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Abstract

Background: Articular cartilage has a limited potential for self-healing. Transplantation of genetically modified
progenitor cells like bone marrow-derived mesenchymal stem cells (MSCs) is an attractive strategy to improve the
intrinsic repair capacities of damaged articular cartilage.

Methods: In this study, we examined the potential benefits of co-overexpressing the pleiotropic transformation
growth factor beta (TGF-β) with the cartilage-specific transcription factor SOX9 via gene transfer with recombinant
adeno-associated virus (rAAV) vectors upon the biological activities of human MSCs (hMSCs). Freshly isolated hMSCs
were transduced over time with separate rAAV vectors carrying either TGF-β or sox9 in chondrogenically-induced
aggregate cultures to evaluate the efficacy and duration of transgene expression and to monitor the effects of
rAAV-mediated genetic modification upon the cellular activities (proliferation, matrix synthesis) and chondrogenic
differentiation potency compared with control conditions (lacZ treatment, sequential transductions).

Results: Significant, prolonged TGF-β/sox9 co-overexpression was achieved in chondrogenically-induced hMSCs
upon co-transduction via rAAV for up to 21 days, leading to enhanced proliferative, biosynthetic, and chondrogenic
activities relative to control treatments, especially when co-applying the candidate vectors at the highest vector doses
tested. Optimal co-administration of TGF-β with sox9 also advantageously reduced hypertrophic differentiation of the
cells in the conditions applied here.

Conclusion: The present findings demonstrate the possibility of modifying MSCs by combined therapeutic gene transfer
as potent future strategies for implantation in clinically relevant animal models of cartilage defects in vivo.
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Background
Articular cartilage defects are critical problems in ortho-
pedic surgery because this avascular tissue has a restricted
ability for self healing in the absence of chondrogenic cells
that may contribute to repair processes. Currently avail-
able options in the clinics including marrow stimulation
techniques (microfracture, pridie drilling, abrasion arthro-
plasty) to promote the penetration of such cells from the
subchondral bone marrow [1, 2], however, do not allow
one to reproduce an original cartilage surface in its struc-
ture and function, with generation of a fibrocartilaginous
repair tissue (type I collagen) of poor mechanical quality
instead of the native, highly organized hyaline cartilage
(proteoglycans, type II collagen) capable of supporting
joint loading and motion [1–4]. While administration of
bone marrow-derived mesenchymal stem cells (MSCs), an
attractive source of cells for regenerative purposes, has
been already attempted in patients to activate the re-
generative processes in focal cartilage defects [2, 5–10],
the outcomes have not been consistently associated
with the formation of functional, hyaline-like repair tis-
sue that fully and stably integrates with the surround-
ing, intact cartilage.
In this regard, genetic modification of MSCs prior to im-

plantation in sites of cartilage damage might be a potent
approach to overcome such issues by enhancing the chon-
droreparative activities of the cells [11, 12]. Various gene
sequences have been tested thus far as potential chondror-
egenerative candidates, including the cartilage oligomeric
matrix protein (COMP), bone morphogenetic proteins
(BMPs), transforming growth factor beta (TGF-β), insulin-
like growth factor I (IGF-I), basic fibroblast growth factor
(FGF-2), the SOX family of transcription factors, zinc
finger protein 145 (ZNF145), Indian hedgehog (Ihh), and
Wnt11 [13–24]. Yet reports from diverse groups showed
that multiple therapeutic gene transfer might be more
valuable to stimulate the repair activities in these cells
relative to independent treatments [13, 17, 21, 25–27], a
finding also described by us in human articular chon-
drocytes [28].
In the present study, and for the first time to our best

knowledge, we evaluated the possibility of codelivering
TGF-β and SOX9, two of the most potent chondrogenic
factors [29–33], to primary hMSCs as a means to stimu-
late the chondroreparative activities of such cells as a thor-
ough extension of our previous work using independent
application of these agents [22, 23]. Gene delivery was per-
formed using the attractive, clinically adapted recombin-
ant adeno-associated virus (rAAV) vectors that transduce
MSCs at very high efficiencies (up to 100 %) and over
extended periods of time (at least 3 weeks) without alter-
ing their differentiation potential [14, 16, 22, 23]. Of fur-
ther note, transduction via rAAV does not raise viral
interference, allowing for concomitant administration of

independent vectors in their targets [28]. Our data show
that successful, prolonged co-overexpression of TGF-β
and SOX9 via independent gene transfer using this vector
class synergically enhances the levels of proliferation,
biosynthesis, and chondrogenesis in hMSCs compared
with control treatments while delaying undesirable hyper-
trophic differentiation in vitro. These observations sup-
port the concept of modifying MSCs by multiple rAAV
vectors as a promising approach for implantation proce-
dures in articular cartilage defects in vivo.

Methods
Experimental design
Human bone marrow-derived mesenchymal stem cells
(hMSCs) were pelleted (2 × 105 cells/pellet) and kept in
chondrogenic medium [13, 14, 16, 17, 19–24] for
24 hours prior to transduction. The hMSC pellets were
next treated with the various rAAV vectors or vector
combinations according to the following nine conditions
for maintenance in chondrogenic medium over a period
of 21 days (Fig. 1): group 1, pellets transduced with 40 μl
rAAV-lacZ; group 2, pellets immediately transduced
with 40 μl rAAV-lacZ and 1 week later with 40 μl
rAAV-FLAG-hsox9; group 3, pellets immediately trans-
duced with 40 μl rAAV-lacZ and 1 week later with 40 μl
rAAV-hTGF-β; group 4, pellets immediately transduced
with 40 μl rAAV-FLAG-hsox9 and 1 week later with
40 μl rAAV-lacZ; group 5, pellets immediately trans-
duced with 40 μl rAAV-FLAG-hsox9 and 1 week later
with 40 μl rAAV-hTGF-β; group 6, pellets immediately
transduced with 40 μl rAAV-hTGF-β and 1 week later
with 40 μl rAAV-lacZ; group 7, pellets immediately
transduced with 40 μl rAAV-hTGF-β and 1 week later
with 40 μl rAAV-FLAG-hsox9; group 8, pellets cotrans-
duced with 20 μl rAAV-hTGF-β and 20 μl rAAV-FLAG-
hsox9; and group 9, pellets cotransduced with 40 μl
rAAV-hTGF-β and 40 μl rAAV-FLAG-hsox9.

Chemicals and reagents
All reagents were from Sigma (Munich, Germany) unless
otherwise indicated. Recombinant FGF-2 and TGF-β3
were purchased at Peprotech (Hamburg, Germany). The
dimethylmethylene blue dye was from Serva (Heidelberg,
Germany). The anti-TGF-β (V) and anti-SOX9 (C-20) anti-
bodies were from Santa Cruz Biotechnology (Heidelberg,
Germany), the anti-type II collagen (II-II6B3) antibody
from the NIH Hybridoma Bank (University of Iowa,
Ames, IA, USA), the anti-type I collagen (AF-5610) anti-
body from Acris Antibodies (Hiddenhausen, Germany),
and the anti-type X collagen (COL-10) antibody from
Sigma. Biotinylated secondary antibodies and the ABC
reagent were purchased at Vector Laboratories (Alexis
Deutschland GmbH, Grünberg, Germany). The TGF-β
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enzyme-linked immunosorbent assay (hTGF-β1 Quantikine
ELISA) was from R&D Systems (Wiesbaden, Germany).

Cell culture
Bone marrow aspirates (~15 ml) were obtained from the
distal femurs of osteoarthritic female and male patients
undergoing total knee arthroplasty (n = 6) (age 69–76
years). The study was approved by the Ethics Committee
of the Saarland Physicians Council. All patients provided
informed consent before inclusion in the study and all
procedures were in accordance with the Helsinki Declar-
ation. hMSCs were isolated and expanded in culture
according to standard protocols [16, 22, 23]. Briefly, as-
pirates were washed in Dulbecco’s modified Eagle’s
medium (DMEM) and centrifuged, and the pellet was
resuspended in Red Blood Cell Lysing Buffer in DMEM
(1:1). The resulting fraction was washed, pelleted, and
resuspended in DMEM containing 10 % fetal bovine
serum with 100 U/ml penicillin and 100 μl/ml strepto-
mycin (growth medium). Cells were plated in T75 flasks

and maintained at 37 °C in a humidified atmosphere with
5 % CO2. The medium was exchanged after 24 hours and
every 2–3 days thereafter using growth medium with re-
combinant FGF-2 (1 ng/ml). Cells were detached and
replated for further experiments at the appropriate dens-
ities. hMSCs were analyzed by flow cytometry for expres-
sion of stem cell surface markers (CD71+, CD105+,
CD34–) [16, 22, 23]. All experiments were performed with
cells at no more than passage 2.

Plasmids and rAAV vectors
The constructs were all derived from the same parental
adeno-associated vector 2 genomic clone, pSSV9 [34, 35].
rAAV-lacZ carries the lacZ gene encoding Escherichia coli
β-galactosidase under the control of the cytomegalovirus
immediate-early (CMV-IE) promoter. rAAV-hTGF-β car-
ries a 1.2 kb human active transforming growth factor
beta 1 (hTGF-β1) cDNA fragment (Invivogen, Toulouse,
France) and rAAV-FLAG-hsox9 a 1.7 kb FLAG-tagged
human sox9 (hsox9) cDNA, both cloned in rAAV-lacZ in

Fig. 1 Experimental design. hMSCs were pelleted and divided into nine groups as described in Methods. Group 1, rAAV-lacZ (40 μl); group 2,
rAAV-lacZ (40 μl), rAAV-FLAG-hsox9 (40 μl) 1 week later; group 3, rAAV-lacZ (40 μl), rAAV-hTGF-β (40 μl) 1 week later; group 4, rAAV-FLAG-hsox9
(40 μl), rAAV-lacZ (40 μl) 1 week later; group 5, rAAV-FLAG-hsox9 (40 μl), rAAV-hTGF-β (40 μl) 1 week later; group 6, rAAV-hTGF-β (40 μl), rAAV-lacZ
(40 μl) 1 week later; group 7, rAAV-hTGF-β (40 μl), rAAV-FLAG-hsox9 (40 μl) 1 week later; group 8, rAAV-hTGF-β (20 μl) concomitant with rAAV-FLAG-hsox9
(40 μl); group 9, rAAV-hTGF-β (40 μl) concomitant with rAAV-FLAG-hsox9 (40 μl). Cultures were maintained for 21 days in chondrogenic medium for further
evaluations. ELISA enzyme-linked immunosorbent assay, hMSC human bone marrow-derived mesenchymal stem cell, TGF-β transforming growth factor beta
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place of lacZ [16, 22, 23, 28, 36]. rAAV were packaged as
conventional (not self-complementary) vectors in the 293
packaging cell line using Adenovirus 5 and pAd8 for
helper functions. Purification, dialysis, and titration of the
vectors by real-time PCR were performed as described
previously [16, 22, 23, 28, 36], averaging 1010 transgene
copies/ml (1/500 functional recombinant viral particles)
[16, 22, 23, 28, 36].

rAAV-mediated gene transfer
hMSC aggregate cultures (2 × 105 cells) were prepared and
kept for up to 21 days in defined chondrogenic medium
(high-glucose DMEM 4.5 g/l, penicillin/streptomycin,
6.25 μg/ml insulin, 6.25 μg/ml transferrin, 6.25 μg/ml sele-
nous acid, 5.35 μg/ml linoleic acid, 1.25 μg/ml bovine serum
albumin, 1 mM sodium pyruvate, 37.5 μg/ml ascorbate 2-
phosphate, 10−7 M dexamethasone, 10 ng/ml TGFβ3) for
(co)transduction with rAAV (20 or 40 μl each vector, 4 ×
105 or 8 × 105 functional recombinant viral particles,
respectively, multiplicity of infection = 2 or 4) [16, 22, 23].

Transgene expression
To evaluate the production of TGF-β, samples were
washed twice and placed for 24 hours in serum-free
medium. The culture supernatants were collected and cen-
trifuged to remove debris, and TGF-β secretion was moni-
tored by ELISA [23]. Quantitative measurements were
performed on a GENios spectrophotometer/fluorometer
(Tecan, Crailsheim, Germany). Transgene (TGF-β, SOX9)
expression was also assessed by immunohistochemical
analyses using specific primary antibodies, biotinylated
secondary antibodies, and the ABC method with diamino-
benzidine as the chromogen [16, 22, 23, 28, 36]. To control
for secondary immunoglobulins, the samples were proc-
essed with omission of the primary antibody. Samples were
examined under light microscopy (Olympus BX 45;
Olympus, Hamburg, Germany).

Biochemical assays
hMSC aggregates were collected and digested with pa-
pain [16, 22, 23, 28, 36]. The DNA and proteoglycan
contents were determined with a fluorimetric assay
using Hoechst 22358 and by binding to dimethylmethy-
lene blue dye, respectively [16, 22, 23]. Data were nor-
malized to total cellular proteins using a protein assay
(Pierce Thermo Scientific, Fisher Scientific, Schwerte,
Germany). All measurements were performed on a
GENios spectrophotometer/fluorometer (Tecan).

Histological and immunohistochemical analyses
hMSC aggregates were harvested, fixed in 4 % formalin,
dehydrated in graded alcohols, embedded in paraffin,
and sectioned (3 μm). Sections were stained with
hematoxylin and eosin (H & E) (cellularity), toluidine

blue (matrix proteoglycans), and alizarin red (matrix
mineralization) as described previously [16, 22, 23].
Expression of type II/type I/type X collagen was de-
tected by immunohistochemistry using specific primary
antibodies as already described [16, 22, 23]. To control
for secondary immunoglobulins, sections were processed
with omission of the primary antibody. Samples were
examined under light microscopy (Olympus BX 45).

Morphometric analyses
The cell densities on H & E-stained sections, the inten-
sities of toluidine blue and alizarin red staining and
those of type II and type I collagen immunostaining
(pixels per standardized area), and the percentage of
cells positive for type X collagen immunostaining were
measured using 10 serial histological and immunohisto-
chemical sections for each parameter, test, and replicate
condition using the SIS analySIS program (Olympus),
Adobe Photoshop (Adobe Systems, Unterschleissheim,
Germany), and Scion Image (Scion Corporation, Frederick,
MD, USA) [16, 22, 23].

Real-time RT-PCR analyses
Total RNA from pellets (n = 3) was extracted from the
cultures using the RNeasy Protect Mini Kit with an on-
column RNase-free DNase treatment (Qiagen, Hilden,
Germany). RNA was eluted in 30 μl RNase-free water.
Reverse transcription was carried out with 8 μl eluate
using the 1st Strand cDNA Synthesis kit for RT-PCR
(AMV; Roche Applied Science, Mannheim, Germany). An
aliquot of the cDNA product (2 μl) was amplified by real-
time RT-PCR using the Brilliant SYBR Green QPCR Mas-
ter Mix (Stratagene, Agilent Technologies, Waldbronn,
Germany) on an Mx3000P QPCR operator system (Strata-
gene) as follows: initial incubation (95 °C, 10 minutes),
amplification for 55 cycles (denaturation at 95 °C,
30 seconds; annealing at 55 °C, 1 minute; extension at
72 °C, 30 seconds), denaturation (95 °C, 1 minute),
and final incubation (55 °C, 30 seconds). The primers
(Invitrogen, Darmstadt, Germany) used were SOX9
(chondrogenic marker) (forward, 5′-ACACACAGCT-
CACTCGACCTTG-3′; reverse, 5′-GGGAATTCTGG
TTGGTCCTCT-3′), aggrecan (ACAN, chondrogenic
marker) (forward, 5′-GAGATGGAGGGTGAGGTC-3′;
reverse 5′-ACGCTGCCTCGGGCTTC-3′), type II col-
lagen (COL2A1; chondrogenic marker) (forward, 5′-G
GACTTTTCTCCCCTCTCT-3′; reverse, 5′-GACCCG
AAGGTCTTACAGGA-3′), type I collagen (COL1A1;
osteogenic marker) (forward, 5′-ACGTCCTGGTGAA
GTTGGTC-3′; reverse, 5′-ACCAGGGAAGCCTCTC
TCTC-3′), type X collagen (COL10A1; marker of
hypertrophy) (forward, 5′-CCCTCTTGTTAGTGCCA
ACC-3′; reverse, 5′-AGATTCCAGTCCTTGGGTCA-
3′), and glyceraldehyde-3-phosphate dehydrogenase
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(GAPDH; housekeeping gene and internal control) (for-
ward, 5′-GAAGGTGAAGGTCGGAGTC-3′; reverse,
5′-GAAGATGGTGATGGGATTTC-3′) (all 150 nM
final concentration) [16, 22, 23]. Control conditions in-
cluded reactions using water and nonreverse-transcribed
mRNA. Specificity of the products was confirmed by melt-
ing curve analysis and agarose gel electrophoresis. The
threshold cycle (Ct) value for each gene of interest was
measured for each amplified sample using MxPro QPCR
software (Stratagene), and values were normalized to
GAPDH expression using the 2–ΔΔCt method, as described
previously [16, 22, 23].

Statistical analyses
Each treatment condition was performed in triplicate in
three independent experiments for each patient. Data
are expressed as the mean ± standard deviation (SD) of
separate experiments. The t test and the Mann–Whitney
rank-sum test were used where appropriate. Any P value
<0.05 was considered statistically significant.

Results
Effective and sustained TGF-β and sox9 co-overexpression
in chondrogenically-induced hMSC aggregate cultures via
combined rAAV-mediated gene transfer
hMSCs were first transduced with the various rAAV vec-
tors and vector combinations in chondrogenically-induced
aggregate cultures as presented in Fig. 1 to evaluate the

ability of this vector class to promote the co-expression of
the chondrogenic TGF-β and sox9 genes over time in cells
committed toward the chondrocyte phenotype compared
with control conditions.
Strong, significant expression of TGF-β was noted for

at least 21 days especially when the rAAV-hTGF-β vec-
tor was provided to the cultures, as noted by immuno-
histochemical analysis that revealed the strongest signal
upon concomitant TGF-β and sox9 gene transfer at the
highest vector doses applied (40 μl each vector) (Fig. 2a).
This observation was corroborated by results of a spe-
cific TGF-β ELISA (Fig. 2b), showing an up to 3-fold
difference when coapplying the TGF-β and sox9 vec-
tors at high vector dose (40 μl each vector) compared
with the lacZ condition (P ≤0.010). Strong SOX9 ex-
pression was also achieved for at least 21 days in the
cultures in the presence of the rAAV-FLAG-hsox9 vec-
tor as noted by immunohistochemistry, also revealing
the strongest signal in the simultaneous presence of
the TGF-β and sox9 vectors at high vector dose (40 μl
each vector) (Fig. 2b).

Effects of co-overexpressing TGF-β and sox9 via rAAV
upon the biological activities and differentiation potential
of chondrogenically-induced hMSC aggregate cultures
hMSCs were next transduced with the various rAAV
vectors and vector combinations in chondrogenically-
induced aggregate cultures to examine the potential

Fig. 2 Transgene expression in chondrogenically-induced hMSCs upon administration of rAAV vectors. hMSC aggregates were transduced with
the various vectors or vector combinations as described in Fig. 1 and in Methods. Samples were histologically processed after 21 days to detect
the expression of TGF-β and SOX9 by immunohistochemistry (magnification × 4; all representative data) a and to monitor the production of
TGF-β by ELISA b as described in Methods. **Statistically significant compared with group 1 (rAAV-lacZ) (**P ≤0.010). TGF-β transforming
growth factor beta
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effects of the concomitant TGF-β and sox9 expression
over time upon the proliferative, metabolic, and differenti-
ation activities in cells compared with control conditions,

with a focus on concomitant TGF-β/sox9 gene transfer at
high vector doses based on the findings of optimal trans-
gene co-overexpression.

Fig. 3 Biochemical analyses in chondrogenically-induced hMSCs upon administration of rAAV vectors. hMSC aggregates were transduced with
the various vectors or vector combinations as described in Fig. 1 and in Methods. Samples were processed after 21 days to monitor the DNA a
and proteoglycan contents b as described in Methods. *,**Statistically significant compared with group 1 (rAAV-lacZ) (*P ≤0.050, **P ≤0.010).
TGF-β transforming growth factor beta
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Fig. 4 (See legend on next page.)
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High, significant levels of cell proliferation were noted
for at least 21 days especially when rAAV-hTGF-β and
rAAV-FLAG-hsox9 were provided at the highest vector
doses tested (40 μl each vector), as noted by an evalu-
ation of the DNA contents in the cultures (7.2-fold dif-
ference compared with the lacZ condition; P ≤0.010)
(Fig. 3a) and of the cell densities on H & E-stained histo-
logical sections (1.9-fold difference compared with lacZ;
P ≤0.010) (Fig. 4a, b). Elevated, significant levels of
matrix synthesis and chondrogenic differentiation were
also reported for at least 21 days especially when the
TGF-β and sox9 vectors were administered at the high-
est vector doses tested (40 μl each vector), as observed
by an estimation of the proteoglycan contents in the cul-
tures (3.4-fold difference compared with lacZ; P ≤0.010)
(Fig. 3b) and of the intensities of toluidine blue staining
(1.4-fold difference compared with lacZ; P ≤0.010)
(Fig. 4a, c) and of type II collagen immunostaining
(1.6-fold difference compared with lacZ; P ≤0.010)
(Fig. 4a, d). These findings were corroborated by the
results of a real-time RT-PCR analysis revealing most
particularly enhanced levels of chondrogenic SOX9,
ACAN, and COL2A1 expression profiles via concomi-
tant TGF-β and sox9 gene transfer (48-fold, 260-fold,
and 23-fold difference compared with lacZ; P ≤0.010)
(Fig. 6).

Effects of co-overexpressing TGF-β and sox9 via rAAV
upon the hypertrophic differentiation processes in
chondrogenically-induced hMSC aggregate cultures
Finally, hMSCs were transduced with the various rAAV
vectors and vector combinations in chondrogenically-
induced aggregate cultures to determine the possible im-
pact of the concomitant TGF-β and sox9 expression over
time upon hypertrophic events in cells compared with
control conditions, again with a focus on the optimal
treatment condition.
Remarkably, coadministration of rAAV-hTGF-β and

rAAV-FLAG-hsox9 at the highest vector doses tested
(40 μl each vector) significantly decreased the levels of
hypertrophic differentiation for at least 21 days in the
cultures, as noted by an evaluation of the intensities of
alizarin red staining (1.2-fold difference compared with
lacZ; P ≤0.050) (Fig. 5a, b), of type I collagen immuno-
staining (1.2-fold difference compared with lacZ; P ≤0.050)
(Fig. 5a, c), and of type X collagen immunostaining (2.9-
fold difference compared with lacZ; P ≤0.010) (Fig. 5a, d).

Once again, these results were corroborated by findings of
a real-time RT-PCR analysis revealing most particularly
reduced levels of hypertrophic COL1A1 and COL10A1
expression profiles upon TGF-β and sox9 co-gene
transfer (25-fold and 50-fold difference compared with
lacZ; P ≤0.010) (Fig. 6).

Discussion
Strategies based on the administration of genetically
modified bone marrow-derived MSCs have attracted
increased interest in recent years as a means to enhance
the healing processes in articular cartilage defects [11, 12].
In this study, we tested the possibility of simultaneously
targeting hMSCs to overexpress the chondrogenic TGF-β
and SOX9 factors [29–33] by multiple gene transfer using
the potent rAAV vectors for a possible synergistic, positive
impact on the reparative activities of the cells in vitro.
Our results first indicate that concomitant expression

of TGF-β and sox9 was successfully achieved via inde-
pendent rAAV gene transfer in hMSCs in vitro for at
least 21 days, probably due to good penetration and
maintenance of the vectors in these targets, as previously
reported when applying these candidate genes as indi-
vidual treatments to the cells [22, 23]. Combined TGF-
β/sox9 gene transfer allowed for the durable production
of TGF-β at levels that were higher than those achieved
in the control lacZ condition or when providing rAAV-
hTGF-β with rAAV-lacZ instead of rAAV-FLAG-hsox9
at comparable vector codoses (1.3-fold to 3-fold more
elevated concentrations), possibly due to a regulatory,
positive effect of exogenous SOX9 factor upon the
expression of TGF-β. More, extensive work on the pro-
moter sequences will be needed to identify possible tar-
gets to each factor for trans-expression effects.
The data further show that prolonged, effective co-

overexpression of TGF-β and sox9 was capable of
enhancing the levels of cell proliferation, matrix biosyn-
thesis, and chondrogenic differentiation in hMSCs over
time in vitro (at least 21 days), concordant with the
properties of these agents and with our previous work
when rAAV-hTGF-β and rAAV-FLAG-hsox9 were inde-
pendently provided to the cells [22, 23, 29–33]. TGF-β/
sox9 coapplication was capable of stimulating these
activities in hMSCs to levels higher than those reached
in the control lacZ condition or when combining each
therapeutic sequence with lacZ at similar vector codoses
(1.2-fold to 7.2-fold more potent proliferative, anabolic,

(See figure on previous page.)
Fig. 4 Metabolic and differentiation activities in chondrogenically-induced hMSCs upon administration of rAAV vectors. hMSC aggregates were
transduced with the various vectors or vector combinations as described in Fig. 1 and in Methods. Samples were histologically and histomorphometrically
processed after 21 days to evaluate cellularity (H & E staining; magnification × 20) a, b and the deposition of matrix proteoglycans (toluidine blue staining;
magnification × 4) a, c and type II collagen (magnification × 4) a, d as described in Methods (all representative data). *,**Statistically significant compared
with group 1 (rAAV-lacZ) (*P ≤0.050; **P ≤0.010). H & E hematoxylin and eosin, TGF-β transforming growth factor beta
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Fig. 5 (See legend on next page.)
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and chondrogenic effects), demonstrating that additive
effects could be achieved by simultaneous gene transfer
of these two potent factors [37]. Equally important, com-
bined TGF-β/sox9 delivery advantageously delayed pre-
mature hypertrophic differentiation in hMSCs relative to
lacZ treatment, possibly resulting from antihypertrophic
effects of exogenous sox9 expression [22] that might
counterbalance the otherwise prohypertrophic activities
of TGF-β [23, 30, 31, 33] in the conditions evaluated
here. Interestingly, Liao et al. [38] also reported that ex-
ogenous overexpression of sox9 enhanced the chondro-
genic differentiation of MSCs comodified by BMP-2, a
member of the TGF-β superfamily, using coadenoviral
vector delivery, while inhibiting their hypertrophic differ-
entiation in vitro.
In conclusion, and for the first time to our best know-

ledge, we provide evidence for the benefits of cotransdu-
cing hMSCs via separate therapeutic rAAV vectors to
significantly improve their chondroreparative activities

in vitro. Work is ongoing to first corroborate the
current findings in similar animal cell populations in
vitro that may allow one to evaluate the feasibility of
translating these findings in experimental orthotopic
animal models of articular cartilage defects that
provide a natural environment for chondrogenesis
[14, 19, 39] in order to confirm that sox9 expression
can counteract possible hypertrophic effects of TGF-β
in vivo [40, 41].

Conclusion
The present findings show the potential of combining
stem cell-based and multiple gene-based approaches by
administration of independent rAAV gene transfer to
interactively stimulate chondroreparative activities of
progenitor cells as a means to improve the processes
controlling cartilage repair upon future implantation in
sites of cartilage injuries.

(See figure on previous page.)
Fig. 5 Hypertrophic differentiation in chondrogenically-induced hMSCs upon administration of rAAV vectors. hMSC aggregates were transduced
with the various vectors or vector combinations as described in Fig. 1 and in Methods. Samples were histologically and histomorphometrically
processed after 21 days to evaluate matrix mineralization (alizarin red staining; magnification × 20) a, b and the deposition of type I collagen
(magnification × 4) a, c and type X collagen (magnification × 4) a, d as described in Methods (all representative data). *,**Statistically significant
compared with group 1 (rAAV-lacZ) (*P ≤0.050; **P ≤0.010). TGF-β transforming growth factor beta

Fig. 6 Expression analyses in chondrogenically-induced hMSCs upon administration of rAAV vectors. hMSC aggregates were transduced with the
various vectors or vector combinations as described in Fig. 1 and in Methods. Samples were processed after 21 days to monitor the gene expression
profiles by real-time RT-PCR as described in Methods. The genes analyzed included the transcription factor SOX9, aggrecan (ACAN), type II collagen
(COL2A1), type I collagen (COL1A1), and type X collagen (COL10A1), with GAPDH serving as a housekeeping gene and internal control. Threshold cycle
(Ct) values were obtained for each target and GAPDH as a control for normalization, and fold inductions (relative to lacZ-treated pellets) were measured
using the 2–ΔΔCt method. *,#Statistically significant compared with rAAV-lacZ (*P ≤0.050; #P ≤0.010). TGF-β transforming growth factor beta
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