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Hopanoids are pentacyclic triterpenoid lipids synthesized by different bacterial groups.

Methylated hopanoids were believed to be exclusively synthesized by cyanobacteria and

aerobic methanotrophs until the genes encoding for the methylation at the C-2 and

C-3 position (hpnP and hpnR) were found to be widespread in the bacterial domain,

invalidating their use as specific biomarkers. These genes have been detected in the

genome of the Acidobacterium “Ca. Koribacter versatilis,” but our knowledge of the

synthesis of hopanoids and the presence of genes of their biosynthetic pathway in

other member of the Acidobacteria is limited. We analyzed 38 different strains of seven

Acidobacteria subdivisions (SDs 1, 3, 4, 6, 8, 10, and 23) for the presence of C30 hopenes

and C30+ bacteriohopane polyols (BHPs) using the Rohmer reaction. BHPs and/or

C30 hopenes were detected in all strains of SD1 and SD3 but not in SD4 (excepting

Chloracidobacterium thermophilum), 6, 8, 10, and 23. This is in good agreement with

the presence of genes required for hopanoid biosynthesis in the 31 available whole

genomes of cultivated Acidobacteria. All genomes encode the enzymes involved in the

non-mevalonate pathway ultimately leading to farnesyl diphosphate but only SD1 and 3

Acidobacteria and C. thermophilum encode all three enzymes required for the synthesis

of squalene, its cyclization (shc), and addition and modification of the extended side

chain (hpnG, hpnH, hpnI, hpnJ, hpnO). In almost all strains, only tetrafunctionalized

BHPs were detected; three strains contained variable relative abundances (up to 45%)

of pentafunctionalized BHPs. Only “Ca. K. versatilis” contained methylated hopanoids

(i.e., 2,3-dimethyl bishomohopanol), although in low (<10%) amounts. These genes are

not present in any other Acidobacterium, consistent with the absence of methylated

BHPs in the other examined strains. These data are in agreement with the scattered

occurrence of methylated BHPs in other bacterial phyla such as the Alpha-, Beta-,

and Gammaproteobacteria and the Cyanobacteria, limiting their biomarker potential.

Metagenomes of Acidobacteria were also examined for the presence of genes required

for hopanoid biosynthesis. The complete pathway for BHP biosynthesis was evident in

SD2 Acidobacteria and a group phylogenetically related to SD1 and SD3, in line with the

limited occurrence of BHPs in acidobacterial cultures.
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INTRODUCTION

Hopanoids are omnipresent natural products occurring in many
groups of bacteria and some higher plants. The recognition
of their widespread occurrence in the bacterial domain was
initiated by the ubiquitous presence of molecular fossils derived
from hopanoids in the geological record (Ourisson et al., 1979).
Hopanoids occur in a variety of structures from relatively
simple C30 components to elongated compounds with a
polyfunctionalized side chain, i.e., the bacteriohopanepolyols
(BHPs), often containing additional substituents, i.e., the so-
called BHP derivatives (see for reviews Kannenberg and Poralla,
1999 and Rezanka et al., 2010).

The large variety in structure and their ubiquitous presence
in sediments and petroleum has resulted in the common
application of hopanoids as molecular fossils. For example, the
occurrence of hopanoids methylated at the C-2 position in the
A-ring of hopanoids were thought to be limited to cyanobacteria.
Consequently, their fossil occurrence has been used to reveal the
timing of the advent of oxygenic photosynthesis (Summons et al.,
1999). The abundance of 2-methyl extended hopanes relative to
their non-methylated counterparts was used to conclude that
nitrogen-fixing cyanobacteria played a key role in the deposition
of black shales during the early Aptian and late Cenomanian
oceanic anoxic events (Kuypers et al., 2004). Such studies strongly
rely on the consistency of the link between cyanobacteria and
their unique ability to produce 2-methyl BHPs. This link was
already somewhat questionable since non-extended 2-methyl
hopanoids (i.e., 2ß-methyldiplopterol and 2ß-methyldiploptene)
were also reported in species falling in the group of the
Alphaproteobacteria (Zundel and Rohmer, 1985; Knani et al.,
1994; Vilcheze et al., 1994; Bravo et al., 2001). Subsequently,
an extended 2-methyl hopanoid was detected in the anoxygenic
phototroph, Rhodopseudomonas palustris (Rashby et al., 2007),
also belonging to the Alphaproteobacteria. This revealed that the
potential origins of sedimentary extended 2-methyl hopanoids
are more diverse than previously thought.

This example highlights the importance of studies of lipids in
cultured microbes for our interpretation of the molecular fossil
record. However, such studies are laborious and have therefore
been limited in number. Furthermore, they are fundamentally
biased by the fact that the majority of the environmentally
significant microbes are not available in culture. One approach to
solve these issues is to use the genetic information of microbes
that encodes the biochemical machinery of the cell, including
their lipid biosynthetic pathways. Applying this approach in
hopanoid research, Pearson et al. (2007, 2009) investigated
the gene encoding the squalene-hopene cyclase (shc), which
represents the first step in BHP biosynthesis, to search in
the environment for potential producers of BHPs. Welander
et al. (2010) also used a genetic approach and identified a
radical SAM methylase encoded by a gene (hpnP) that is
required for the methylation of hopanoids at the C-2 position.
They demonstrated that this hpnP gene is not only present in
cyanobacteria, but also inAlphaproteobacteria andAcidobacteria,
casting further doubt on the application of 2-methyl BHPs as
indicators for cyanobacteria. In a follow-up paper (Ricci et al.,
2014) they used this gene to search for potential sources of

2-methyl hopanoids and reported environmental hpnP genes for
cyanobacteria, alpha proteobacteria, but not for acidobacteria.
Welander and Summons (2012) showed that a gene, hpnR, is
required for methylation of hopanoids at the C-3 position in
Methylococcus capsulatus. This gene is found in genomes of
methanotrophic and acetic acid bacteria but also in other bacteria
such as Actinobacteria, Nitrospirae, and Acidobacteria and,
consequently, 3-methyl hopanoids cannot be used as biomarkers
for aerobic methanotrophs.

Acidobacteria are a highly abundant and diverse phylum of
the domain Bacteria (e.g., Dedysh et al., 2006; Janssen, 2006;
Jones et al., 2009) and, therefore, could potentially be important
sources for 2- and 3-methyl BHPs in the environment. The
phylogenetic breadth of the Acidobacteria is comparable to that
of the Proteobacteria (see Kielak et al., 2016 for a recent review).
They have been divided in 26 subdivisions (SDs), mainly based
on environmental sequences (Barns et al., 2007), but only seven
of these contain taxonomically characterized representatives
(Kielak et al., 2016). For SD1, eleven genera have been defined,
and for SD4 eight genera, while a more limited number of genera
(1–4 genera) have been characterized for SDs 3, 6, 8, 10, and
23. All cultured acidobacteria are heterotrophic and are able to
grow on a variety of substrates. Molecular ecological studies have
revealed that, in wetlands, the most abundant Acidobacteria fall
in SD1 and 3 (Serkebaeva et al., 2013), whereas in lakes SDs
1, 6, and 7 thrive (Zimmermann et al., 2012). In soils, SDs 1–
4 and 6 are most abundant (Jones et al., 2009). The hopanoids
produced by Acidobacteria may thus form a major source of
hopanoids in the environment. Since Welander et al. (2010)
and Welander and Summons (2012) detected the shc gene and
two genes involved in the methylation of hopanoids at the C-
2 and the C-3 position in “Candidatus Koribacter versatilis,” an
SD1 acidobacterium isolated from soil (Joseph et al., 2003) for
which the whole genome is available (Ward et al., 2009), we
cultivated “Ca. K. versatilis” and 37 other acidobacterial strains
of SDs 1, 3, 4, 6, 8, 10, and 23 in order to test if Acidobacteria
can indeed be an important source of specific hopanoids
in the environment. We compared these results with the
presence of genes involved in the biosynthetic pathway leading
to BHPs.

MATERIALS AND METHODS

Cultures
The acidobacterial strains used in this study are listed in
Table 1 and mostly were cultivated under conditions previously
described (Sinninghe Damsté et al., 2011, 2014). “Ca. Koribacter
versatilis Ellin345” (DSM 22529) and “Ca. Solibacter usitatus
Ellin6076” (DSM 22595) were cultivated at 25◦C in VL55
media, Geothrix fermentans (DSM 14018) was grown at 32◦C in
Geobacter medium (M 826, DSMZ media list) and Holophaga
foetida (DSM 6591) at 28◦C in TMBS4 medium (M 559 from
DSMZ media list). The two species of SD6 Acidobacteria were
grown as described earlier (Huber et al., 2016; Vieira et al., 2017).

Lipid Analysis
For the detection of the presence of biohopanoids, lyophilized
cells were directly treated with periodic acid/sodium borohydride
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TABLE 1 | Presence of BHPs (both penta- and tetrafunctionalized in %) and hop-17(21)-ene in cultivated Acidobacteria of SDs 1, 3, 4, 6, 8, 10, and 23.

Acidobacterium SD Origin References BHP Hop-17(21)-ene

Penta Tetra

Edaphobacter aggregans Wbg-1T (=DSM 19364T ) 1 Alpine soil Koch et al., 2008 – 100 –

Edaphobacter modestus Jbg-1T (=DSM 18101T ) 1 Forest soil Koch et al., 2008 n.a. n.a. X

Acidobacterium capsulatum 161T (=DSM 11244T ) 1 Acidic mine drainage Kishimoto et al., 1991 – 100 X

Occallatibacter savannae A2-1cT (=DSM 25170T ) 1 Savannah soil Foesel et al., 2016 – 100 –

Occallatibacter riparius 277T (=DSM 25168T ) 1 River bank soil Foesel et al., 2016 – 100 –

Occallatibacter riparius 307 (= DSM 25169) 1 River bank soil Foesel et al., 2016 – 100 –

Acidobacteriaceae bacterium A2-4c 1 Savannah soil Sinninghe Damsté et al., 2011 1–13 87–99 X

Acidicapsa borealis KA1T (=DSM 23886T ) 1 Spaghnum peat Kulichevskaya et al., 2012 – 100 X

Acidicapsa ligni WH120T (=LMG 26244T ) 1 Decaying wood Kulichevskaya et al., 2012 – 100 X

Acidicapsa sp. CE1 1 Spaghnum peat Pankratov, 2012 n.a. n.a. X

Ca. Koribacter versatilis Ellin345 (=DSM 22529) 1 Pasture soil Joseph et al., 2003 4–48 52–96 X

Terriglobus roseus KBS 63T (=DSM 18391T ) 1 Agricultural soil Eichorst et al., 2007 1 99 X

Terriglobus sp. KMR (=ATCC BAA-1395) 1 Spaghnum peat Pankratov et al., 2008 n.a. n.a. –

Granulicella pectinivorans TPB6011T (=DSM 21001T ) 1 Spaghnum peat Pankratov and Dedysh, 2010 n.a. n.a. X

Granulicella aggregans TPB6028T (=DSM 25274T ) 1 Spaghnum peat Pankratov and Dedysh, 2010 2 98 X

Granulicella paludicola LCBR 1 Cladonia sp. Pankratov and Dedysh, 2010 n.a. n.a. X

Granulicella paludicola OB1010T (=DSM 22464T ) 1 Spaghnum peat Pankratov and Dedysh, 2010 n.a. n.a. X

Bryocella elongata SN10T (=DSM 22489T ) 1 Spaghnum peat Dedysh et al., 2012 n.a. n.a. X

Telmatobacter bradus TPB6017T (=DSM 23630T ) 1 Spaghnum peat Pankratov et al., 2012 n.a. n.a. –

Telmatobacter sp. 15–8A 1 Dunfield, Unpublished n.a. n.a. X

Telmatobacter sp. 15–28 1 Dunfield, Unpublished n.a. n.a. X

Paludibaculum fermentans P105T (=DSM 26340T ) 3 Littoral wetland Kulichevskaya et al., 2014 3 97 X

Ca. Solibacter usitatus Ellin6076 3 Pasture soil Joseph et al., 2003 2 98 X

Bryobacter aggregatus MPL3T (=DSM 18758T ) 3 Spaghnum peat Kulichevskaya et al., 2010 – 100 X

Bryobacter aggregatus MPL1011 3 Spaghnum peat Kulichevskaya et al., 2010 n.a. n.a. X

Chloracidobacterium thermophilum BT (=ATCC BAA-2647) 4 Hot spring Tank and Bryant, 2015 – 100 –

Pyrinomonas methylalipathogenes K22T (=DSM 25857T ) 4 Geothermal soil Crowe et al., 2014 – – –

Blastocatella fastidiosa A2-16T (=DSM 25172T ) 4 Pastureland soil Foesel et al., 2013 – – –

Brevitalea aridisoli Ac_11_E3T (=DSM 27934T ) 4 Savannah soil Wüst et al., 2016 – – –

Stenotrophobacter terrae Ac_28_D10T (=DSM 26560T ) 4 Savannah soil Pascual et al., 2015 n.a. n.a. –

Aridibacter kavangonensis Ac_23_E3T (=DSM 26558T ) 4 Fallow soil Huber et al., 2014 – – –

Aridibacter famidurans A22_HD_4HT (=DSM 26555T ) 4 Savannah soil Huber et al., 2014 n.a. n.a. –

Vicinamibacter silvestris Ac_5_C6T (=DSM 29464T ) 6 Savannah soil Huber et al., 2016 – – –

Luteitalea pratensis HEG_-6_39 (=DSM 100886T ) 6 Grassland soil Vieira et al., 2017 – – –

Holophaga foetida TMBS4T (=DSM 6591T ) 8 Anoxic mud Liesack et al., 1994 – – –

Geothrix fermentans H-5T (=DSM 14018T ) 8 Aquifier Coates et al., 1999 – – –

Thermotomaculum hydrothermale AC55 (=DSM 24660) 10 Hydrothermal vent Izumi et al., 2012 – – –

Thermoanaerobaculum aquaticum MP01T (=DSM 24856T ) 23 Hot spring Losey et al., 2013 n.a. n.a. –

–, Absent; n.a. = not analyzed, X, present.

to convert polyfunctionalized biohopanoids into GC-amenable
hopanoid alcohols following procedure 2 described by Rohmer
et al. (1984) with some modifications. Lyophilized cells (ca.
10 mg) were stirred with 1 ml of a solution of periodic acid
(30mg) in tetrahydrofuran/water (8:1, v/v) at room temperature
for 1 h. After addition of water (1ml), the lipids were extracted
three times with dichloromethane (DCM; 2ml), and the solution
was dried over anhydrous Na2SO4, and evaporated to dryness.
The residue was treated with 20mg of NaBH4 (100 mg),
in 1ml methanol by stirring at room temperature for 1 h.

After addition of a solution of KH2PO4 (1ml, 200 mM), the
hopanols were extracted with DCM. The obtained reaction
mixture was methylated with diazomethane and separated over
a small column with activated Al2O3 into an apolar and a
polar fraction using DCM and DCM-MeOH (2:1, v/v) as
eluent, respectively. The polar fractions were silylated with
N,O-bis(trimethylsilyl)-fluoroacetamide in pyridine at 60◦C for
20min and analyzed by GC and GC-MS. The distribution
of hopanols was obtained by integration of the appropriate
peaks.
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The lyophilized cells of strain A2-4c were also extracted
ultrasonically with DCM/MeOH (2:1, v/v) (×3) and the extract
was subsequently subjected to the Rohmer degradation to
compare the yield of the generation of hopanols from the
extract as compared to direct treatment of the cell material.
To this end, an internal standard (6,6-d2-3-methylheneicosane)
was added to quantify the hopanols for the two different ways
of treatment.

GC was performed using a Hewlett–Packard 6890 instrument,
equipped with an on-column injector. A fused silica capillary
column (25m × 0.32 mm) coated with CP-Sil 5 (film thickness
0.12 µm) was used with helium as carrier gas. Samples were
dissolved in ethyl acetate and injected at 70◦C and the oven
was programmed to 130◦C at 20◦C/min and then at 4◦C/min
to 320◦C at which it was held for 10 min. GC-MS analyses were
performed on a Finnigan Trace DSQmass spectrometer operated
at 70 eV with a mass range of m/z 40–800 and a cycle time of
1.7 s. The gas chromatograph was equipped with a fused silica
capillary column as described above for GC. The carrier gas was
helium and the same oven temperature program as for GC was
used.

Identification and Phylogeny of Genes of
the BHP Biosynthetic Pathway
Biosynthetic genes involved in the BHP pathway were
identified in acidobacterial (meta)genomes with PSI-BLAST
(Position-Specific iterated BLAST) searches at the protein level
(www.ncbi.com) using two iteration steps using in most cases
the annotated enzymes from Acidobacterium capsulatum as
query sequences. These A. capsulatum query sequences were first
identified by PSI-BLAST searches of BHP biosynthesis genes
annotated in R. palustris, Zymomonas mobilis, Burkholderia
cenocopacia, M. capsulatus, and Methylobacterium extorquens,
species where BHP biosynthetic genes have been assigned (e.g.,
Perzl et al., 1998; Bradley et al., 2010; Welander et al., 2010, 2012;
Neubauer et al., 2015; Schmerk et al., 2015).

Nearly complete 16S rRNA gene sequences of the
acidobacterial strains and (meta)genomes obtained from
environmental samples discussed in the text, were obtained from
the ARB SILVA database (https://www.arb-silva.de/) and from
the (meta)genomes listed in Table 3, and aligned with ClustalW
(Thompson et al., 1994). A phylogenetic tree was generated
with MEGA 6 (Tamura et al., 2013) using the Neighbor-joining
method (Saitou and Nei, 1987); bootstrapping values were
based on 1,000 repetitions and are shown next to the branches
(Felsenstein, 1985). The evolutionary distances were computed
using the Jukes-Cantor method (Jukes and Cantor, 1969). The
analysis involved 72 nucleotide sequences, and a total of 1593
positions in the final dataset. Putative and annotated partial
homologs of Shc, HpnC, hpnD, and FdpT proteins were aligned
by Muscle (Edgar, 2004) in Mega6 software (Tamura et al.,
2013) and edited manually. Phylogenetic reconstruction was
performed by maximum likelihood in PhyML v3.0 (Guindon
et al., 2010) using the best model according to AIC indicated
by ProtTest 2.4 (Abascal et al., 2005) as indicated in the figure
legends.

RESULTS

Thirty-eight Acidobacteria strains distributed over seven
subdivisions (SDs 1, 3, 4, 6, 8, 10, and 23) were analyzed for
the presence of C30 hopenes and BHPs, and specifically, for
the presence of methylated hopanoids. Figure 1 depicts their
phylogenetic relationship based on their 16S rRNA gene.

Detection of BHPs in Acidobacterial
Cultures
It has previously been demonstrated that specific membrane
lipids of Acidobacteria (i.e., iso diabolic acid and 13,16-dimethyl-
28-glyceryloxy-octacosanoic acid) can only be released by direct
acid hydrolysis of lyophilized cells and not directly by a modified
Bligh-Dyer extraction (Sinninghe Damsté et al., 2011, 2014).
This was interpreted to indicate that these membrane-spanning
lipids that comprised a substantial fraction of the membrane
lipids contained large and potentially very polar head groups,
making them inaccessible for solvent extraction. Since BHPs
often reside in the membrane, where they act as rigidifiers (e.g.,
Rezanka et al., 2010), we suspected that the classical way of
BHP analysis by extraction might miss a substantial fraction of
BHPs in Acidobacteria. To test this hypothesis, we modified a
commonly applied technique for the analysis of BHP derivatives,
i.e., specific oxidation with periodic acid followed by reduction
with sodium borohydride to convert complex polyfunctionalized
BHPs into easy-to-analyze hopanoid alcohols (Rohmer et al.,
1984) and applied this technique to lyophilized cells instead
of to the extract of the cells (see experimental). Comparison
of the yield of extended (i.e., C31 and C32) hopanols from
Acidobacteriaceae bacterium A2-4c, belonging to SD1, revealed
that direct treatment on lyophilized cells resulted in a substantial
increase in yield (i.e., by approximately one order of magnitude;
Figure 2). This indicates that, in addition to iso diabolic acid and
its derivatives, also BHP derivatives are difficult to extract from
acidobacterial cells. Consequently, we analyzed our strains by
application of the “Rohmer method” on lyophilized cells.

Extended Hopanols Formed by Rohmer
Degradation of Intact Cells
Cell material of 24 different strains of six subdivisions (SDs 1,
3, 4, 6, 8, and 10) of the Acidobacteria were subjected to the
Rohmer reaction to test the presence of BHPs. C32, and in some
cases C31 hopanols, were detected in all strains of SD 1 and 3
but not in SD 4, 6, 8, and 10 (Table 1). An exception was the
photosynthetic thermophilic acidobacterium C. thermophilum
B, where bishomohopanol was detected, in agreement with
the reported occurrence of BHT derivatives in this strain
(Costas et al., 2012b). In almost all strains only bishomohopanol
was detected; this hopanol is derived from the oxidation of
tetrafunctionalized BHPs and subsequent reduction (Rohmer
et al., 1984). Five strains (i.e.,Acidobacteriaceae bacteriumA2-4c,
“Ca. Koribacter versatilis Ellin345,” Terriglobus roseus KBS63T,
Paludibaculum fermentans P105T, and “Ca. Solibacter usitatus
Ellin6076;” Table 1) contained variable relative abundances (up
to 45%) of homohopanol, derived from pentafunctionalized
BHPs.
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FIGURE 1 | Phylogenetic tree of the nearly complete 16S rRNA gene sequences of the Acidobacteria discussed in the text. The percentage of replicate trees in

which the associated taxa clustered together in the bootstrap test (1,000 replicates) are shown next to the branches. Scale bar indicates 2% sequence divergence.

Names in red bold indicate strains in which presence of BHP has been assessed in cultures; names in black bold indicate strains in which the genome has been

screened for the presence of the genes discussed in the text, names in blue bold indicate strains in which both the BHP and genome screening has been performed.
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FIGURE 2 | GC traces of the products formed by the Rohmer treatment of (A)

the total extract and (B) total cell material of Acidobacteriaceae bacterium

A2-4c. Released hopanoids are present in the form of hopanols (analyzed as

their TMS derivatives). Bacteriohopanetetrol derivatives are transformed by the

Rohmer treatment into the C32 hopanol, bacteriohopanepentol derivatives are

transformed into the C31 hopanol. The star indicates the internal standard

added prior to analysis in a fixed concentration. Since the peak areas of the

hopanols relative to the internal standard in (B) is much larger, the hopanol

yield is much higher when the Rohmer reaction is applied to total biomass.

Methylated extended hopanols (derived from 2-methyl or
3-methyl BHPs) were only detected in one (out of three)
batch cultures of “Ca. Koribacter versatilis Ellin345.” In
this case, an extended hopanol was tentatively identified as
2,3-dimethyl-bishomohopanol on the basis of its mass spectral
features (Figure 3) and relative retention time. It comprised ca.
9% of the hopanols released by the Rohmer degradation.

C30 Hopanoids in Acidobacteria
All 24 strains analyzed for the presence of BHPs and 14 others
were also examined for the presence of the C30 hopanoids.
The occurrence of hop-17(21)-ene is reported in Table 1. This
hopanoid is formed from both diploptene [hop-27(29)-ene] and
diplopterol upon acid hydrolysis, the extraction method that
was typically applied (Sinninghe Damsté et al., 2011, 2014). If
cells were extracted with a modified Bligh-Dyer protocol, these
two latter hopanoids (mostly diploptene) were detected instead
of hop-17(21)-ene. In general, strains that do produce BHPs
also contain C30 hopanoids although there are some exceptions
(Table 1). C30 hopanoids were not detected in strains that do
not produce BHPs (Table 1). The C30 hopanoid data reveal that

hopanoid synthesis occurs in all strains of the SD1 Acidobacteria
analyzed.

BHP Biosynthetic Genes in Genomes of
Cultured Acidobacteria
To be able to compare the in situ production of BHPs with
the biosynthetic potential at the genetic level, we screened
available complete genomes of cultivated acidobacteria for
biosynthetic genes involved in BHP production (see Figure 4

for the biosynthetic scheme). Thirty-one genomes from SDs
1, 3, 4, 6, 8, 10, and 23 were examined using protein BLAST
searches. The results are listed in Table 2. In all acidobacteria
investigated (almost) all genes encoding the MEP pathway of
isoprenoid biosynthesis (dxs, dxr, ispD, ispE, ispF, ispG, ispH;
Zhao et al., 2013) were detected. An exception is the dxs gene
that was lacking in six species (Table 2). In Escherichia coli it has
been demonstrated that a point mutation of the gene encoding
the E1 subunit of the pyruvate dehydrogenase complex (aceE)
can overcome the lack of dxs (Sauret-Güeto et al., 2006). In
all of the acidobacterial species lacking dxs, aceE was detected
instead. All examined acidobacterial genomes also encoded ispA,
the gene encoding farnesyl diphosphate synthase. Therefore, all
of the examined acidobacterial genomes have the genetic capacity
to produce the isoprenoid C15 building block used in various
biosynthetic pathways, including BHP synthesis (Figure 4).

The next step in the production of BHPs is the coupling
of two molecules of farnesyl diphosphate and production of
squalene. Recent evidence has revealed that in most bacteria
this proceeds via a three-step mechanism (Figure 4) catalyzed
by three different enzymes encoded by hpnD, hpnC, and hpnE
(Pan et al., 2015). None of these genes were detected in
Acidobacteria of SD8, SD10, and SD23 neither in Pyrinomonas
methylaliphatogenes K22T belonging to SD4 (Table 2), whereas
all three genes were generally detected in the genomes of SD1
and SD3 species and in C. thermophilum B and OC1 (SD4)
and in Luteitalea pratensis HEG_-6_39 (SD6) (Table 2). The
genomes of all SD1 and SD3 species and C. thermophilum B
and OC1 contained shc, encoding the enzyme responsible for
the cyclization of squalene to form the hopanoid building block
diploptene (Table 2; Figure 4). In C. thermophilum B and OC1
the detected shc genes are only remotely related to those of
other Acidobacteria and much more closely affiliated with shc
genes of Cyanobacteria (Figure 5). Two species (G. pectinivorans
DSM 21001 and “Ca. S. usitatus Ellin 6076”) contained two
copies of shc in their genome. In the shc phylogeny (Figure 5)
both copies fall in the SD3 cluster. No shc gene could not
be annotated in the remaining species (SDs 6, 8, 10, 23, and
P. methylaliphatogenes K22; Table 2). In four SD1 genomes
(i.e., those of Silvibacterium bohemicum S15, Acidobacteriaceae
bacterium KBS 89, Granulicella mallensis MP5ACTX8T, and
Acidobacteriaceae bacterium TAA166) in which shc could be
annotated, not all of the three genes involved in squalene
synthesis (hpnD, hpnC, and hpnE) were present (Table 2).
However, in those genomes, we detected a gene annotated
as a farnesyl diphosphate farnesyl transferase, which may be
coding an alternative enzyme involved in squalene synthesis.
This protein is highly homologous to proteins encoded by
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FIGURE 3 | Mass spectrum of a putative dimethylated bishomohopanol (as TMS derivative) formed by Rohmer degradation of total cell material of “Ca. Koribacter

versatilis” Ellin345. The methylation at position C-2 and C-3 is unprecedented but supported by the indicated mass spectral fragmentation and the presence of both

the hpnP and hpnR genes in the genome of “Ca. K. versatilis Ellin345” (Table 2). The indicated stereochemistry of the additional methyl groups is hypothetical.

FIGURE 4 | Biosynthetic scheme of synthesis of BHT derivatives.

genes also annotated as farnesyl diphosphate farnesyl transferases
present in the genomes of Parabulkholderia species, belonging
to the Betaproteobacteria (Figure 6). In the two strains of
C. thermophilum an additional gene copy of hpnD was also

identified; it is phylogenetically most closely related to species of
green sulfur bacteria (Figure 6).

All but one of the species harboring the shc gene also encode
the two known genes involved in the conversion of diploptene
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FIGURE 5 | Phylogenetic tree of the Shc proteins in the acidobacterial genomes of cultures and environmental genomes. This tree was constructed using the

maximum likelihood method with a LG model plus gamma distribution and invariant sites (LG+G+I). The analysis included 750 positions in the final dataset. The scale

bar represents number of amino acid substitutions per site. Branch support was calculated with the approximate likelihood ratio test (aLRT) and values ≥50% are

indicated on the branches. In general, it reveals the phylogeny that is also apparent from the 16S rRNA gene tree (Figure 1) with distinct clusters for the SD1, SD2,

SD3, and SD22 clusters. The only Shc proteins encountered in Acidobacteria SD4 (i.e., in C. thermophilum B and OC1) differ substantially from those of other

Acidobacteria and are more closely related to Shc proteins encountered in Cyanobacteria (e.g., Synechoccus sp.). The second Shc protein of the SD1

acidobacterium G. pectinivorans DSM21001 falls in SD3 and is most closely related to the second copy of Shc of “Ca. S. usitatus Ellin 6076.”

to BHT (i.e., hpnH and hpnG). We suspect that hpnA, a sugar
epimerase, is also involved in this conversion but there is no
published experimental evidence for that (Table S1). The hpnB
gene, for which experimental evidence is also lacking that it is

involved in the BHP biosynthetic pathway, is present in only a
limited number of the examined genomes, suggesting that it is
not essential for BHP synthesis. This is in contrast to the hpnA
gene, which is present in all acidobacteria possessing the genes
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FIGURE 6 | Phylogenetic tree of the HpnC, HpnD, and FdfT proteins in the acidobacterial genomes of cultures and environmental genomes. The tree was

constructed using the maximum likelihood method with a LG model plus gamma distribution and invariant sites (LG+G+I). The analysis included 509 positions in the

final dataset. The scale bar represents the number of amino acid substitutions per site. Branch support was calculated with the approximate likelihood ratio test

(aLRT) and values ≥50% are indicated on the branches. The first part (A) of the tree shows the phylogeny of the HpnC and FdfT proteins; zoom in (B) showing the

phylogeny of the HpnD proteins. The HpnC tree generally reveals the phylogeny that is also apparent from the 16S rRNA gene tree (Figure 1) with distinct clusters for

the SD1, SD2, SD3, SD4, SD6, and SD1/3 acidobacteria. Five species of SD1 acidobacteria also contained an FdtT protein, which is only remotely related to the

HpnC and HpnD proteins. These FdtT proteins are closely related to the FdtT proteins of Betaproteobacteria (e.g., Parabulkholderia sartisoli). The HpnC tree generally

also reveals the phylogeny that is also apparent from the 16S rRNA gene tree (Figure 1) with distinct clusters for the SD1, SD2, SD3, and SD1/3 acidobacteria. The

sequences in the SD2 cluster annotated with an asterisk are annotated as HpnC but in fact represent a fused protein HpnCD (see text and Figure 7). HpnC was

considered until the amino acid position 279–339 up to the amino acids RAG/RTG/RVG, while the rest of the protein was cropped and used as a new entry in the

alignment and phylogenetic tree. As observed in the Shc protein tree (this figure) the HpnD protein of the SD4 acidobacterium C. thermophilum is only distantly related

to the HpnD protein of other acidobacteria. The closest relatives are HpnD proteins of green sulfur bacteria (e.g., Chlorobium limicola and Chlorobaculum tepidum).

required for BHT synthesis. In most SD1 Acidobacteria hpnA is
also organized in a specific gene cluster together with hpnG (see
below), which provides complementary circumstantial evidence
for its potential role in BHP synthesis.

Only the genome of C. thermophilum B encodes all the genes
(Table 2) required for the conversion of BHT into the composite
BHP, BHT cyclitol ether (Figure 4). Other genomes contain
some but not all of these genes (Table 2). The gene that is
responsible for the last step of the conversion of BHT into amino
bacteriohopanetriol (Figure 4), occurs in many of the examined
strains but not all (Table 2). This gene was also detected in some
acidobacteria that do not possess the shc gene. It is likely that this
is caused by their close relatedness with other aminotransferases
(e.g., argD; Welander et al., 2012).

Of special interest were the genes encoding enzymes
responsible for methylation of the A-ring of BHPs. Welander
et al. (2010) and Welander and Summons (2012) previously

reported the presence of hpnP and hpnR in the genome of the
acidobacterium “Ca. K. versatilis Ellin345,” which was confirmed
by our BLAST searches (Table 2; hpnP WP_011523124.1 and
hpnR WP_011523840.1; both with sequence identity of ca. 60%
with the genes of R. palustris TIE-1 (Welander et al., 2010) and
M. capsulatus (Welander and Summons, 2012), respectively).
However, these genes were absent in all of the other examined
acidobacterial genomes (Table 2).

The phylogeny of the detected BHP biosynthetic genes (e.g.,
Figures 5, 6) generally showed a similar clustering as that
observed for the 16S rRNA gene phylogeny (Figure 1). The
location of the BHP biosynthetic genes in the Acidobacteria
genomes investigated showed some distinct gene clustering
organization. Three clusters were identified (Figure 7). Cluster A
is composed of hpnC, hpnD, and hpnE, preceded by a gene with
an unknown function (ug2). Cluster B is composed of ispA, shc,
and hpnH, followed by a gene with an unknown function (ug3).
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Lastly, cluster C is composed of hpnA, and hpnG, followed by
another gene with an unknown function (ug1). In some cases
these gene clusters have been expanded by the insertion of other
genes or have lost genes (indicated by stippled lines in Figure 7).
In Terracidophilus gabretensis S55T these three clusters occur
in one large concatenated cluster, including hpnJ (Figure 5). In
other SD1 acidobacteria, this ordering is seen to an increasingly
less extent. For example, in Acidobacteriaceae sp. KBS83 the
ordering is almost the same as in T. gabretensis S55T except that
there is an insertion of two additional genes between clusters A-C
and hpnJ (Figure 7). On the other side of the spectrum, there are
SD1 acidobacteria that lack one or two of the gene clusters, either
because they miss one or more of the genes of a gene cluster (e.g.,
hpnC and/or hpnE in cluster A) or because the cluster was split
into two parts (e.g., gene cluster B in “Ca. Koribacter versatilis
Ellin345”). In SD3 and the one species of SD4 that possesses genes
for BHP synthesis (C. thermophilum B and OC1), the ordering of
genes as observed for SD1 acidobacteria is much less apparent.
Only gene cluster C could be recognized in SD3 acidobacteria
(Figure 7). The localization of the other genes that occur
predominantly clustered in SD1 was found to be more scattered.

Identification of Genes Involved in BHP
Biosynthesis in Acidobacterial Genomes
from the Environment
Recently, a number of environmental genomes of acidobacteria
obtained from environmental metagenomic datasets (e.g., soil,
groundwater, wastewater sludge) has become publically available
(e.g., Anantharaman et al., 2016; Butterfield et al., 2016; Speth
et al., 2016). Some of these genomes are from acidobacteria
that phylogenetically do not fall in phyla for which cultivated
members are known and allow to search for the more widespread
occurrence of BHP synthesis in Acidobacteria. Accordingly, we
examined the presence of genes involved in BHP biosynthesis
in 42 acidobacterial environmental genomes (Table 3). A
complication with this analysis is that these environmental
genomes are typically not complete and, thus, the absence of a
gene should be taken with caution. The genomes are classified
as indicated in Table 3 based on 16S rRNA gene when available
(Figure 1) and on the phylogenetic clustering of the other genes
studied (e.g., Figures 5, 6). Four of them fall in SD1 (with three
of the most closely related to “Ca. K. versatilis Ellin345”), 11 in
SD2, 3 in SD4, 10 in SD6; SD22, and SD23 are each represented
by one genome. The other genomes can’t clearly be assigned to a
SD since they lack 16S rRNA gene (or contain only a small part
of it) and fall in phylogenomic clusters with no cultured relatives.
Five genomes cluster in a group that is phylogenetically (based
on the genes of the BHP pathway) closely related to SD1 and
SD3 (labeled 1/3 in Table 3). A group of two genomes belong to a
cluster closely related to SD3 and SD4 (labeled 3/4), and there are
four genomes that cannot be classified in this way and are labeled
U in Table 3.

The genes of the MEP pathway were (partially) identified
in all the analyzed genomes considered here except for
the genome classified within SD22 (Table 3). This genome,
however, contained most genes of the mevalonate pathway
for DMAPP biosynthesis (Zhao et al., 2013; Figure 7). All

but one examined acidobacterial genomes also encoded ispA,
the gene encoding farnesyl diphosphate synthase. Genes
encoding enzymes involved in squalene synthesis from farnesyl
diphosphate were only detected in genomes of SD1, SD2, SD6,
and the SD1/3 cluster. In most of the genomes of SD2, the
hpnC and hpnD are fused into one gene with approximately
twice the size of the individual hpnC and hpnD genes. This
occurs more often with genes that are of the same functional
category (e.g., Yanai et al., 2001). Although the organization
of the hpnC—hpnD—hpnE cluster is most common in bacteria
(Pan et al., 2015), a BLAST search indicated that a fused hpnCD
gene also occurs in other bacterial species; this SD2 gene is
most closely related to the hpnCD gene in specific Actinobacteria
(e.g., Actinopolyspora species, Blastococcus saxobsidens) and
Alphaproteobacteria (e.g., Rhodospirillum centenum).

Shc and some other crucial genes for the biosynthesis
of BHP (hpnH, hpnG, potentially hpnA) and its derivatives
(hpnI, hpnJ, hpnO) were only identified in the environmental
genomes of the SD1, SD2, and SD1/3 group (Table 3). The
SD22 genome contains shc and hpnH but it lacks the genes
for squalene synthesis from farnesyl diphosphate commonly
encountered in Acidobacteria. However, a gene was identified
that shows homology with genes annotated as squalene synthase
in other bacterial groups. This tentatively suggests that the
SD22 Acidobacterium is capable of BHP biosynthesis, albeit in a
rather different way than all other acidobacteria examined. No
genes involved in the methylation of BHPs were identified in
the acidobacterial genomes obtained from the environmental
genomes, including those that are phylogenetically closely related
to “Ca. K. versatilis Ellin345.” Consequently, it seems likely that
only acidobacteria falling in the cluster phylogenetically related
to SD1, SD2 and SD3, and SD22 are potentially capable of BHP
synthesis.

The genomic organization of the genes involved in BHP
synthesis in the apparently most complete environmental
genomes (i.e., based on the presence of an (almost) complete
set of genes for BHP biosynthesis) is shown in Figure 7. The
SD1 genomes, which are most closely related to “Ca. K. versatilis
Ellin345,” show an organization that is comparable to most other
SD1 acidobacteria. In the species of SD2 gene, cluster A is always
encountered, albeit that the genes hpnC and hpnD are in most
cases fused (Figure 7). Gene cluster C is in all cases the same
but gene cluster B occurs in a fragmented form. SD3 and SD
1/3 acidobacteria contain gene cluster C but clusters A and B
are reduced by the absence of ug2 and ug3, respectively, which
are commonly associated with these clusters in SD1 genomes.
In C. thermophilum (SD4) and the environmental genome Mor1
(SD22) the organization of the BHP genes as observed in SD1
Acidobacteria is no longer evident.

DISCUSSION

Relation of Pheno- with Genotype with
Respect to BHP Production
In this study, we compare BHP and C30 hopene production
with the biosynthetic capacity at the gene level for hopanoid
production. Although 38 acidobacterial strains were analyzed
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FIGURE 7 | (Continued)
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FIGURE 7 | Continued

Location of BHP biosynthetic genes and gene clusters in the genomes of SD1, SD3, and SD4 Acidobacteria and a number of selected environmental genomes as

determined by BLAST protein searches. Species were ordered as indicated by the phylogeny of the shc gene. Stippled lines indicate a distance between the genes.

The numbers refer, in combination with the code below the species name, to the locus tag in the annotated genome from the NCBI database. These numbers

typically increase by 5 for every next gene. Color codes of genes are: orange, genes involved in the biosynthesis of farnesyl diphosphate; red and dark red (putative),

genes involved in the biosynthesis of squalene; blue, genes involved in BHP biosynthesis; yellow, genes involved in the methylation of BHPs; dark green, genes

involved in the mevalonate pathway of isoprenoid biosynthesis, light green, genes often of unknown function associated with identified gene clusters. Names of genes

refer to Table S1. Three gene clusters were often encountered and these are indicated in different background colors (red, blue, and yellow). When these cluster are

indicated with a stippled box, these clusters have been slightly modified by the insertion or deletion of one or a few genes. *There is only a nucleotide sequence

corresponding to the open reading frame of hpnC of C. thermophilum B (WP_014101470.1) between amino acids 38–227.

for the presence of BPH production in culture and the 31
acidobacterial genomes were screened for the BHP biosynthetic
pathway genes, this comparison is somewhat complicated by
the fact that only for 15 strains both hopanoid production and
genome data are available at the same time (Table 2; species in
bold). However, the 16S rRNA gene phylogenetic tree shows that,
in most cases, for strains that only have genome data available
we have analyzed the BHP production in phylogenetically closely
related strains (Figure 1).

The general picture that emerges from this comparison is that
there is an excellent match in pheno- and genotype in terms of
hopanoid production. All analyzed SD1 and SD3 acidobacterial
strains have the genetic capacity for hopanoid production and
do produce hopanoids. There are two out of 21 tested SD1
acidobacteria (Terriglobus sp. KMR, and Telmatobacter bradus
TPB6017T; Table 1) that did not produce C30 hopenes. However,
in these cases the production of BHPs was not determined.
Examination of other strains showed that even when hop-17(21)-
ene is absent, BHPs may still be produced (Table 1), indicating
that the absence of hop-17(21)-ene cannot be interpreted to
indicate the absence of hopanoid production. Furthermore, in
both cases where hop-17(21)-ene was lacking, positive evidence
for hopanoid production was obtained for phylogenetically
closely related strains (i.e., Terriglobus roseus KBS63T, and
Telmatobacter sp. 15–8A and 15–28; Table 1).

Also for SD4 acidobacteria a good match between pheno-
and genotype was observed. Only C. thermophilum harbored the
genes for hopanoid production (Table 2) and also did produce
them (Table 1). The other SD4 acidobacteria did not produce
hopanoids nor did possess the biosynthetic genes. It should be
noted that C. thermophilum is quite distinct from other SD4
acidobacteria with respect to the 16S rRNA gene phylogeny
(Figure 1), physiology (i.e., the only photoheterotroph in the
phylum Acidobacteria; Bryant et al., 2007), and membrane
lipid composition (Sinninghe Damsté et al., 2014), and this is
confirmed here by its unique capacity of producing hopanoids
as the only SD4 acidobacterium so far. In a study of the genome
of C. thermophilum B, Costas et al. (2012a) already pointed
out that this species is rather distinct from other Acidobacteria;
in <20% the closest relative of a gene was a gene of another
acidobacterium (i.e., A. capsulatum, “Ca. K. versatilis Ellin345,”
and “Ca. S. usitatus Ellin 6076”), whereas this was the case for
slightly over 50% for other Acidobacteria. This is also evident
from our data: both the shc gene (Figure 5) and the second copy
of the hpnD gene (Figure 6) are most closely related to other

groups of bacteria. This once more illustrates the unique position
of C. thermophilum within the Acidobacteria.

All other examined acidobacteria from other subdivisions
(i.e., SD6, SD8, SD10, and SD23) did not produce hopanoids
(Table 1) and also did not possess the genetic capacity to do so
(Table 2). So this dataset allows concluding that (i) there is a
clear dichotomy within the phylum Acidobacteria with respect
to hopanoid production, and (ii) that when acidobacterial strains
possess the genes to produce hopanoids, they express them, at
least under the (highly variable) culture conditions that were used
to grow them.

This conclusion is supported by the occurrence of genes
involved in BHP biosynthesis in environmental acidobacterial
genomes belonging to SD1 (Table 3). This survey, however,
also suggested that BHP biosynthesis may also occur in some
other SDs. The environmental genomes of SD2 (which has
no cultured relatives) derived from soil (Butterfield et al.,
2016) appeared to have the genetic potential to produce BHPs.
This also holds true for a group of acidobacteria occurring
in low-oxygen groundwater (Anantharaman et al., 2016),
phylogenetically related to SD1 and SD3 acidobacteria. Lastly,
the environmental genome of an SD22 acidobacterium associated
with the cyanobacterium Moorea producens also shows distinct
sign of the capability to produce BHPs, albeit in a completely
different way than the other acidobacteria. Genomes of SD6
acidobacteria obtained from environmental metagenomes are
genetically capable of producing squalene but do not possess
shc and other BHP-related genes (Table 3), as observed for
the SD6 acidobacteria available in pure culture (Table 2). The
other genomes of acidobacteria obtained from metagenomes
analyzed here do not show any signs of the genetic capacity to
biosynthesize BHPs, in good agreement with the genomic data
of acidobacteria available in culture (Table 2). This also confirms
that C. thermophilum B and OC1 are an exception in SD4.

Squalene Biosynthesis: A Potential Shortcut Inherited

from Betaproteobacteria?
Pan et al. (2015) recently established that the production
of squalene, an important intermediate in the production
of hopanoids, in most bacteria proceeds through a three-
step mechanism (Figure 4): HpnD catalyzes the formation of
presqualene diphosphate (PSPP) from two molecules of farnesyl
diphosphate (FPP), HpnC converts PSPP to hydroxysqualene
(HSQ), andHpnE, amember of the amine oxidoreductase family,
reduces HSQ to squalene. This was rigorously established by
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cloning and expressing the hpnC, hpnD, and hpnE genes from
the hopanoid-producing bacteria Z. mobilis and R. palustris
into Escherichia coli, a bacterium that does not contain genes
homologous to hpnC, hpnD, and hpnE, and their functions were
established in vitro and in vivo. These three genes occur typically
concatenated in a cluster often directly followed by shc (hpnF),
forming a four-gene cluster in the genome (Perzl et al., 1998).

Most of the hopanoid-producing cultivated acidobacteria
possess hpnC, hpnD, and hpnE, commonly but not always (i.e.,
in 12 of 21 genomes) organized in a gene cluster (red box
in Figure 7). However, this gene cluster is not directly located
upstream of shc, as is commonly found in other bacteria (e.g.,
Perzl et al., 1998), but hpnC is often preceded by a gene with
an unknown function (ug2), often annotated as coding for a Zn-
binding alcohol dehydrogenase composed of ca. 350 amino acids.
This gene is present in all SD1 and SD3 acidobacteria but not in
C. thermophilum, suggesting that it is not essential for squalene
biosynthesis but somehow is associated with hpnC, hpnD, and
hpnE. The dispersal of the hpnC, hpnD, and hpnE genes in some
other acidobacteria genomes (e.g., Bryobacter aggregatusMPL3T;
Figure 7) indicates that organization of these genes in a gene
cluster is also not essential for squalene production.

Interestingly, four cultivated acidobacterial species do not
possess all three genes commonly used for conversion of FPP
into squalene (hpnC, hpnD, and hpnE) but lack hpnE (i.e.,
Acidobacteriaceae sp. KBS89) or both hpnC and hpnE (i.e., S.
bohemicum S15, G. mallensis MP5ACTX8, Acidobacteriaceae
sp. TAA66). Unfortunately, these strains were not tested for
hopanoid production. However, phylogenetically closely related
strains were (Figure 1), suggesting that they still would be
able to produce hopanoids and, thus, squalene. Remarkably,
in these strains, and in E. aggregans, a gene annotated as
coding for farnesyl diphosphate farnesyl transferase (fdfT) was
detected, but was absent in any of the other acidobacteria.
This gene is somewhat comparable to the gene encoding for
squalene synthase, an enzyme occurring in many eukaryotes,
where it catalyzes two reactions, i.e., the coupling of two
molecules of FPP to give PSPP and the subsequent NADPH-
dependent reductive rearrangement of PSPP to squalene without
the release PSPP from the active site. A similar enzyme has
been characterized in a cyanobacterium (Lee and Poulter, 2008)
and a gammaproteobacterium (Ohtake et al., 2014). The FdfT
enzymes in the acidobacteria show a sequence identity of ca.
30% with the characterized bacterial squalene synthases but the
protein alignments (Figure S1) show that the active sites of the
enzymes are more conserved, suggesting that the detected fdfT
genes encode an enzyme capable of direct conversion of two
molecules of farnesyl diphosphate into squalene. The presence
of both hpnD and fdfT in the acidobacteria that lack the hpnC-
hpnD-hpnE cassette may alternatively suggest that fdfT encodes
an enzyme that converts PSPP directly into squalene (Figure 4)
but this hypothesis needs to be tested.

Remarkably, the fdfT occurring in five acidobacterial
species is phylogenetically closely related to fdfT of several
Parabulkholderia and Caballeronia species (Betaproteobacteria;
Figure 6); the sequence identity at the protein level is ca. 70–80%.
This high level of sequence similarity suggests that lateral gene
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transfer has introduced this gene. Interestingly, some of the
closely related species were isolated from soil (e.g., Caballeronia
glathei, Zolg and Ottow, 1975; Paraburkholderia sartisoli,
Vanlaere et al., 2008) and decaying wood (e.g., P. sordidicola;
Lim et al., 2003), similar ecological niches as occupied by SD1
Acidobacteria, supporting the suggestion of horizontal gene
transfer. Naumoff and Dedysh (2012) have previously recognized
horizontal gene transfer between Bacteroidetes and Acidobacteria
for genes encoding alfa-L-rhamnosidases and proposed that
sharing a similar ecological niche facilitated such events. E.
aggregans possesses even two copies of the fdfT gene in addition
to the complete gene cluster A (Table 2). This is also one of
the SD1 Acidobacteria with the largest genome size (8.2 Mb;
Table 2), which perhaps explains why it is carrying genes that
seem not essential. Challacombe et al. (2011) suggested earlier
for “Ca. S. usitatus Ellin6076” that its relatively large genome
(9.9.Mb; 2–5 times as large as most other Acidobacteria) has
arisen by horizontal gene transfer and widespread small-scale
gene duplications, resulting in an increased number of paralogs.

BHP Biosynthesis
The synthesis of (composite) BHPs from squalene in bacteria is
performed by a sequence of enzymatic reactions (Figure 3) for
which quite a number of coding genes is known (Table S1). For
the acidobacterial genomes studied, it is apparent that those that
possess shc also contain hpnH and hpnG (Table 2), the genes
encoding enzymes for the first two steps of the biosynthesis
of BHT. The phylogeny of these proteins (like shc; Figure 5)
is broadly similar to that of the 16S rRNA gene, suggesting
that these genes are inherited from a common ancestor. In
all SD1 Acidobacteria (except for “Ca. K. versatilis Ellin345”)
hpnH forms together with shc and ispH a gene cluster. “Ca.
K. versatilis Ellin345” is also with respect to 16S rRNA gene
phylogeny (Figure 1) the most remote species. In all SD1 and
SD3 Acidobacteria, hpnG forms a gene cluster with hpnA, which
is present in all acidobacteria that possess shc, hpnH, and hpnG,
suggesting that it is essential for the formation of BHPs. It is
annotated as a hopanoid-associated sugar epimerase. It may
catalyze the step transformation of ribosyl hopanes to BHT
(Figure 4) for which the enzyme is still unknown. However,
Schmerk et al. (2015) presented some evidence that hpnAwas not
essential for BHT synthesis in Burkholderia cenocepacia and some
BHT producers (like Rhodopseudomonas) do not have a copy of
hpnA in their genome (Welander et al., 2012).

BHT can subsequently be converted into composite BHPs
such as BHT cyclitol ether (Figure 4). For this latter conversion
three genes are required: hpnI, hpnK, and hpnJ (Table S1).
The only SD4 acidobacterium capable of producing BHPs, C.
thermophilum B, is also the only acidobacterium that possesses all
these genes (Table 2). In good agreement with this, intact BHP
analysis of C. thermophilum B has revealed the biosynthesis of
BHT cyclitol ether, in addition to BHT (Costas et al., 2012b). In
contrast, the SD1 and SD3 Acidobacteria do possess hpnJ and
hpnI but lack hpnK (Table 1), suggesting that they are not able
to produce BHT cyclitol ether. Since the Rohmer degradation
method transforms both BHT and its cyclitol ether derivative into
homohopanol, our dataset does not allow confirming this point.

The hpnO gene, encoding the enzyme responsible for the
last step in the formation of amino bacteriohopanetriol from
BHT (Figure 4) was detected in SD1 (but not all) and SD3
acidobacterial genomes, suggesting that these bacteria would be
capable of producing amino bacteriohopanetriol.

Methylation of Hopanoids in Acidobacteria
Welander et al. (2010) and Welander and Summons (2012)
previously reported the presence of the genes encoding
the enzymes responsible for methylation of the A-ring
of biohopanoids (hpnP and hpnR) in the genome of the
acidobacterium “Ca. K. versatilis Ellin345.” Methylated BHPs
were indeed detected in cultures of “Ca. K. versatilis Ellin345”
in our study although the relative amounts were low and highly
variable. Surprisingly, the Rohmer degradation products of
the BHPs of “Ca. K. versatilis Ellin345” contain a tentatively
identified dimethylated homohopanol. To the best of our
knowledge, hopanoids methylated at both position 2 and 3
have not been previously encountered. However, its presence
is consistent with the presence of both the hpnP and hpnR
methylation genes, which is very rare in the bacterial domain.
The only other bacterial genome in the NCBI database that
possesses these two genes is Methylobacterium nodulans
ORS2060 (Marx et al., 2012), a soil bacterium growing on C1

compounds belonging to the Alphaproteobacteria (Jourand
et al., 2004). The dimethylated BHPs only occurred in one of
the three batch cultures of “Ca. K. versatilis Ellin345” examined.
We tentatively attribute this to the growth phase in which
the culture was harvested. It has been demonstrated for M.
capsulatus that 3-methylhopanoids appear to be required for the
maintenance of intracytoplasmic membranes and cell survival
in late stationary phase (Welander and Summons, 2012).
Consequently, methylated BHPs may be primarily formed in this
stage of the growth curve but this will require further research.

Remarkably, only one of the many investigated acidobacterial
species produces or has potential genetic capacity to produce
methylated BHPs. For the acidobacterial environmental genomes
studied also no evidence for production of methylated BHPs was
obtained, even though some genomes were closely related to “Ca.
K. versatilis Ellin345” (Figure 1). This has been observed for
other bacterial phyla; Welander and Summons (2012) reported
that only 3 out of 38 Burkholderia, 8 out of 43 Streptomyces,
and 1 out 8 Methylobacterium genomes harbored the hpnR
gene, while all possessed the shc gene. Also for the hpnP gene
it has been observed that only a limited number of species
of a bacterial phylum (e.g., Cyanobacteria) possess this gene
(Welander et al., 2010). This poses questions on the evolutionary
origin of these methylases. For the Acidobacteria it seems rather
unlikely that their common ancestor possessed both genes and all
but one of the examined species (i.e., “Ca. K. versatilis Ellin345”)
lost them. It seems, therefore, much more plausible that “Ca.
K. versatilis Ellin345” obtained these genes through horizontal
gene transfer, although both hpnP and hpnR gene of “Ca. K.
versatilis Ellin345” are not closely related to any other in other
bacterial phyla, a situation that is clearly different from the case
observed for the fdfT gene (see above and Figure 6). Ricci et al.
(2015) concluded that the hpnP gene originated in a subset
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of the Alphaproteobacteria and that it was likely horizontally
transferred into the Cyanobacteria after their major divergences,
providing further evidence that the ancestral function of 2-
methylhopanoids was not related to oxygenic photosynthesis
(cf. Summons et al., 1999). They also concluded from their
analysis that at approximately the same time as the horizontal
hpnP gene transfer event between Alphaproteobacteria and
Cyanobacteria, hpnP appears to have been laterally transferred to
the Acidobacteria. This ancient horizontal gene transfer would
explain why the hpnP gene of “Ca. K. versatilis Ellin345” is not
closely related to any other hpnP gene in other bacterial phyla.
However, it remains enigmatic why “Ca. K. versatilis Ellin345”
is the only acidobacterium carrying this gene, a situation, which
is clearly distinct from that in the Cyanobacteria where many
species possess the hpnP gene (Ricci et al., 2015).

Implications for BHPs in the Environment
BHPs are omnipresent biomarkers that are being used for a
wide variety of applications. Environmental microbiology studies
using 16S rRNA or functional genes (e.g., shc and hpnR)
have been applied to trace potential sources of BHPs in the
environment (e.g., Pearson et al., 2007; Coolen et al., 2008; Ricci
et al., 2014). However, culture studies remain essential for a
proper understanding of sources of BHPs in the environment.
This study provides for the first time a comprehensive overview
of the occurrence of BHPs in Acidobacteria. Our results indicate
that, in the phylogenetic groups investigated, BHP biosynthesis
is mostly limited to SDs 1, 2, and 3 and a closely affiliated group
(SD1/3), out of the many SDs of the phylum. This may suggest
that in the environment Acidobacteria may not be considered
as important sources of BHPs. However, many studies have
indicated that SD1, 2, and 3 Acidobacteria are among the most
abundant acidobacterial groups in wetlands and soil, whereas
SD1 members thrive in lakes (see Kielak et al., 2016 for a recent
review). Furthermore, Acidobacteria often form an important
fraction of the bacterial community in soils and peat bogs (e.g.,
Chan et al., 2006; Weijers et al., 2009; i.e., up to 80%). Therefore,
in a wide variety of environments acidobacteria could, despite the
somewhat restricted BHP biosynthetic capacity in the phylum as
a whole, still be considered potentially quantitatively important
BHP producers in the environment.

Methylated BHPs are considered to be even better constrained
biomarkers in the environment, although this has been

challenged by genomic (Welander et al., 2010; Welander
and Summons, 2012; Ricci et al., 2015) and environmental
microbiological (Ricci et al., 2014) studies. These authors also
discovered the methylation genes of the BHP pathway in
“Ca. K. versatilis Ellin345” and this study confirmed that this
species under certain conditions produces small amounts of a
dimethylated BHP. However, “Ca. K. versatilis Ellin345” is the
only acidobacterium identified so far that is able to produce
methylated hopanoids and, therefore, Acidobacteria are unlikely
to play an important role in sourcing methylated BHPs in the
environment.
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