 rs2616984 G/A intron variant 8:4625619 0.33 0.31 0.29

DNAH11 rs368331 G/A intron variant 7:21703356 0.07 0.06 0.06

FBXO40 rs3772130 G/A intron variant 3:121625293 0.20 0.25 0.25

STK24 rs3783006 C/G intron variant 13:98458955 0.46 0.48 0.47

CR1 rs3818361 A/G intron variant 1:207611623 0.33 0.25 0.25

CD33 rs3826656 G/A intron variant 19:51223357 0.24 0.24 0.23

APOE rs429358 C/T missense variant 19:44908684 0.22 0.10 0.13

ACSM1 rs433598 T/C intron variant 16:20668884 0.35 0.37 0.34

APOC1 rs4420638 G/A 500B Downstream Variant 19:44919689 0.18 0.14 0.18

CNTN4 rs4629318 A/G intron variant 3:2851590 0.15 0.15 0.14
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Table 2. Cont.

Gene. SNP ID Allele a Functional Consequence
(NCBI)

Position
(GRCh38)

Minor Allele Frequency MAF

Cases Controls HapMap

CDON rs472926 G/A intron variant 11:126035363 0.16 0.17 0.17

CACNA1C rs4765905 C/G intron variant 12:2240418 0.32 0.37 0.37

TENM4 rs530965 T/C intron variant 11:79354056 0.49 0.47 0.49

CSMD2 rs544991 T/C intron variant 1:33723829 0.31 0.27 0.31

PICALM-
RNU6-560P rs561655 G/A intergenic variant 11:86089237 0.30 0.35 0.33

CHD6 rs6129846 T/C intron variant 20:41478674 0.06 0.05 0.06

NRXN3 rs6574433 G/A intron variant 14:78319816 0.45 0.42 0.42

CR1 rs6656401 A/G intron variant 1:207518704 0.31 0.23 0.24

NECTIN2 rs6857 T/C 3 Prime UTR Variant 19:44888997 0.28 0.19 0.17

NECTIN2 rs6859 A/G intron variant 19:44878777 0.50 0.42 0.44

LOC105375630 rs7004633 G/A intron variant 8:88748082 0.21 0.19 0.20

RELN rs7341475 A/G intron variant 7:103764368 0.16 0.19 0.16

LOC105373605 rs7561528 A/G intron variant 2:127132061 0.31 0.31 0.34

APOE rs769449 A/G intron variant 19:44906745 0.17 0.08 0.10

KLHL1 rs7984606 C/A intron variant 13:69881529 0.003 0.004 0.05

NKAIN2 rs9491140 T/C intron variant 6:124370091 0.32 0.32 0.31

APOE rs7412 T/C missense variant 19:44908822 0.08 0.07 0.07
a Minor allele/major allele.

2.3. Statistical Analyses

Two SNPs (SORL1 rs11218343, TCF4 rs1261117) were excluded from the final analysis
because they showed genotype call rates < 87%. Per-marker genotype call rates were
higher than 95% for all the rest of the markers. The genotype distributions of 3 loci (LUZP2
rs1021261, CNTNAP2 rs10273775, GRIN2B rs2160519) were not consistent with the Hardy–
Weinberg equilibrium in the control group. Therefore, these three polymorphisms were
excluded from further analyses.

Pearson’s chi-squared test was performed to verify the Hardy–Weinberg equilibrium
of each SNP in LOAD patients and controls. The genetic variants in the control group
which were not in the Hardy–Weinberg equilibrium (p < 0.05) were excluded from the
analysis. Allele and genotype frequencies of each SNP were compared between LOAD
cases and controls using the chi-squared (χ2) test. The odds ratios (OR) and 95% confidence
intervals (CIs) were calculated to assess the relative risk. The Benjamini and Hochberg false
discovery rate method was used for multiple testing corrections [20]. A p value threshold
of 0.05 was used to determine significance.

The linkage disequilibrium (LD) between SNP pairs in the genomic region of APOE-
TOMM40 locus was quantified using Haploview version 4.2 software [21]. Haplotype
frequencies were determined using the EM algorithm. The LD block structure was deter-
mined using the Solid Spine method provided by the Haploview 4.2. The degree of genetic
linkage between the 8 SNPs in study groups was estimated as Lewontin’s coefficient D’
and Pearson’s correlation coefficient r2, where no color (D’ = 0) indicates that LD is weak
or nonexistent and the black (D’ = 1) indicates that there exists strong pairwise LD between
SNPs (Figure 1).
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Figure 1. The structure of linkage disequilibrium in the genomic region of the NECTIN2-TOMM40-APOE locus: (a) tThe
structure of LD for the cases; (b) the structure of LD for the controls. Linkage disequilibrium was measured by the D’ statistic:
black—a strong link (D’ = 1, LOD > 2), grey—a significant link (D’ < 1, LOD > 2), white—poor link (D’ < 1, LOD < 2). A D’
value of 100 indicates a complete LD between 2 markers.

Generalized multifactor dimensionality reduction (GMDR) analysis was carried out
for the detection and characterization of gene–gene interactions. This is a generalized MDR
framework based on the score of a generalized linear model [22]. The best interaction
model was selected on the basis of maximum testing balanced accuracy (TBA) and cross-
validation consistency (CVC). Permutation (p) results were considered to be statistically
significant at the 0.05 level. In our study, we used open-source software GMDR (http:
//sourceforge.net/projects/gmdr, accessed on 5 August 2021).

The protein–protein interaction network of the studied proteins was constructed with
the online analysis tool STRING v11.0 (http://www.string-db.org/, accessed on 5 August
2021). The interactions include indirect (functional) and direct (physical) associations,
which are derived from four sources: experiments, genomic context, co-expression (con-
served), and previous knowledge. Biological processes, cellular components and molecular
functions were analyzed by using a freely available system PANTHER (Released 2020-12-
18, http://www.pantherdb.org/, accessed on 5 August 2021). STRING and GO analyses
included 41 genes. SNPs of these genes were genotyped in the present study (Table 2). The
analyses did not include markers from intergenic regions.

3. Results

The minor allele frequencies of 58 SNPs in LOAD patients and in controls are presented
in a Table 2. Almost all the allele and genotype frequencies for the investigated loci were
within the range reported in other populations of the European descent in the 1000 Genomes
project (https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/, accessed on 5
August 2021), with the exception of three genetic variants. The G allele of rs2075650 at
TOMM40 gene has higher frequency (28%) in the Russian population in comparison with
other populations of the European origin in the 1000 Genomes project (16%). The minor
allele C of rs7984606 at KLHL1 gene has lower frequency (0.4%) in the Russian population
than other populations of European descent in the 1000 Genomes project (1%). The allele
A of DCHS2 rs1466662 has lower frequency (35%) in the Russian population than other
populations of European origin in the 1000 Genomes project (69%).

http://sourceforge.net/projects/gmdr
http://sourceforge.net/projects/gmdr
http://www.string-db.org/
http://www.pantherdb.org/
https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/
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The statistical power of the study was estimated for the Genetic Association Study
(GAS) Power Calculator (http://csg.sph.umich.edu/abecasis/gas_power_calculator/, ac-
cessed on 5 August 2021) assuming an odds ratio (Genotype Relative Risk) of 1.5, allele
frequencies 18% in AD cases, and a significance level of 0.05. The sample size of this study
was estimated to have 80% power to detect a positive association for 36 variants with 18%
frequency in AD cases. Power to detect an odds ratio of 1.5 or greater was 80% for six of the
nine SNPs in Table 2, showing non-significant results after correction for multiple testing
(FDR) for three studied variants: FBXO40 rs3772130, CR1 rs6656401, NECTIN2 rs6859. The
reporting of variants with low frequency which are not sufficiently powered is justified not
only by detecting associations with the disease but by estimating allele frequencies of these
markers in cases and controls belonging to specific population.

Out of the 58 markers tested, nine showed significant association to LOAD (Table 3).
Two variants demonstrated marginal p values for the allele and/or genotype frequency
difference between the LOAD and control subjects: FBXO40 rs3772130 and NECTIN2
rs6859. After correction for multiple testing the results remained statistically significant for
five genetic variants in three genes: TOMM40 rs2075650, APOE ε4, rs429358 and rs769449,
NECTIN rs6857 (Table 3). All of these markers were located in the same region of the
chromosome 19.

Table 3. Association of statistically significant genetic markers with LOAD in the Russian population.

Gene Variant Minor Allele OR (95% CI) Major Allele OR (95% CI) p Value p Value Corrected

APOE4 *
(ε3/ε4)

rs429358
rs7412 ε4 2.88 (1.95–4.24) ε3 0.35 (0.24–0.51) 5 × 10−8 8.62 × 10−4

APOE * rs769449 A 2.44 (1.62–3.66) G 0.41 (0.27–0.62) 1 × 10−5 2.5 × 10−3

APOE * rs429358 C 2.53 (1.75–3.67) T 0.39 (0.27–0.57) 5 × 10−7 1.7 × 10−3

TOMM40 * rs2075650 G 1.67 (1.21–2.29) A 0.60 (0.44–0.82) 2 × 10−3 3.4 × 10−3

NECTIN2 * rs6857 T 1.65 (1.21–2.26) C 0.61 (0.44–0.83) 2 × 10−3 4.3 × 10−3

CR1 rs3818361 A 1.5 (1.12–2.00) G 0.67 (0.5–0.89) 6 × 10−3 5.2 × 10−3

CR1 rs6656401 A 1.46 (1.09–1.96) G 0.68 (0.51–0.92) 0.01 6 × 10−3

NECTIN2 rs6859 A 1.34 (1.03–1.74) G 0.75 (0.57–0.97) 0.03 6.8 × 10−3

FBXO40 rs3772130 G 0.72 (0.52–0.99) A 1.39 (1.01–1.91) 0.04 7.7 × 10−3

OR odds ratio, CI confidence interval, p values corrected based on Benjamini and Hochberg method, * Statistically significant results after
multiple comparison correction.

Due to the fact that it is important for the LD analysis that the markers are in the
same chromosome region, we included five SNPs in the LD analysis, which in our study
were significantly associated with LOAD: TOMM40 rs2075650, APOE rs7412, rs429358
and rs769449, NECTIN rs6857. All of these markers were located in the same region of
chromosome 19 (the APOE-TOMM40 region). Markers TOMM40 rs157580, NECTIN rs6859,
APOC1 rs4420638 were genotyped, but were not significantly associated with the LOAD
in our study. These markers were also analyzed using the LD analysis, as they were
also located in the APOE-TOMM40 region of chromosome 19, like the other 5 markers.
The theoretically possible number of haplotypes was 256. A total of 44 haplotypes were
detected in our samples. Twenty haplotypes were revealed in the control group, while
24 haplotypes were found in the cases. Fourteen identical haplotypes were observed in
both groups. Identical haplotypes and their frequencies are presented in a Table 4.

http://csg.sph.umich.edu/abecasis/gas_power_calculator/
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Table 4. Identical haplotypes identified in both groups.

N

rs, Gene
Haplotype Frequencies

(Cases/Controls)
%

rs6859
NECTIN2

rs6857
NECTIN2

rs157580
TOMM40

rs2075650
TOMM40

rs769449
APOE

rs429358
APOE

rs7412
APOE

rs4420638
APOC1

1 G C G A G T C A 21.4/26.3

2 A C A A G T C A 15.7/16.4

3 G C A A G T C A 14.0/20.9

4 A T A G A C C G 11.0/6.4

5 A T A G G T C A 9.1/9.9

6 A C G A G T C A 7.1/5.5

7 G C G A G T T A 5.0/3.1

8 G C A A G T T A 2.8/3.0

9 A C A A G T C G 2.3/2.7

10 G T A G A C C G 1.4/1.0

11 G T A A G C C G 1.1/0.6

12 G C A A A C C G 0.7/0.6

13 A T A A G C C G 0.7/0.8

14 G C A A G T C G 0.5/1.0

Figure 2 demonstrates haplotypes with frequencies above 1% in the case and the
control groups.

Figure 2. Haplotype frequencies for the LOAD patients and the control group. * Statistically
significant differences between the cases and the controls (p < 0.05).

The number of main haplotypes (frequency above 10%) was four in the control group
and three in LOAD patients (Figure 2). Results of the analysis based on comparison of the
haplotype frequencies showed that risk haplotypes ATAGACCG (χ2 = 7.313, p = 0.0068;
OR 1.90, 95% CI 1.19–3.05) and ATAGACCA (χ2 = 14.589, p = 0.0001; OR 17.43, 95%
CI 2.24–135.62) were significantly associated with LOAD. Moreover, we identified one
protective haplotype GCAAGTCA (χ2 = 6.822, p = 0.009; OR 0.63, 95% CI 0.44–0.89)
generated from these eight SNPs. All of the above associations remain significant after
permutation test (p < 0.05).
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The structure of LD among eight SNPs in the APOE-TOMM40 locus for the cases
and controls is shown in Figure 1. Analysis of LD in cases and controls demonstrated
that these groups were characterized by different structures of haplotype blocks at APOE-
TOMM40 locus (Figure 1a,b). In controls, the first block consisted of four SNPs (rs6859,
rs6857, rs157580, rs2075650) and the second included three SNPs (rs769449, rs429358,
rs7412), while in the cases, the first block comprised four SNPs (rs6857, rs157580, rs2075650,
rs769449) and the second block was made up of two closely located SNPs (rs429358, rs7412).
Notably, this difference demonstrates the high level of LD in case group between rs429358
and rs7412 from the APOE gene, which are formed the APOE isoforms (ε2, ε3, ε4). The
haplotype block structure for control group demonstrates the blocks that include genes:
Block1-NECTIN2-TOMM40, Block2–APOE.

Although not every studied variant in genes was significantly associated with AD
by univariate (case–control) analysis, there were gene–gene interactions among variants
using generalized multifactor dimensionality reduction (GMDR) method. GMDR combines
genotypes into “high-risk” and “low-risk” groups in order to reduce multidimensional
data into only one dimension. In our study, we analyzed all possible combinations of 44
genes both in cases and in control subjects. There were three significant models as a result
of the GMDR analysis: one-factor, two-factor and three-factor model (Table 5).

Table 5. Gene–gene interaction models by GMDR analysis.

Best Interaction Model TBA # CVC p Value OR # (95% CI) #

APOE 0.59 6/10 0.0006 2.81 (1.54–5.13)

TCF4, APOE 0.66 10/10 <0.0001 4.04 (2.27–7.17)

CLU, TCF4, APOE 0.66 10/10 <0.0001 5.71 (3.03–10.78)

CVC—cross validation consistency, TBA—testing balanced accuracy, # Values rounded up to 2 decimal places.

Among these results, we selected two models (a two-factor and a three-factor) as the
best SNP combinations, based on the best Testing Balanced Accuracy (TBA) in data and
their high cross-validation consistency (CVC) value. Figure 3 shows the score distributions
in the best models. Seven genotype combinations with an increased risk of developing
LOAD and only one combination of low-risk genotypes were found for the two-factor
model (Figure 3a). The combination of low-risk genotypes showed statistically significant
differences between the studied groups: TCF4 rs17594526 “CC” and APOE rs429358 “TT”
(p < 0.001; OR = 0.25; 95% CI: 0.14–0.45). Fourteen genotype combinations with an increased
risk of developing LOAD and five combinations of low-risk genotypes were found for
the three-locus model (Figure 3b). Since we did not have all genotypes for the three-locus
model in GMDR analysis, we designated the data in this model as preliminary. The one-
locus model was computed for APOE rs429358 and the empirical p value for prediction
error using permutation testing was 0.0006, indicating the interactions among the three
variants contributed to a higher risk of AD than did single variant alone (Table 5).

In the present study, we conducted a protein–protein network interaction (PPI) search
with proteins of AD, schizophrenia and cognitive performance collected via the GWAS
database using STRING (v11.0). This exploratory bioinformatic analysis demonstrated a
potential network of interaction between proteins connected to AD, schizophrenia and
cognitive performance. PPI network analysis of 41 studied genes showed statistically
significant connectivity among proteins. Interaction enrichment had p-value < 1.0 × 10−16

for our gene set. This means that such enrichment demonstrates that the proteins are at
least partly biologically connected, as a group. The PPI network contained 24 nodes and
39 edges (Figure 4). The STRING indicated that the proteins formed three subnetworks of
interconnected gene products (Figure 4). Each subnetwork had a central protein. The first
subnetwork consisted of 10 proteins with APOE in the center: CD33, CR1, CLU, RELN,
SORL1, NECTIN2 (PRVL2), TOMM40, APOC, MPC2. The second subnetwork included
6 proteins with CACNA1C as the center component: GRIN2B, TENM4, CSMD1, NT5C2,
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POM121L2. In addition, the third protein subgroup had 8 nodes with CTNNA2 in the
center part: FBXO40, CNTN4, CTNNA2, CDON, CAMD2, TCF4, CHD6. Proteins with
a large number of interactions were identified (with edges from 8 to 5). The eight genes
with strong connections (“multiple interactions”) were APOE, SORL1, APOC1, CD33, CLU,
TOMM40, CNTNAP2 and CACNA1C (Figure 4). The largest number of connections was
established for the APOE protein (8). This large number of interactions is not surprising,
given the high known effect of the APOE gene for phenotypic modifications for several
medical traits [23–25]. In addition to proteins with a large number of interactions, there are
other proteins that can connect or act as bridges between subnetworks. The four “bridge”
genes were APOE, RELN, CNTNAP2 and GRIN2B. It should be noted that APOE and
CNTNAP2 represent both types of genes (“multiple interactions” and “bridge”).

Figure 3. Gene–gene interactions among TCF4 (rs17594526), APOE (rs429358) and CLU (rs1532278) loci in AD and healthy
subjects: (a) two-factor model; (b) three-factor model. The score distribution of AD subjects (left black bar in boxes) and
control subjects (right black bar in boxes) is shown for each genotype combination. High-risk genotype combinations are
represented by dark gray shade cells, while light gray shade cells represent low-risk genotype combinations. Cells with no
shading or white cells represent genotype combination for which no data is observed.
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Figure 4. Protein–protein interaction network of studied genes. The nodes and edges represent the proteins (genes) and
their interactions, respectively. The PPI network contained 24 nodes and 39 edges. The STRING indicated that the proteins
formed three subnetworks of interconnected gene products. Each subnetwork had a central protein: APOE, CACNA1C,
CTNNA2. All these three subsystems are connected together by RELN as a bridge.

To evaluate molecular function, cellular component, and biological process of our
gene set we used bioinformatics resource Gene Ontology (GO, http://geneontology.org,
accessed on 5 August 2021) databases via PANTHER (The Protein ANalysis THrough
Evolutionary Relationships, http://www.pantherdb.org, accessed on 5 August 2021). This
system includes correction for multiple testing for all GO categories, thus providing statis-
tically significant evidence for their involvement in disease susceptibility. The studied gene
set was enriched in three categories: molecular function (cell adhesion molecule binding),
cellular component (neuron part), and biological process (nervous system development).
Pathway enrichment analysis of genes using STRING is presented in Table 6.

http://geneontology.org
http://www.pantherdb.org


Genes 2021, 12, 1647 12 of 16

Table 6. Significantly enriched pathways of studied genes.

Pathway ID Pathway Description Observed Gene Count False Discovery Rate Matching Proteins in Your Network
(Labels)

GO:0022008 neurogenesis 15 0.00028

APOE,CDON,CLU,CNTN4,
CNTNAP2,CTNNA2,KLHL1,LSM1,
NRXN3,RELN,SORL1,STK24,TCF4,

TENM4,ZNF365

GO:0007155 cell adhesion 11 0.00036
CADM2,CD33,CDON,CNTN4,

CNTNAP2,CTNNA2,DCHS2,NRXN3,
PVRL2,RELN,TENM4

GO:0007399 nervous system
development 17 0.00036

APOE,CDON,CLU,CNTN4,
CNTNAP2,CTNNA2,DNAH11,GRIN2B,
KLHL1,LSM1,NRXN3,RELN,SORL1,

STK24,TCF4,TENM4,ZNF365

GO:0048699 generation of neurons 14 0.00036

APOE,CDON,CNTN4,
CNTNAP2,CTNNA2,KLHL1,LSM1,
NRXN3,RELN,SORL1,STK24,TCF4,

TENM4,ZNF365

GO:0032989 cellular component
morphogenesis 10 0.00044

CLU,CNTN4,CNTNAP2,CTNNA2,
NRXN3,PVRL2,RELN,STK24,

TENM4,ZNF365

GO:0050767 regulation of neurogenesis 10 0.00044
APOE,CDON,CNTN4,LSM1,
RELN,SORL1,STK24,TCF4,

TENM4,ZNF365

GO:0048666 neuron development 10 0.00045
APOE,CNTN4,CNTNAP2,CTNNA2,

KLHL1,NRXN3,RELN,STK24,
TENM4,ZNF365

GO:0031175 neuron projection
development 9 0.00058

APOE,CNTN4,CNTNAP2,CTNNA2,
KLHL1,NRXN3,RELN,

STK24,ZNF365

GO:0000902 cell morphogenesis 9 0.00061
CLU,CNTN4,CNTNAP2,CTNNA2,

NRXN3,RELN,STK24,TENM4,
ZNF365

GO:0032990 cell part morphogenesis 8 0.00064
CNTN4,CNTNAP2,CTNNA2,
NRXN3,PVRL2,RELN,STK24,

ZNF365

GO:0007417 central nervous system
development 10 0.00084

CDON,CLU,CNTN4,CNTNAP2,
CTNNA2,GRIN2B,KLHL1,RELN,

TENM4,ZNF365

GO:0007611 learning or memory 6 0.00089 APOE,CNTNAP2,DNAH11,GRIN2B,
NRXN3,RELN

4. Discussion

AD is the most common form of age-related neurodegenerative disease. To study such
complex diseases, it is necessary to apply various types of approaches. In this study, we
performed several different analyses to excavate loci involved in development of the late
onset AD in the Russian population. First of all, we focused on the potential associations of
SNPs previously identified in GWAS. Since not only AD is characterized by a decrease in
cognitive function, we also included GWAS loci for other reported traits in our analysis,
such as schizophrenia, unipolar depression, bipolar disorder, attention deficit hyperactivity
disorder, autism spectrum disorder and others.

Similar study designs have been reported in other papers for various disorders: AD
and Parkinson’s disease, AD and ischemic stroke, schizophrenia and bipolar disorder, and
others [26,27]. A recent study demonstrated an unbiased link between polygenic risk for
schizophrenia and a lower risk of psychosis in AD [28]. The most significant associations
with LOAD were observed in the APOE region on chromosome 19 (p < 5 × 10−8). Outside
the APOE region, the most significant association was found in CR1 gene on chromosome 1
(chr1:207611623, rs3818361, G/A, p = 6 × 10−3). This gene is one of the ten highest
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risk factors for developing AD. The CR1 gene encodes the complement receptor 1 (CR1),
which is one of the regulators of complement activity. The CR1 might prevent excessive
complement activation. The presence of CR1 on erythrocytes is noted as an important
component in protecting tissues against immune-complex deposition and following disease,
such as AD [29].

After correction for multiple testing (the Benjamini and Hochberg false discovery rate
method), only the APOE region genetic markers were remained statistically significant.
Interestingly, according to our data, the G allele frequency (28%) of rs2075650 at TOMM40
gene in our Russian sample sets is significantly higher than in other populations not only of
European descent (13–16%), but also of the Asian population (10–12%). Salakhov et al. [30]
found that TOMM40 gene rs2075650 was associated with low-density lipoprotein choles-
terol levels in healthy men group of the Russian population (Kemerovo, Russia), and G
allele frequency in the total group was 21%. It should be noted that, most of the genetic
variants contributing to risk of developing AD are located in non-coding regions and,
presumably, they may influence as a controller of the functional activity of closely located
genes that have an activating effect on transcription [31]. We can suggest that there may
be some additional genetic signal in this locus that is impact to risk AD. The study results
supplement the previous data on the AD risk development genetic markers in the Russian
population [32].

Within the chromosomal region 19q12-q13.33, there is an accumulation of SNPs that
are probably critical for beginning and development of AD. A huge number of publications
devoted to the role of this region in the progress of AD. In addition, although APOE was
identified as a susceptibility factor for LOAD over 25 years ago [33], it is still not clear
how the ε4 allele contributes to disease risk. Some observations indicate an independent
effect of SNPs of the NECTIN2-TOMM40-APOE locus [34], while other studies showed
that there are general effects of several SNPs [35]. Our data demonstrated that in both the
cases and the controls rs157580 of TOMM40 gene is in high pairwise LD with the SNPs
rs2075650 and rs769449 (D’ = 100). However, LOAD-affected individuals are characterized
by higher pairwise LD between neighboring SNPs compared with unaffected individuals
(Figure 1). Notably, the haplotype block structure for cases demonstrates that Block2
included rs429358 and rs7412 from the APOE gene, which are formed the APOE isoforms
(ε2, ε3, ε4). Our study showed that the haplotypes that include the ε3 allele of APOE and the
A allele of TOMM40 gene rs2075650 are associated with reduced risk for LOAD compared
with haplotypes that include the ε4 allele of APOE and the G allele of rs2075650. In a
recently published study on heritability of extreme longevity in human populations, it was
found that the ε4 allele of APOE is associated with substantial reduction in the chance for
extreme longevity [36].

Haplotypes that showed an association with a decrease in extreme longevity in Se-
bastiani et al. in our study demonstrated a significant association with an increased
risk of developing LOAD. The possible combinations of loci that may reduce the risk of
LOAD development were obtained by researching gene–gene interactions with GMDR.
Approximately two-fold reduced risk for LOAD was observed for the combination of CLU
rs1532278 “CC”, TCF4 rs17594526 “CC”, APOE rs429358 “TT” genotypes in the three-locus
model. In the model combining TCF4 and APOE, genotype combination CC/TT could
similarly be considered to protective to LOAD. Notably, our data presented intergenic
interaction between the three loci (CLU, TCF4, APOE), demonstrating no significant associ-
ations in our replicative analysis. Transcription factor 4 gene (TCF4) plays an important
role in nervous system development. TCF4, a basic helix–loop–helix transcription factor, is
broadly expressed and is critical for normal brain development. The gene has been identi-
fied as the cause of Pitt-Hopkins syndrome (PTHS), and it has been implicated in various
other neuropsychiatric diseases, including schizophrenia, autism and depression [37–39].

The STRING database aims to combine all known and predicted associations between
proteins, including both functional associations and physical interactions. In the present
study, we used this exploratory bioinformatic analysis to predict a possible PPI network
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between neurological and mental diseases with using GWAS database. The network shows
possible PPIs between associated genes of AD, schizophrenia and cognitive performance.
A protein–protein interaction network with three subnetworks was formed for 24 proteins.
A more detailed analysis of subnetworks detected the traits of protein grouping for each
of them. The first group (with the APOE) is characterized by the maximum number
of edges (21). Proteins of this subnetwork are related by common biological processes,
such as regulation (positive and negative) of various processes and molecule transport,
as well as such common molecular function as binding. There were no significant GO
associations for the other protein subgroup (the CACNA1C as a center node), but these
proteins were connected through publication studies with psychiatric diseases, such as
schizophrenia, bipolar disorder, depression, and others [40–42]. The grouping trait in the
third subnetwork (with the CNTNAP2 in the center) is the biological processes related
with the neuron development and differentiation, as well as with the regulation of these
processes. In addition, all these three subsystems are connected together by the Reelin as a
bridge. Reelin is a large signaling protein that is engaged in a cascade of cytoplasmic events
that control the migration of neurons during brain development and it is essential for the
correct development and plasticity of the cerebral cortex and regulate synaptic plasticity,
neurotransmission and memory in the adult brain. Presumably, Reelin plays a significant
role both in AD and in psychiatric disorders [43–45].

The PPI networks have limited clinical predictive value, but discover hypothetical
new paths of interaction. The forecasted PPI network needs careful interpretation and
warrants preclinical and clinical validations. Nevertheless, this network gives new facts
that will be helpful to new studies of general molecular background between neurological
and mental diseases.

5. Conclusions

In summary, genes and proteins affecting cognitive function are of special interest
in the search of genetic composition of AD. The vast majority of cases of AD are viewed
as sporadic results from the complex interaction of genetic risk factors and unknown
environmental conditions. The present study confirmed the importance of the APOE-
TOMM40 locus as the main risk locus of development and progress of LOAD. Association
analysis and bioinformatics approaches detected interactions both at the association level
of single SNPs and at the level of genes and proteins. Strong evidence for association with
LOAD was seen for the APOE-4 polymorphism, as well as for rs429358, rs769449 and
rs2075650, using various approaches: replicative association analysis, LD analysis, GMDR
analysis and protein–protein interaction analysis.

Currently, priority approaches are aiming not only to search for genes, but also to
establish their functional effect. This provides the possibility of using the progress made in
identifying the biological effects of risk alleles to recognize new protective mechanisms
against more rapid cognitive decline in AD. Identifying biological pathways that increase
risk may be useful in the future for the treatment of cognitive and behavioral disorders.
Nevertheless, the current findings are a step forward in in this direction. We believe that the
identification of additional risk loci would be useful from the development of predictive
approaches of AD.
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