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A B S T R A C T

Background and objectives: Life History Theory (LHT) describes trade-offs that organisms make with

regard to three investment pathways: growth, maintenance and reproduction. In light of the reparative

functions of sleep, we examine sleep behaviors and corresponding attitudes as proximate manifesta-

tions of an individual’s underlying relative prioritization of short-term reproduction versus long-term

maintenance.

Methodology: We collected survey data from 568 participants across two online studies having differ-

ent participant pools. We use a mixture of segmented and hierarchical regression models, structural

equation modeling and machine learning to infer relationships between sleep duration/quality, atti-

tudes about sleep and biodemographic/psychometric measures of life history strategy (LHS).

Results: An age-mediated U- or V-shaped relationship appears when LHS is plotted against habitual

sleep duration, with the fastest strategies occupying the sections of the curve with the highest mortal-

ity risk: < 6.5 hr (short sleep) and > 8.5 hr (long sleep). LH ‘fastness’ is associated with increased

sleepiness and worse overall sleep quality: delayed sleep onset latency, more wakefulness after sleep

onset, higher sleep–wake instability and greater sleep duration variability. Hedonic valuations of sleep

may mediate the effects of LHS on certain sleep parameters.

Conclusions and implications: The costs of deprioritizing maintenance can be parameterized in the

domain of sleep, where ‘life history fastness’ corresponds with sleep patterns associated with greater

senescence and mortality. Individual differences in sleep having significant health implications can

thus be understood as components of lifelong trajectories likely stemming from calibration to

developmental circumstances. Relatedly, hedonic valuations of sleep may constitute useful avenues

for non-pharmacological management of chronic sleep disorders.

Lay Summary: Sleep is essential because it allows the body to repair and maintain itself. But time

spent sleeping is time that cannot be spent doing other things. People differ in how much they priori-

tize immediate rewards, including sociosexual opportunities, versus long-term goals. In this research,
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we show that individual differences in sleep behaviors, and attitudes toward sleep, correspond with psychological and behavioral differ-

ences reflecting such differing priorities. Orientation toward sleep can thus be understood as part of the overall lifetime strategies that

people pursue.

K E Y W O R D S : sleep; hedonic; life history theory; somatic maintenance; evolutionary medicine

INTRODUCTION

Sleep, to a large degree, is nonnegotiable—yet we nonetheless

often attempt to make bargains with it. We stay up too late,

sleep in too long, or don’t sleep long enough, and then we pay

a price—usually the next day, but sometimes much later down

the line. Important as sleep may be for our health and

well-being, other responsibilities and opportunities compete,

sometimes successfully so, for our time and attention. Time is

a resource that can never be replenished, and sleep sometimes

demands more of it than we are inclined to spare. Metaphors

for this tendency to barter with sleep can be found in our very

phylogenetic history. Compared to our closest taxonomic rela-

tives, we evolved to have the shortest sleep requirements, con-

siderably less than the 10.3 hr that would otherwise be expected

for a primate with our phenotypic characteristics [1]. But the

advantages of reducing sleep in favor of sociability and predator

and conspecific defense [1] may have been accompanied by a

significant cost—our species’ unique susceptibility to

Alzheimer’s disease [2]. In the world of natural selection, imper-

fection and compromise abounds. Evolved behaviors are sub-

ject to a host of constraints, trade-offs and opposing selective

forces—and sleep is no exception.

Haig [3] argues that within the apparently serene nightscape

of a mother sleeping beside her infant lies an ancient evolution-

ary tug-of-war: Paternally imprinted infant genes promote night-

time waking and suckling behavior to enhance growth at the ex-

pense of the mother’s fertility, while maternally imprinted genes

promote consolidated sleep in an effort to constrain the infant’s

growth and shorten the mother’s inter-birth interval. Total dom-

ination by one side due to a chromosomal loss of function

results in Prader–Willi (paternal deletion) or Angelman syn-

drome (maternal deletion), symptoms of which include exces-

sive or fragmented sleep, respectively; normative development

results from a delicate expressional stalemate between conflict-

ing sets of genes [4]. Throughout Homo sapiens’ evolutionary

history, the intragenomic conflict over sleep is thought to have

been influenced by local socioecological factors, such as sex-

biased dispersal patterns, along with whether sleep was sacri-

ficed altruistically (to protect the social group from danger) or

for the purposes of increasing individual mating success [5].

Phylogenetics notwithstanding, sleep genotypes apparently

interact with the environment to produce a wide range of phe-

notypes. In Hadza hunter-gatherers, for example, sleep–wake

patterns demonstrate striking plasticity, changing flexibly in

response to such environmental cues as activity level, light ex-

posure, moon phase, day/night temperature and length of day

[6]. Compared to Western populations, Hadza sleepers have

stronger circadian rhythms, but also shorter and poorer quality

sleep. At both the proximate and ultimate levels, human pat-

terns of sleep tend to reflect a set of ecologically imposed

demands and considerations.

Whereas a traditional medical view of sleep employs a largely

mechanistic (pathophysiology) approach to understanding and

treating sleep disorders, evolutionary perspectives can offer

additional and complementary insights into the phylogenetic,

ontogenetic and functional underpinnings of disordered pat-

terns of sleep [7]. As with any health-related behavior that con-

sists of both volitional and non-volitional aspects (e.g. eating),

deviations from ‘normal’ sleep behavior may be subject to a

host of folk explanations, in addition to complex social and cul-

tural norms and sanctions, potentially resulting in the stigma-

tization of individuals with non-normative patterns of sleep. In

this regard, functional and ontogenetic explanatory frameworks

can act as non-judgmental substitutes for their lay equivalents.

For health professionals, such frameworks may aid in empathiz-

ing with patients’ health-affecting habits and behaviors; the abil-

ity to effectively access another’s frame of reference is

contingent upon first understanding it. Given that sleep is an

evolved behavior, a full understanding of ‘disordered’ sleep ne-

cessarily includes an accounting of the various fitness costs and

benefits that may be associated with a given pattern of sleep—

both in relation to ancestral and modern contexts—along with

the contributions of relevant neurobiological mechanisms, the

individual life course, and interacting sociodemographic charac-

teristics and experiences.

A life history framework

Life History Theory (LHT) describes the fitness-relevant trade-

offs among three investment pathways available to organisms:

growth, maintenance and reproduction [8]. Because time, en-

ergy, and resources are limited, natural selection favors optimal

allocational strategies that maximize fitness under environmen-

tal contingencies. For example, under conditions of high extrin-

sic mortality and resource scarcity, death may occur before

long-term investments in growth and maintenance have paid

off; hence, it pays to prioritize rapid maturation and reproduc-

tion over maintenance. Conversely, when the opposite patterns

obtain, it pays to develop slowly in order to maximize
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phenotypic quality, the payoffs of which accrue over a long

period of maintenance. While LHT was originally used to study

interspecific differences in LH traits, it has since been also uti-

lized to understand sources of individual variation [9].

According to the developmental plasticity model of LHT, fea-

tures of the developmental environment which index likely char-

acteristics of the adult environment calibrate lifelong patterns

of prioritization in this regard, producing a probabilistically opti-

mal LH strategy (LHS) along a ‘fast–slow’ continuum [10, 11].

Cues of environmental harshness and unpredictability promote

the adoption of fast LH strategies, while inverse cues have the

opposite effect [12]. These developmental ‘decisions’ require no

conscious awareness; the timing of maturation and reproduc-

tion, and the overall trajectory, are informed by early hormonal

responses to environmental features [13].

We aim to extend and corroborate the human LHT literature

by linking measures of LH speed to assessments of sleep in

order to parameterize maintenance investment—an under-

studied pathway in the context of human LH strategy.

Sleep as a form of maintenance

The ultimate function of any maintenance process is to extend

the period of reproductive effort (e.g. courting, mating, parent-

ing)—either through diverting resources to critical systems (to

facilitate short-term survival), or through repair processes (to

facilitate long-term survival) [11]. Sleep constitutes investment

in maintenance via mechanisms dedicated to restoration and

regrowth [14, 15]. The maintenance functions of sleep occur

predominately during the non-rapid eye movement (NREM)

phase, which spans roughly 80% of the nightly sleep cycle in

adults [15, 16]. The remaining time spent asleep occurs in the

rapid eye movement (REM) phase, the function of which has

yet to be conclusively determined [17]. Like other maintenance

activities, sleep is largely mutually exclusive with both mating

effort and parenting effort, the two forms of reproductive effort

[5, 18]. The enormous time and opportunity costs of sleep hint

at its relative paramountcy within the domain of maintenance,

as sleeping precludes other vital somatic maintenance activities

(foraging, eating, vigilance against predators and parasites,

etc.).

Disrupted or altered sleep patterns entail maintenance costs

in multiple ways. First, insufficient sleep duration can result in

cardiovascular, metabolic and neurocognitive impairments [19,

20]. Second, excessive sleep duration is associated with

increased risk of obesity, diabetes, cardiovascular disease, and

stroke [21, 22]. Consolidating these findings, a U-shaped mor-

tality curve is seen, with seven-hour sleepers at the curve’s

nadir; habitual sleep durations shorter or longer than seven

hours are associated with a dose-dependent increase in mortal-

ity risk [23–25]. Parallel U-shaped associations are found

between sleep duration and inflammatory markers, with seven-

hour sleepers showing the lowest levels of systemic inflamma-

tion; compared against short-sleepers, long-sleepers exhibit

particularly elevated markers of inflammation [26, 27]. In experi-

mental models, the release of pro-inflammatory cytokines fol-

lowing disrupted sleep [28] has been directly implicated in the

pathogenesis of cardiovascular disease [29]. Thus, dysregulated

innate immunity represents a plausible pathophysiological

mechanism for the links between the extremes of sleep dur-

ation, chronic disease, and, ultimately, mortality [30, 31].

Duration notwithstanding, disturbed sleep (i.e. circadian in-

stability, delayed sleep onset latency [SOL], and/or greater

wakefulness after sleep onset [WASO]) is similarly associated

with systemic inflammation and greater all-cause mortality [27,

32]—again hinting at the mediating role of innate immunity

dysfunction [31].

A proposed hedonic dimension to sleep

Complementing the above ultimate account of sleep, consider

proximate mechanisms that may regulate sleep behavior. By

analogy, note that feeding behavior is driven by both homeostat-

ic (bioenergetic equilibrium) and hedonic (reward) mechanisms

[33] that interact to regulate caloric intake [34]. Because adjust-

ments to caloric intake can have downstream effects on main-

tenance processes [35], hedonic effects on appetite thus

mediate the maintenance pathway. We postulate that, corres-

pondingly, hedonic controls also mediate maintenance invest-

ments in sleep.

Hedonic pleasure describes positive affect acquired from the

physical sensation of a behavior. With regard to sleep, this

might include enjoyment derived from feelings of relaxation,

comfort, and relief experienced in sleeping. Hedonic motivation

describes the desire to engage in or avoid a behavior—depend-

ent upon the conscious and unconscious reinforcers associated

with said behavior [36]. This could include greater desire to en-

gage in sleep after repeated positive reinforcement (e.g. greater

energy and heightened cognitive alertness) following nights of

quality sleep [37].

Expression of sleep in the fast-slow LH continuum

A fast-LH strategy is ultimately defined by prioritization of cur-

rent over future reproduction [11]. Proximately, this manifests

as a phenotype characterized by the valuation of short-term

gains at the expense of future rewards [38]. In the context of the

nocturnal milieu, relevant short-term rewards include pleasure

derived from night-time socialization and other actions that, via

both direct and indirect pathways, would have resulted in repro-

duction in ancestral environments, while future rewards from
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quality sleep include positive affect, greater energy and good

health in the near and distant future.

We hypothesize that, consciously or unconsciously, individu-

als weigh the hedonic rewards of habitual non-sleep behavior

against the hedonic rewards of habitual sleep behavior when

deciding how much to prioritize sleep. Given that the principal

ultimate function of sleep is maintenance; that sleeping carries

high opportunity costs; and that maintenance investments

would be wasted by a lifespan suddenly cut short, we predict

that, compared to slower-LH individuals, faster-LH individuals

will have lower hedonic attributions of sleep—corresponding to

a lower valuation of maintenance processes compared to alter-

native behaviors. Consequently, we predict that faster-LH indi-

viduals will experience measurable sleep–wake deficits and

circadian disturbances. Providing preliminary grounds for this

prediction, previous work documents associations between

sleep variables and dimensions of impulsivity, with lower pre-

meditation being very weakly associated with shorter sleep, and

increased urgency (defined as the tendency to act rashly under

extreme emotions) being associated with symptoms of insom-

nia [39]. In another study, interrelationships were found be-

tween short-term orientation, heightened sociosexuality and

greater eveningness [40]. However, while including eveningness

and sleep duration, our model goes on to predict that fast-LH

individuals will display multiple manifestations of compromised

sleep representing reduced investment into maintenance,

including truncated sleep, delayed SOL, greater WASO, and/or

circadian disruption by way of unstable sleep/wake times and

varying sleep durations. In our preregistered initial formulation

of our model, we thus expected a simple inverse relationship

between LH speed and sleep duration. Subsequently, however,

seeking to make sense of our results, we revisited the clinical lit-

erature, attending more closely to the documented detrimental

correlates of both short sleep duration and long sleep duration.

In contrast to our initial approach, our post hoc model therefore

describes a U- or V-shaped relationship between LH speed and

sleep duration.

To explore the associations between LH and sleep, we con-

ducted two studies approved by the UCLA Office of the Human

Research Protection Program. Measures used are reproduced

in the Supplementary Data; registrations, datasets and analytic

code are archived at https://osf.io/kgvyt/.

Study 1 METHODS

Participants

Two hundred and ninety-three adult participants were recruited

via snowball sampling through the social networks of under-

graduate research assistants not otherwise involved in the

study. To maximize anonymity, no demographic information

was collected. A single randomly selected participant was

awarded a monetary prize, the amount and timing of which was

determined by the participant’s responses to a discounting

measure included in the survey. After filtering for a failed atten-

tion check or incompleteness, the final sample size was 263.

Due to the nature of our recruitment protocol, it was not pos-

sible to calculate a response rate.

Procedures and measures

LH strategy. There are two types of measures that can be

used to describe individual variation in LH strategy—process

(e.g. psychometric) and outcome (e.g. biometric/biodemo-

graphic) variables. Process variables attempt to measure LH

allocational strategies by capturing the underlying latent varia-

bles (psychological processes) which presumably mediate clus-

ters of ‘fast’ or ‘slow’ social and reproductive behavior. By

contrast, outcome variables measure the ultimate objectives of

those psychological processes—sexual onset, number of sexual

partners, age of first parenthood, number of offspring, lifespan,

and so on. Process and outcome variables each have trade-offs.

Assuming that the construct validity of a psychometric LH

measure has been established, the resulting process variable

can allow for a convenient statistical description of the network

of co-adapted attitudes, cognitions and psychosocial traits

which might affect life history allocations in a fitness-increasing

manner. In practice, attempting to compress all of individual

LH variation into a single dimension may end up producing an

overly facile depiction of a complex and multifarious entity [41].

An advantage of outcome variables is their ability to directly

measure tangible, real-world correlates of LH, which process

variables cannot do. On the other hand, outcome variables are

prone to interpretive difficulties, often as a result of evolutionary

disequilibrium. When the evolutionarily expected outcome of an

evolved behavior is uncoupled from that behavior due to a mis-

match between the environment of evolutionary adaptedness

(EEA) and the current environment, the outcome variable may

no longer accurately represent the proximate achievement of an

ultimate objective. For example, widespread availability of

contraception can uncouple the number of an individual’s off-

spring from the number of their sexual encounters—rendering

changes in the meanings of both variables. To mitigate these

limitations, we used a dual-pronged approach, employing both

types of measures. Process and outcome variables are compli-

mentary; the synthesis of the two can offer a unified perspective

of events on the timeline of LH expression [42].

K-Factor. A previous factor analysis [43] of 20 theoretically

specified LH subscales derived from items in the longitudinal

MIDUS survey of health and well-being (n¼ 2095, Ages 25–74)

revealed a general underlying factor (K-Factor) accounting for
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70% of the reliable variance between cognitive and behavioral

indicators of LHS; furthermore this latent factor was found to

load alongside Covitality (Physical and Mental Functioning) and

General Factor of Personality (a proposed social desirability fac-

tor derived from the ‘Big Five’ model of personality) on a single

higher-order construct (Super-K) which explained 91% of the

variance between the three lower-order factors, even after con-

trolling for participants’ sex, race, self/spousal education and

combined self/spousal/familial income from the previous

12 months. To measure the K-Factor, we used the Mini-K ver-

sion of the Arizona Life History Battery; 20 items (in our work,

a¼ 0.75) encompass six dimensions: insight, planning, and

control; parental relationship quality; friend social contact/sup-

port; family social contact/support; pair-bonding; and commu-

nity involvement. A meta-analysis of the Mini-K using data from

over 30 studies and 7000 participants has shown high levels of

nomological and convergent validity across a wide domain of

constructs and measures conceptually related to future-

oriented LH allocations, including: Physical and Mental

Functioning, Romantic Partner Strategy, General Factor of

Personality, Mutualistic Social Strategies, Antagonistic Social

Strategies (reversed), Emotional Intelligence, Executive

Functions, and Pro-Environmental Behavior [44]. A more posi-

tive K-Factor value indicates a slower-LH.

Sociosexual orientation. Sexuality is a central feature of LH

strategy, hence, to measure mating orientation and previous

sexual experience (PSE), we used an abbreviated version of the

Multidimensional Sociosexual Orientation Inventory (MSOI)

[45], which treats short-term mating orientation (STMO) (three

items; a¼ 0.88) and long-term mating orientation (LTMO)

(three items; a¼ 0.83) as separate dimensions. The PSE (three

items; a¼ 0.77) asks participants their number of one-time and

lifetime sexual partners, along with their number of sexual part-

ners in the last year.

Temporal discounting. The human LH literature documents

the developmental impact of childhood socioeconomic status

and mortality cues on risk-taking behavior and impulsivity in

adulthood [46]. Building on this, we presented participants with

an abbreviated version of the Kirby k delay-discounting task

(nine items), a measure of temporal discounting involving

choosing between smaller near-term and greater long-term fi-

nancial payments [47, 48]; participants were informed that one

randomly selected participant would be paid according to one

of their selections on this task. Higher k values represent

steeper discounting of future rewards.

Sleep duration and quality. The Sleep Timing Questionnaire

(STQ) [49] is a retrospective self-report measure of sleep in

which habitual sleep duration is derived from multiple

samplings of sleep and wake times (12 items; a¼ 0.95).

Additionally, to gauge participants’ perceived sleep needs, we

asked ‘How many hours of sleep do you need per night? (How

many hours would you sleep if you could hypothetically sleep as

long as you needed to?)’

Hedonic valuations of sleep. The hedonic value of sleep was

assessed using two novel items. The hedonic motivation (HVS-

M) item asks ‘If you could take a pill that would eliminate the

need to sleep, how often would you take such a pill?’; response

options on a five-point Likert scale are Never; Rarely; Regularly;

Often; Always. The item was reverse coded, hence a more posi-

tive HVS-M value represents a higher hedonic motivation for

sleep. The hedonic pleasure (HVS-P) item asks ‘Ignoring health

considerations and biological requirements, how much do you

enjoy the act of sleeping compared to other activities?’

Participants moved a slider (100 invisible graduations) ranging

from ‘Sleeping is my least favorite activity’ to ‘Sleeping is my fa-

vorite activity.’ A more positive HVS-P value indicates greater

hedonic pleasure from sleep.

Statistical analyses. All analyses were conducted using R

(Version 3.6.1; R Core Team, 2019). To identify the relative con-

tributions of LH strategies versus adjacent biodemographic out-

comes with respect to sleep health, we applied hierarchical

multiple linear regression models (see Supplementary Methods

and Results). No variable exhibited serious multicollinearity,

which was set at a threshold of variance inflation factor

(VIF)> 10 [50].

While there is no consensus on precise definitions for ‘short

sleep’ and ‘long sleep,’ Grandner [51] suggests that short

sleep is commonly characterized as ranging from <6 hr to

<7 hr of nightly sleep, while long sleep is typically defined as

ranging from >8 hr to >9 hr. We chose the midpoints of these

cutoffs, yielding <6.5 hr and >8.5 hr as the thresholds for

‘short’ and ‘long’ sleep, respectively. ‘Regular’ sleepers thus

have habitual sleep durations ranging from 6.5 hr to 8.5 hr of

nightly sleep.

Results

Overview of key variables and interactions. The high correl-

ation between lifetime sexual partners and sexual partners in

the last year, r(261)¼ 0.98, P< 0.001, is consistent with the

sample being composed primarily of young adults, as can be

expected given our recruitment procedure. On average, partici-

pants reported needing 8.14 hr (SD¼ 1.19) of sleep per night,

and an actual sleep duration of 7.44 hr (SD¼ 1.15). For a school

or work day, the mean usual bedtime and waketime were 11:29

p.m. and 7:32 a.m., respectively. For a weekend/off day, the

mean usual bedtime and waketime were 12:16 a.m. and 9:06
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a.m. Correlations among major variables are reported in

Table 1. See Supplementary Figs. S1 and S2 for qualitative

responses regarding sleep detriments.

Are LH strategies instructive about participants’ habitual
sleep durations?. Employing a simple framing of sleep as

involving a trade-off between sociosexual opportunities and

maintenance, we initially operationalized our thesis as a

linear prediction that faster-LH (lower K-Factor) individuals

would sleep less than their slower-LH (higher K-Factor)

peers. However, subsequent examination revealed that,

congruent with the non-linear empirical relationships be-

tween sleep duration and mortality risk discussed earlier,

three different modeling approaches support a non-linear

interpretation of the relationship between K-Factor (LH-K)

and sleep duration, with the steepest portion of the U- or

V-shape (centered at roughly 7 hr) reflecting the slowest LH

strategies (visualized in Fig. 1, model details in

Supplementary Methods and Results).

An ANOVA between LH K-Factor and sleep duration category

yielded a significant interaction effect, F(2, 260)¼ 4.25,

P¼ 0.015. Contrasts revealed that, compared to sleepers in the

regular range, habitual short-sleepers, t(2)¼�2.58, P¼ 0.016

and long-sleepers t(2)¼�2.91, P¼ 0.011 had significantly

lower K-Factors (faster-LH strategies). When compared against

long-sleepers, short-sleepers did not significantly differ in K-

Figure 1. Study 1: Life history strategy versus habitual sleep duration. Values which are lower on the y-axis represent slower-LH strategies (higher K-Factor).

Shaded regions represent the 95% confidence interval. (A) Null linear regression model. (B) LOESS (Locally Estimated Scatterplot Smoothing) model

(span¼ 0.75). (C) Second order polynomial model; compared to the null model, this model had a significantly better fit (P¼ 0.042). (D) Segmented regres-

sion model; the dotted vertical line indicates the estimated breakpoint (7.15 hr). Compared to the null model, the breakpoint model had a significantly better

fit (P¼ 0.029). R-squared values for the null, segmented, and 2nd order polynomial regression models were 0.001, 0.028 and 0.017, respectively. n¼ 263.
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Factor, t(2)¼�0.55, P¼ 0. 584. A Tukey’s honest significant

difference test (HSD) confirmed a significant difference

(P¼ 0.028) only between the K-Factor means of short

(M¼ 1.01, SD¼ 0.77) and regular sleepers (M¼ 1.30,

SD¼ 0.61), d¼ 0.45.

Do LH indicators interact with hedonic valuations of sleep
behavior?. There was no significant linear relationship be-

tween LH-K and hedonic motivation (HVS-M), r(261)¼ 0.07,

P¼ 0.246 or between LH-K and hedonic pleasure (HVS-P),

r(261)¼ 0.02, P¼ 0.781 (non-linear analyses also did not yield

convincing models of higher-order relationships; see

Supplementary Methods and Results). However, a significant

inverse correlation was found between short-term mating orien-

tation and hedonic motivation (Table 1). Several significant yet

weak relationships were observed between hedonic valuations

of sleep and sleep behavior (Table 1); HVS-M was positively

associated with sleep/wake stability (SWS) and negatively asso-

ciated with eveningness, sleep duration variability (SDV), and

hypothetical sleep duration variability (H-SDV). Moreover, HVS-

M was shown to moderate the positive effect of LH-K on SWS

(Supplementary Table S1). HVS-P was weakly but positively

associated with self-reported sleep need, r(261)¼ 0.14,

P¼ 0.024, time in bed on a weekend, r(261)¼ 0.19, P¼ 0.002,

late-shifted time in bed on a weekend, r(261)¼ 0.25, P< 0.001,

habitual time in bed, r(261)¼ 0.13, P¼ 0.031, habitual sleep

duration, r(261)¼ 0.14, P¼ 0.021, and eveningness, r(261) ¼
0.15, P ¼ 0.014. Finally, there was a significant positive correl-

ation of 0.17 (P¼ 0.007) between hedonic motivation and he-

donic pleasure.

Are LH indicators associated with sleep health?. Results

demonstrated significant protective associations between LH

slowness and sleep-wake stability (Supplementary Table S1),

sleep onset latency (Supplementary Table S2), wakefulness after

sleep onset (Supplementary Table S3), and hypothetical sleep

duration variability (Supplementary Table S4)—even when con-

trolling for mating effort. Higher temporal discounting rates

were weakly associated with greater WASO, and very weakly

negatively associated with both eveningness and H-SDV

(Table 1). The combination of LH and sociosexual indicators

explained between 2.2% (SDV) and 8.9% (eveningness) of the

variance in parameters related to sleep health, and the full mod-

els including hedonic motivation and pleasure explained be-

tween 4.4% (SOL) and 14.6% (H-SDV) of the variance.

When our original simple prediction of an inverse linear rela-

tionship between LH speed and sleep duration is modified in

light of the U-shaped relationship between sleep duration and

mortality risk, the results of Study 1 can be understood as large-

ly consistent with the hypothesized relationship between the

prioritization of sleep and LHS. To examine the replicability of

these results, in Study 2 we employed largely the same instru-

ments with a different sample population.

Because Study 1 used a retrospective questionnaire of habit-

ual sleep, these results are likely not reflective of day-to-day fluc-

tuations in sleep duration. Since homeostatic mechanisms of

sleep are fairly robust in ensuring that some lost sleep is even-

tually made up [52], a single value of habitual sleep duration

might hold multiple meanings. For example, an individual who

is perpetually sleep deprived during most of the week, but

‘catches up’ on the weekends [53], can have the same observed

habitual sleep duration as someone who consistently sleeps the

same number of hours per night, and experiences no transient

sleepiness as a result. We therefore added a measure of partici-

pants’ sleepiness to address potential day-to-day fluctuations in

sleep behavior.

Study 2 METHODS

Participants

Three hundred and eleven participants were recruited via

Amazon’s Mechanical Turk platform. In addition to a randomly

selected prize contingent upon selections made in the Kirby k

measure as in Study 1, each participant was compensated

$1.50 for the 15 min study. After applying the inclusion criteria

used in Study 1, the final sample consisted of 305 adults (57%

female), age 19–73 (M¼ 38.72 years, SD¼ 12.14).

Procedures and measures

(For minor changes made to the sleep–wake stability and sleep-

need items, see Supplementary Methods and Results.)

Hedonic motivation. The item used in Study 1 asks partici-

pants, ‘If you could take a pill that would eliminate the need to

sleep, how often would you take such a pill?’ Out of concern

that participants may have envisioned possible medical conse-

quences, we added the following preface: ‘Scientists have

invented a pill that temporarily eliminates the need to sleep for

24 hours. The pill does not permanently alter your body in any

way, and has zero side effects.’

Sleepiness. To better capture individual variance in sleep be-

havior, we added the Karolinska Sleepiness Scale [54], a subject-

ive measure of sleepiness.

Statistical analyses. A fundamental assumption of our model

is that a fast life history strategy involves the pursuit of socio-

sexual behavior (investment in short-term reproduction) at the

cost of sleep (investment in long-term maintenance). Single re-

gression models—multivariate or otherwise—may confer
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information about the strength of relationships between varia-

bles, but they cannot unequivocally distinguish between down-

stream and upstream effects. We therefore used structural

equation modeling, employing the LHT assumption that LH

strategy is the biological antecedent to maintenance and

reproduction-related psychological/behavioral outcomes (see

Supplementary Methods and Results for details of model

construction).

Results

On average, participants reported that they needed 7.34 hr

(SD¼ 1.16) of sleep per night, with an actual sleep duration of

7.32 hr (SD¼ 1.17). On school/work days, the usual mean bed-

time and waketime were 11:00 p.m. and 7:06 a.m., respectively;

on weekends/off days, these were 11:50 p.m. and 8:23 a.m., re-

spectively. Correlations among major variables are reported in

Supplementary Table S7. In Study 2, the mean temporal dis-

counting rate was triple that of Study 1’s, while the SD was dou-

ble. Additionally, the Kirby k showed no significant associations

with any variable. See Supplementary Figs. S3 and S4 for quali-

tative responses regarding sleep detriments.

Does the association between LH ‘fastness’ and short/long
sleep replicate?. A central finding of Study 1 was that faster-

LH (lower K-Factor) individuals are more likely to sleep less

than, or more than, the optimal duration for health. When LH-K

was again plotted against habitual sleep duration using LOESS,

a U-shaped curve resulted (Supplementary Fig. S5), but with a

slope that was gentler than Study 1’s. Similar to the plot in

Study 1, the steepest portion of this fitted curve reflected the

slowest LH strategies, with a segmented model converging on

an estimated breakpoint of 6.85 hr (SE¼ 0.64). However, in

Study 2, neither the breakpoint (P¼ 0.196) nor polynomial

model (P¼ 0.162) achieved a significantly better fit than the

null. To investigate whether this lack of significance was due to

a Type 1 error in Study 1 or the result of a change in the sample

population, we also conducted secondary analyses of the rela-

tionships between LH-K and habitual sleep duration in a

younger subsample (Aged 19–29, M¼ 26.08, SD¼ 2.59) with

the goal of approximating the presumed sample population of

Study 1 while still maintaining a reasonable sample size

(n¼ 79). Breakpoint analysis for this subsample converged on

an estimate of 7.17 hr (SE¼ 0.53); both the V-shaped seg-

mented (P¼ 0.040) and U-shaped polynomial (P¼ 0.045) mod-

els achieved a significantly better fit than the null (Fig. 2; see

Supplementary Methods and Results for details).

An ANOVA between LH K-Factor and category of sleep dur-

ation in the full cohort yielded a nonsignificant interaction ef-

fect, F(2, 302)¼ 0.87, P¼ 0.421. However, ANOVA between LH

K-Factor and category of sleep duration in the younger

subsample demonstrated a significant interaction effect, F(2,

76)¼ 4.44, P¼ 0.015. Contrasts revealed that, as in Study 1, ha-

bitual short-sleepers, t(2)¼�2.91, P¼ 0.008 and long-sleepers

t(2)¼�2.86, P¼ 0.008 had significantly lower K-Factors (faster-

LH strategies) than sleepers in the regular range. As in Study 1,

short- and long-sleepers did not vary significantly in K-Factor

amongst themselves, t(2)¼�0.44, P¼ 0. 658. A Tukey’s HSD

confirmed a significant difference (P¼ 0.041) between only the

K-Factor means of long (M¼ 0.52, SD¼ 0.93) and regular

(M¼ 1.05, SD¼ 0.61) sleepers. The K-Factor mean difference

(d¼ 0.67) between short (M¼ 0.63, SD¼ 0.66) and regular

(M¼ 1.05, SD¼ 0.61) sleepers did not reach significance

(P¼ 0.075) as it did in Study 1, potentially due to the smaller

sample size of the younger cohort. Despite the lack of signifi-

cant interaction effect between LH-K and habitual sleep dur-

ation category in the full sample, smaller LH-K values (faster-

LHS’s) were still significantly associated with greater sleepiness

(Supplementary Table S7).

Do LH indicators interact with hedonic valuations of sleep
behavior?. In Study 2, there was a significant linear correlation

between LH-K and hedonic motivation, r(303)¼ 0.13, P¼ 0.022;

however, the relationship between LH-K and hedonic pleasure

was insignificant, r(303)¼�0.04, P¼ 0.475. Additionally, there

was a significant inverse correlation between short-term mating

orientation and hedonic motivation (Supplementary Table S7).

Several significant yet weak relationships were observed be-

tween hedonic valuations of sleep and sleep behavior

(Supplementary Table S7); HVS-M was again positively associ-

ated with sleep/wake stability and negatively associated with

eveningness and H-SDV. In Study 2, negative associations were

also found between HVS-M and both SOL and sleepiness. For

HVS-P, we found positive associations with self-reported sleep

need, r(303)¼ 0.24, P¼<0.001, usual sleep duration on a

weekday, r(303)¼ 0.11, P< 0.047, and early-shifted sleep dur-

ation on a weekday r(303)¼ 0.13, P¼ 0.026. Finally, there was a

significant positive correlation, r(303)¼ 0.20, P< 0.001, be-

tween hedonic motivation and hedonic pleasure.

Are LH indicators associated with sleep health?. Regression

modeling demonstrated significant protective associations be-

tween LH slowness and sleepiness (Supplementary Table S8),

sleep onset latency (Supplementary Table S9), and sleep dur-

ation variability (Supplementary Table S10)—even after control-

ling for mating effort, hedonic valuations of sleep, and

demographic variables (age, income, etc.). The full models

explained between 7.3% (SDV) and 21.2% (eveningness) of the

variance.

Employing a random forest machine learning model, we find

that, among all measured variables (including demographics),

LH-K was the single most important predictor of sleepiness
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(Fig. 3). In our full linear regression model, LH-K has the high-

est squared semi-partial correlation coefficient, with its signifi-

cant effect remaining even after controlling for mating effort,

hedonic valuations of sleep, and demographic variables

(Supplementary Table S8)—further supporting LH-K’s import-

ance as a predictor of sleepiness.

The structural equation model (SEM) is supportive of a posi-

tive effect of WASO and SOL on sleepiness, mediated by sleep–

wake instability downstream of LH strategy (Fig. 4).

Conceptually validating the LH measures, also downstream of

LH strategy are negative effects on variables related to mating

effort, with LH slowness being associated with lower STMO

and, in turn, a lower number of sexual partners (both lifetime

and one-time).

DISCUSSION

The maintenance costs of fastness

The primary function of sleep in adulthood is maintenance [15].

Sleep entails significant opportunity costs, notably in regard to

sociosexual behavior. Life history involves trade-offs between

maintenance and reproduction, hence individual variation in

the relative prioritization of these two pathways should be

Figure 2. Study 2: Life history strategy versus habitual sleep duration (Aged 19–29). Values which are lower on the y-axis represent slower-LH strategies

(higher K-Factor). Shaded regions represent the 95% confidence interval. (A) Null linear regression model. (B) LOESS (Locally Estimated Scatterplot

Smoothing) model (span¼ 0.75). (C) Second order polynomial model; compared to the null model, this model had a significantly better fit (P¼ 0.045). (D)

Segmented regression model; the dotted vertical line indicates the estimated breakpoint (7.17 hr). Compared to the null model, the breakpoint model had a

significantly better fit (P¼ 0.040). R-squared values for the null, segmented, and 2nd order polynomial regression models were 0.004, 0.082, and 0.054, re-

spectively. Aged 19–29 (M¼ 26.08, SD¼ 2.59). n¼ 79.
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reflected in sleep experience and valuation. Over 60 years’ worth

of epidemiological studies reveal a U-shaped relationship be-

tween sleep duration and mortality, with the highest mortality

risks seen in sleepers who diverge in either direction from 7 hr

[55]. Here we find that when life history strategy is plotted

against sleep duration, an analogous U-shaped curve results,

with the fastest LH strategies occupying sections of the curve

with the highest mortality risk. Interestingly, the strength of the

non-linear association between LHS and sleep duration was

mediated by age group, consistent with a possibly universal pat-

tern [56] wherein youths and young adults forego sleep in favor

of social activities—a pattern that may reflect fewer behavioral

constraints placed by homeostatic mechanisms on young peo-

ple than on older adults, as, due to senescence, the latter both

have scarcer reserves for immediate use and recover more slow-

ly from somatic insult.

In addition to issues of sleep duration, LH fastness was also

associated with poorer quality sleep. Faster strategies were posi-

tively associated with wakefulness after sleep onset in Study 1;

with sleepiness, sleep duration variability and eveningness in

Study 2; and with sleep–wake instability, delayed sleep onset,

and hypothetical sleep duration variability in both studies—all

factors which may further compound the effects of short-sleeping

on mortality. Although temporal discounting was linked to

greater partner count and more WASO in Study 1, somewhat sur-

prisingly, no association was found with LH-K; in Study 2, signifi-

cant correlations were not found with any key variable.

Responses on this measure may have been confounded by

skepticism toward receipt of a long-term reward through the

MTurk platform; additionally, results may reflect limitations of

using delay-discounting tasks to measure delayed gratification,

as these types of measures have been shown to conflate impul-

sivity with risk attitudes [57]. The latter construct varies in its rela-

tionship to LH strategy across domains, with financial risk

attitudes showing very weak or null associations as compared to

social, recreational, health/safety and ethical risk attitudes [58].

Mechanisms of sleep disruption

The results of our hierarchical multiple regression models dem-

onstrated significant positive associations between LH fastness

and indicators of poor sleep quality, with multiple effects per-

sisting even after controlling for sociosexual orientation, previ-

ous sexual experience, and parenthood. To wit, insofar as LH

strategy can modulate sleep behavior, it may be able to do so

through means which are independent of reproductive effort.

Consilient with a LH framework of sleep, over two decades’

worth of longitudinal health and psychometric data from the

MIDUS 2 project show direct paths between early life stress and

adult trait anxiety, poor sleep quality, and lastly, physical health

issues [59]. In our work, participants’ qualitative responses are

suggestive of anxiety as having a discrete role in delaying the

bedtimes of fast-LH individuals. In Study 1, only participants in

the fastest tertile of LH strategy used the words ‘racing

thoughts’ and ‘dreading’ to describe their greatest sleep

impediments; over both studies, the word ‘anxiety’ was

Figure 3. Study 2: Variable importance as a predictor of sleepiness using random forest decision trees. %IncMSE values are provided in raw, unstandardized

form. A greater increase in mean square error after a variable is randomly permuted indicates greater importance as a predictor of sleepiness. Sleepiness was

measured using the Karolinska Sleepiness Scale.
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disproportionally used by faster-LH individuals (10-2).

Heightened stress reactivity and greater vigilance in individuals

with early life adversity—while maladaptive from a psycho-

pathological perspective—may have adaptive function as a pro-

tective mechanism against future threat [60, 61].

In previous work, lower K-Factor scores (faster-LH strategies)

were positively associated with stress, disruptive life events and

maladaptive coping strategies; additionally, coping strategies

and life events partially mediated the LH–stress association

[62]. The effects of disruptive life events on sleep are well-

established in studies examining racial discrimination in rela-

tion to racial/ethnic disparities in sleep outcomes; among both

Maori New Zealanders and Black Americans, for example, the

experience of racial discrimination was found to be an inde-

pendent risk factor for sleep disturbance [63, 64]. Relatedly, in

an 11-year longitudinal study of Black adolescent Americans,

increased exposure to racial discrimination was positively asso-

ciated with future indicators of LHS fastness in young

adulthood [65]. This phenomenon may partially underlie previ-

ously documented differences in the manifestation of disor-

dered sleep among American racial/ethnic minorities; while

Black, Asian, and non-Mexican Hispanic/Latinx Americans are

all more likely than non-Hispanic White Americans to exhibit

short-sleep patterns [66], only Black Americans also display an

increased likelihood of long-sleep, with this association remain-

ing even after adjusting for sociodemographic factors (age, sex,

income and geographic residence), body mass index, depres-

sion, functional capacity and medical illnesses [67]. Thus, racial

discrimination may have compounding detrimental effects on

sleep through its influence on multiple proximate pathways at

different points across the life course.

Additionally, assuming that there is positive autocorrelation

between developmental and adult environments, ‘fast’ sur-

roundings (harsh and unpredictable) would by their very nature

be antithetical to good sleep. In previous work, poor perceived

neighborhood quality was associated with poorer sleep quality

Figure 4. Study 2: Structural equation model of life history strategy’s effects on maintenance and reproduction allocations. Paths are labeled with standardized

weights. Variables with a red border indicate investment into short-term reproduction, while variables with blue borders indicate investment into long-term

maintenance. STMO is regressed (rather than loaded) on life history strategy, and sleepiness is regressed (rather than loaded) on deficits. Confirmatory factor

analysis (CFA) was conducted using the full information maximum likelihood (FIML) estimator with robust (Huber–White) standard errors and a scaled test

statistic that is asymptotically equivalent to the Yuan–Bentler test statistic. All solid paths are significant at P< 0.05, while dashed path coefficients have P val-

ues greater than 0.05. Comparative fit index (CFI)¼ 0.96, non-normed fit index (NNFI)¼ 0.94, goodness of fit index (GFI)¼ 0.99, root mean square error of

approximation (RMSEA)¼ 0.06, standardized root mean square residual (SRMR)¼ 0.06. n¼ 305.
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and health, with sleep quality partially mediating the association

between neighborhood quality and health status [68].

Upregulated vigilance and psychological distress from the

threat of neighborhood disorder and/or noise are detrimental

to sleep quality [69, 70], and could reasonably explain patterns

relating to short/disrupted sleep. Participants’ qualitative

responses relating to their sleep detriments offer partial support

for this notion, as, across both studies, ‘noise’ was dispropor-

tionally (12-2) noted by individuals in the lowest (fastest) tertile

of K-Factor. Crucially, while stress, vigilance, and threat reactiv-

ity can all feasibly explain patterns related to truncated/dis-

turbed sleep, none of the above mechanisms can provide a

rationale for long/excessive sleep.

Excessive sleep and LHS fastness

While we initially made no predictions about long-sleeping and

LHS, this finding nevertheless can be understood as a depriori-

tization of maintenance among ‘fast’ sleepers, given that exces-

sive sleep reflects underlying enhanced inflammatory responses

[26, 27]. Acute inflammation, while central to the front-line

defenses of innate immunity, is highly damaging on a chronic

basis—contributing to senescence through physiological proc-

esses collectively referred to as ‘inflammaging’ [71]. Compared

to acquired immunity, innate immunity is developmentally

cheaper yet entails more collateral damage, hence extended reli-

ance on innate immunity ultimately reflects relatively lower life-

time investment into maintenance [72, 73]. Hence, whereas the

correlation between insufficient sleeping and inflammatory dis-

eases may owe to the destructive consequences of chronically

disrupted repair processes, the correlation between excessive

sleeping and inflammatory diseases likely reflects differential in-

vestment in immune subsystems that prioritizes rapid develop-

ment and reproduction over longevity. In terms of opportunity

costs, long-sleeping is also congruent with a higher valuation of

short-term sociosexual behavior; long-sleepers tend to be even-

ing shifted [74], and the evening hours are when the overall de-

sire for sex, and concomitantly, the number of sexual

encounters, are at their highest [75]. Moreover, greater socio-

sexual behavior would presumably increase exposure to patho-

gens, which would in turn exacerbate the inflammatory burden.

Thus, co-occurring predictive and state-based developmental

plans [76] affecting multiple systems (e.g. immunological,

neuropsychological) may reciprocally interact [77] to produce a

‘fast long-sleeping’ phenotype.

Evidence for a hedonic dimension to sleep

The relationship between reward and sleep has previously been

discussed primarily from the perspective of how sleep behavior

is influenced by desire for behaviors which compete with sleep

[78]. The action of sleeping itself is not typically considered to

have its own hedonic component. In contrast, providing tenta-

tive internal validation of our constructs, in both studies we

found that hedonic motivation for sleeping (HVS-M) was linked

to sleep-related hedonic pleasure (HVS-P). Moreover, slower-

LH strategies were weakly significantly associated with a greater

hedonic motivation for sleeping in Study 2. Notably, in Study 1,

HVS-M was negatively correlated with sleep duration variability;

in Study 2, negatively correlated with SOL and sleepiness; and

in both studies, negatively associated with eveningness, STMO,

and hypothetical sleep duration variability. The lattermost nexus

of replicated associations, given its constituent interrelation-

ships, may be supportive of the hypothesis that hedonic signals

of sleep compete with those related to night-time sociosexual

activities; an alternative possibility is that night owls with short-

term mating strategies go on to develop a lower hedonic motiv-

ation for sleeping after consistently experiencing worse quality

and less refreshing sleep, since the relationship between hedon-

ic stimuli and reward is reciprocal [79]. Altogether, individuals

with a high hedonic motivation for sleep tend to engage in a

healthier circadian pattern of sleep. A seemingly contradictory

finding was the positive relationship between HVS-P and eve-

ningness in Study 1. This may constitute a Type I error.

Alternately, given evidence linking hedonism to eveningness

[40], our HVS-P item may insufficiently differentiate sleep-

derived hedonic pleasure from general hedonic pleasure. More

intuitive were the positive relationships between HVS-P and

weekend sleep duration, overall time spent in bed (Study 1),

and weekday sleep duration (Study 2), suggesting that those

who particularly enjoy the sensation of sleeping are more prone

to lounging around in bed. Overall, HVS-M seems to be related

to better sleep, while HVS-P appears to be related to longer

sleep. Taken together, our results constitute preliminary evi-

dence of the importance of sleep-specific hedonic dimensions

in sleep behavior, independent of their mediating effects be-

tween LHS and sleep. The full extent to which hedonic facets of

sleep control sleep behavior is unknown, as are their neurobio-

logical correlates, calling for a fuller elucidation of these mecha-

nisms in the future.

Implications for evolutionary and integrative medicine

Evolutionary medicine holds that a full understanding of a given

disease state requires an evolutionary exploration, i.e. mechan-

istic, functional, developmental and phylogenetic considera-

tions of the underlying biological processes [80]. Absent these

perspectives, a parochial view of disordered health—in which

disease is simply regarded as a set of symptoms and associated

mechanisms—can entail dire epidemiological costs [81]. In the

U.S., acute sleepiness results in an estimated annual loss of

5000 lives, accompanied by 110 000 sleep-related injuries [82];
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corresponding financial costs are in the dozens of billions [83].

This is to say nothing of the population-wide decreases in both

lifespan and ‘healthspan’ due to chronic medical issues result-

ing from poor sleep [84]. Our work provides an instrumental

evolutionary and ecological account of developmental proc-

esses that may contribute to sleep disorders, and sheds further

evolutionary light on the avenues by which biopsychosocial fac-

tors during development can influence adult disease states [85].

Lastly, the role of hedonic reward as a potential mediator of

sleep behavior may prove useful for non-pharmacological man-

agement of chronic sleep disorders.

Limitations

Because our SEM model relies on cross-sectional data, and the

time lags of hypothetical interactions between variables are

non-instantaneous, although causation can plausibly be

inferred, it cannot be proven [86]. Similarly, due to the inherent-

ly correlational nature of our study, we cannot rule out the pos-

sibility of a third intervening variable between LHS and

associated sleep-related variables; at the same time, due to the

conceptually meaningful network of both observed and previ-

ously documented interrelationships between our variables of

study, such a hypothetical ‘third variable’, if found, would not

necessarily be orthogonal with our existing interpretation of

results (e.g. if physiological changes to the hypothalamic–pituit-

ary–adrenal (HPA) axis or inflammatory markers were discov-

ered to be the most proximal causative factors underlying the

associations between LH fastness and short and long sleep, re-

spectively, such findings would not fundamentally alter our cen-

tral premise or attendant conclusions, and could instead

plausibly represent extensions of the K-Factor’s nomological

network). Caution is also warranted due to the potentially con-

founding influence of cultural norms, socioecological circum-

stances, and technology. Important differences in sleep likely

occur between individuals in WEIRD societies [87] and individu-

als in societies in which technological control of the environ-

ment, the role of manual labor in production, and time spent

outdoors are more characteristic of most of human history [88].

Cross-cultural investigations are thus needed to validate our

results. Nevertheless, despite these limitations, we are encour-

aged by our positive findings given that there are a priori rea-

sons to expect the postulated relationships to be noisy. While

the fast–slow axis usefully describes LH covariation at both the

between- and within-species levels, patterns between individu-

als are typically equivocated by the effects of individual stochas-

ticity, differences in resource availability, and non-linear/

interactive relationships between strategies and corresponding

functional traits [89]. Furthermore, there may be additional

between-individual LHS variation in the form of a separate ‘mat-

ing competition’ axis (e.g. mating effort, dominance seeking,

etc.) [41], which may explain why long-term mating orientation

loaded alongside the K-Factor in our SEM model, but short-

term mating orientation did not. Our inclusion of the MSOI

may have at least partially attenuated such a limitation by cap-

turing a portion of the mating competition variance.

CONCLUSION

Life History Theory describes a spectrum of trade-offs between

growth, reproduction and maintenance, predicting that individ-

uals will optimize investment in each in light of current and

expected hazards and opportunities. Sleep, one of the principal

avenues of maintenance, has high opportunity costs.

Accordingly, we predicted that habitual sleep behavior would ex-

hibit decrements or enhancements that correspond with overall

life history strategies prioritizing mating effort over longevity or

the converse, respectively. Consistent with this prediction, our

findings suggest that faster life histories are associated with

greater sociosexual behavior, poorer quality sleep, and sleep

durations that are shorter or longer than optimal for health.

Additionally, individuals with faster-LH strategies are more like-

ly to suffer from acute sleepiness, which, together with poor

quality sleep and extreme sleep durations, further heightens

their associated mortality risk. Importantly, while fast-LH indi-

viduals do not seem to be aided by ultimate adaptations that re-

duce their objective sleep need, chronic curtailment may be

facilitated by the subjective perception that sleep is relatively

nonessential—perhaps via lower hedonic valuations for the ac-

tion of sleeping. Thus, if the familiar exclamation, “I’ll sleep

when I’m dead!” is intended to convey a sense of heedless bra-

vado, our synthesis suggests that such a connotation may not

only be earned, but dearly paid for, with never-ending sleep

being tendered as final remittance.
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