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Abstract

Soil temperature has a vital importance in biological, physical and chemical processes of ter-

restrial ecosystem and its modeling at different depths is very important for land-atmosphere

interactions. The study compares four machine learning techniques, extreme learning

machine (ELM), artificial neural networks (ANN), classification and regression trees (CART)

and group method of data handling (GMDH) in estimating monthly soil temperatures at four

different depths. Various combinations of climatic variables are utilized as input to the devel-

oped models. The models’ outcomes are also compared with multi-linear regression based

on Nash-Sutcliffe efficiency, root mean square error, and coefficient of determination statis-

tics. ELM is found to be generally performs better than the other four alternatives in estimat-

ing soil temperatures. A decrease in performance of the models is observed by an increase

in soil depth. It is found that soil temperatures at three depths (5, 10 and 50 cm) could be

mapped utilizing only air temperature data as input while solar radiation and wind speed

information are also required for estimating soil temperature at the depth of 100 cm.

Introduction

For different climatic zones whether it is tropical, arid or semi-arid, soil temperature is consid-

ered as one of the most essential variables affection the agricultural water management and

process. As a result, forecasting the soil temperature could be of importance for water

resources planners, especially for agricultural water demand. The fluctuations of the soil tem-

perature at different time-increments hourly, daily or monthly plays a substantial role on the
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moisture status of the soil at different depth and governs the exchange of the energy and mois-

ture in the boundary of the soil-atmosphere interaction layers [1]. In general, the soil tempera-

ture is the key factor for the successfulness of the agricultural process as it dominates the

evaporation and the evapotranspiration, plant growth, ventilation and root conditions [2,3].

Furthermore, the soil temperature influences the status of the microorganisms and its activities

within the soil (reference). The fact that the soil temperature alters with respect to the depth

(keep in mind that the fluctuation of the temperature at the soil surface is higher than in deeper

level) motivates the researcher to recommend the necessity for monitoring the soil tempera-

ture at different depth. In this context, it is necessary to monitor and evaluate the soil tempera-

ture at different depths [4,5].

In fact, the basic factor affecting the soil temperature and its distribution within the soil

depth the climatic variables including air temperature, relative humidity, wind speed, solar

radiation, rainfall, atmospherics and sunshine duration. Generally, most of the existing studies

on soil temperature relied on a few or all these variables to predict the soil temperature [6,7,8].

It should be noted that in few cases most of these variables might not available and the interre-

lationship between the soil temperature and these variables are highly non-linear. Such truth,

the ability of the machine learning models motivates the researchers to be utilized as the most

effective technique to accurately predict the soil temperature [9,10,11].

During the last two decades, the machine learning methods have been applied and showed

high effectiveness and accurate performance to several engineering applications, especially for

forecasting, prediction, pattern recognition problems. In 2014, Coactive Neuro-Fuzzy Infer-

ence System (CANFIS) has been employed to forecast the daily soil temperature in arid and

semi-arid areas by [12]. Relatively good performance for forecasting the soil temperature has

been achieved, however, the range of the maximum error was slightly high. For the Bandar

Abbas and Kerman stations in Iran, Nahvi et al. [13] developed modified version of the

Extreme Learning Machine (ELM) by integrating with Self-adaptive Evolutionary (SaE) algo-

rithm and introduced (SaE-ELM) model. The model has been structured considering the

atmospheric pressure, air temperature and global solar radiation as inputs. It has been verified

that the soil temperature forecasting accuracy has been slightly improved using the SaE-ELM

model.

Furthermore, in 2017, Adaptive Neuro-Fuzzy Inference System (ANFIS), Gene Expression

Programming (GEP), and Artificial Neural Network (ANN) methods have been utilized as a

modeling technique for estimating the soil temperature (ST) at various depths for two different

stations in Turkey by [11]. It has been reported that the GEP method outperformed the other

methods attaining better accuracy for forecasting the soil temperature at all depths. In the

same year, Mehdizadeh et al. [14] examined the GEP as a forecasting model for monthly soil

temperatures of 31 stations in Iran. However, the model has been developed using different set

of input variables including geographical information and period component rather than

relied on the traditional meteorological variables as reported earlier. The achieved results from

the study showed that the utilization of the ANFIS model enhanced the prediction accuracy of

the soil temperature for all the 31 stations.

It has been reported that the major challenges for achieving accurate predicting of the soil

temperature is unavailability of the most meteorological variables needed as the model inputs

[12]. In addition, the prediction of the soil temperature has inner uncertainties in terms of the

measurement sensors’ precision, a noise because of sensors and the nonlinear feature interrela-

tionship. The conventional forecasting/predicting methods are found to be inappropriate for

meeting these requirements specifically when it is required for forecasting the nonlinear

dynamical variable in nature. Additionally, it is difficult to implement the classical modelling

techniques when the system behavior is anonymous or slightly known. In this case, the use of
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new techniques becomes very essential in especially such a complex nonlinear dynamical sys-

tem. In addition, for forecasting applications that includes several inputs, the selections of the

most appropriate input selections are considered the most significant step in developing the

forecasting model. Therefore, the selection of the minimum possible parameters that enclosed

the most essential information for the model to be able to accurately forecast the desired

parameter is vital step in structuring the model. In our study for forecasting the soil tempera-

ture, there are several inputs that should be considered in the model and it might be necessary

to use different combinations of parameters due to the unavailability of some parameters. The

model’s input selection is a necessary step to assure the successfulness of the model perfor-

mance achieving accurate prediction accuracy for the model’s output. However, the existing

research manuscripts for ST prediction did pay attention for this step as long as the required

data are available for the model developers. On the other hand, the availability of the model’

inputs variables are not necessarily accessible for all case studies. Therefore, in this study, there

is a need to investigate the potential for developing accurate ST prediction model relying on

the most suitable model’s input pattern. In this context, it will be curious to introduce a

method that might able to automatically prior select the most appropriate input selections. In

this context, Group Method of Data Handling (GMDH) method has been employed in order

to optimally select the appropriate input parameters for soil temperature at different depth

[15]. GMDH is considered as an effective self-organizing algorithm that able to be adapted

with machine learning method and permits the accomplishment of proper selection from

database.

It should be noted that in order to acquire accurate ST values in the field that there is a need

install several thermometers at several soil depths. In addition, the installation should be car-

ried out at different locations within the study area at the same time to assure the consistency

and the accuracy of the collected data [16,17]. The implementation of these procedures several

are definitely costly and time-consuming especially in developing countries [18]. As a result,

the accessibility of accurate and consistent ST data are very limited and hence there a need for

robust model that able to capture the mapping between the input(s) and the ST as the model’s

output Feng et al. [19]. Recently, Mehdizadeh et al. [20] developed Fractionally Autoregressive

Integrated Moving Average (FARIMA) model so as to predict the ST and compare the results

with classical Artificial Intelligent (AI) models namely; Gene Expression Programming (GEP)

and Feed Forward Back Propagation Neural Network (FFBPNN) methods. Although that the

results showed that FARIMA outperformed the FFBPNN and GEP methods, the prediction

accuracy for ST using FARIMA were relatively inadequate for the extreme ST values, Mehdiza-

deh et al. [20].

Due to the highly expensive costs and the extensive delinquent and difficulty for direct mea-

surements of soil temperature which is essential for several applications in meteorological,

hydrological and agricultural process, it becomes crucial to examine the potential of machine

learning methods to estimate the soil temperature. In this context, the current study, an inves-

tigation for predicting the soil temperature utilizing several machine learning methods has

been proposed and assessed. As it has been reported earlier, it could be noticed that there were

a lot of research efforts have been developed to predict the ST at different depths. However, the

major inadequacy that have been experienced upon utilizing those models in predicting the

ST, using the traditional statistical model such as ARIMA, is that there is a need to predefine

proper stochastic procedure to identify the associated uncertainty for all used variables in the

model. In addition, for the recently classical machine learning models, prior interrelationship

information between different used variables, for example, covariance, variance and correla-

tion values have to be accurately recognized to select the proper model’ input-output architec-

ture. Furthermore, the classical machine learning models experienced over-fitting problems
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that could lead to unexpected relatively high prediction errors when different input patterns

are examined. In this study, in fact, the ELM method has been developed in order to bridge the

research gaps and drawbacks in these prediction modeling methods. The ELM has been

proved to be reliable procedure and promising algorithm for overcoming the over-fitting

problems. In fact, the ELM’s procedure is designed to overcome the disadvantages of both pre-

diction modeling concepts, the traditional and machine learning. The ELM’s procedure allows

to considerably minimize the possibility of experiencing over-fitting while training and hence

consistent prediction accuracy for unexpected input pattern could be achieved. In addition,

the random projection procedure within parallel computing techniques increase the possibility

Fig 1. The location of the station in Mediterranean region of Turkey.

https://doi.org/10.1371/journal.pone.0231055.g001

Table 1. Brief statistical parameters of the soil temperature and climatic data.

Data set Unit Avr. Min. Max. St. Dev. Skewness

Training data T ˚C 19.6 7.8 30 6.52 -0.04

Rs cal/cm2 12373 3921 19941 4599 -0.11

W m/sec 2.33 1.3 3.5 0.46 0.34

RH % 69.3 54.4 82.5 6.28 -0.26

ST-5cm ˚C 22.1 6.5 38.1 9.58 0.02

ST-10cm ˚C 21.8 6.8 37.2 9.18 0.0005

ST-50cm ˚C 21.6 9.3 34.1 7.31 -0.0003

ST-100cm ˚C 21.4 11.4 32.1 5.82 0.06

Testing data T ˚C 20.7 9.4 31 6.54 -0.05

Rs cal/cm2 12061 4590 17989 4358 -0.18

W m/sec 1.99 1.3 2.8 0.37 0.15

RH % 63.8 45.6 78.2 7.61 -0.34

ST-5cm ˚C 24.1 7.3 39.3 10.3 0.01

ST-10cm ˚C 23.4 7.4 37.9 9.61 -0.01

ST-50cm ˚C 23.5 10.5 35.8 8.02 -0.03

ST-100cm ˚C 23.1 13.1 33.6 6.59 0.06

https://doi.org/10.1371/journal.pone.0231055.t001
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of accomplishing successful convergence procedure and lessen the time needed to achieve the

performance goal.

The purpose of the model is to predict the soil temperature at different depths (5, 10, 50

and 100cm) on a monthly basis. So as to substantiate the exactness of the developed methods,

comprehensive comparative analysis has been carried between the proposed machine learning

models including CART, GMDH, ELM, and ANN. In addition, different grouping and pattern

of climate variables have been examined as inputs for the model including air temperature,

solar radiation, relative humidity and wind speed. Different statistical indices have been evalu-

ated to examine the performance of the models to compare how accurate is the model output

with the desired soil temperature at different depths. It should be noticed here that it is the

first attempt to utilize both the CART and GMDH models as a predictor for soil temperature.

Materials and methods

Used data

In the study, monthly climatic data, air temperature (T), relative humidity (RH), solar radia-

tion (SR), wind speed (W) and soil temperature for the depths of 5, 10, 50, and 100 cm were

obtained from Mersin station (longitude 34˚ 380 E, latitude 36˚ 480 N, altitude 3 m) which is

operated by Turkish Meteorological Service. The study area (Fig 1) has Mediterranean climate

with wet winters and dry summers [21,11]. The winter can get very heavy rains and flooding is

a big problem in some regions. The air temperature ranges from 24˚C (winter) to 40˚C (sum-

mer). The data cover 25-year monthly records from 1986 to 2010. In the study, the first 80%

was utilized for training and remaining 20% was utilized for testing.

Table 1 sums up the brief statistical properties of the climatic and soil temperature data. It is

apparent that ST data show normal distribution (skewness values are close to 0). Maximum

values of the soil temperatures at different depths are higher in the test phase in comparison

with training phase. This may limit the extrapolation capabilities of the implemented models

[22,23]. It can be said that the variation of ST decreases with respect to depth increment (see

St. Dev. in Table 1). The soil temperature variation at various depths is illustrated in Fig 2. As

observed, ST at the depths of 5 cm, 10 cm and 50 cm have high correlations while the ST at 100

cm has totally different variation compared to other values of three depths. Figs 3–6 demon-

strate the visual relationships between each climatic input and ST values for different depths. It

Fig 2. Soil temperature variation at 5cm, 10cm, 50cm, and 100cm.

https://doi.org/10.1371/journal.pone.0231055.g002
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is clear that the air temperature is highly correlated with ST especially for the first three depths

and it is followed by the Rs, W and RH, respectively.

Used methods

ANN. Artificial neural network (ANN) is a data processing based on the neural structure

of the human brain. It constructs relations between inputs and outputs. It has parallel data pro-

cessing architecture like human neural system [24]. The basic element of a human neural sys-

tem is a neuron, which has four basic components. Neurons receive weighted inputs, combine

them, apply nonlinear operation and give the output. Therefore, the artificial neuron, which is

the elementary processing element of an ANN, has four functions like natural neurons. Clus-

tering these artificial neurons forms the artificial neural network. This clustering happens by

making layers, which are then associated with each other. Most applications need ANN to

Fig 3. Relation between input parameters and ST- 5cm.

https://doi.org/10.1371/journal.pone.0231055.g003
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have three interconnected layers, which are input, hidden and output layers. Fig 7 illustrates

an ANN architecture with three inputs, four hidden nodes and two outputs. These ANNs are

known as multi-layer perceptron (MLP) [25,26,27]. The connection among layers is the one of

the most important features of an ANN. It can be feedforward or feedback. Feedforward net-

works are unidirectional while feedback networks have loops.

One of the most recognized advantages of an ANN is that it can learn. Learning occurs by

adjusting weights to minimize the error between predicted and observed values. There are dif-

ferent training algorithms, which minimizes the error. One of the most popular training algo-

rithms is Bayesian regularization, which is also used in this study [28]. The following formula

shows the sigmoid function which is used in this study.

S xð Þ ¼
ex

ex þ 1
ð1Þ

Learning occurs by adjusting weights to minimize the error between predicted and observed

Fig 4. Relation between input parameters and ST- 10cm.

https://doi.org/10.1371/journal.pone.0231055.g004
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values. There are different training algorithms, which minimizes the error. One of the most

popular training algorithms is Bayesian regularization, which is also used in this study [28].

Besides theoretical complexity and needs of fine tuning weakness of ANN, one of the main

advantages of this method is its effectiveness in complex relational variables and high dimen-

sional problems.

CART. Leo Breiman et al. [29] introduced the classification and regression tree (CART).

It is used as a prediction model, which uses a binary decision tree, see Fig 8 [30,31,32]. It is spe-

cially fitted for tasks in which a little priori knowledge exists. The motivation behind the analy-

ses by means of tree-building algorithms is to decide split conditions, which gives correct

classification of cases or prediction. CART divides the datasets into child nodes until it reaches

stable state in which dividing leaf nodes don’t improve the entire tree. There are three main

steps in the CART methodology. These steps are tree growing, tree pruning, and selection of

Fig 5. Relation between input parameters and ST- 50cm.

https://doi.org/10.1371/journal.pone.0231055.g005
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optimal tree. Since CART integrates continuous and categorical dependent variables, it is

widely used by many practitioners.

Friedl et al. [33] noted that boosting and bagging algorithms can improve the performance

of CART algorithm. Deciding about a threshold value and input feature are the important

parts of the forming the structure of the decision tree. Since it is decision tree it naturally dis-

cards the ineffective input features. CART models are very interpretable since the impact of

each input variable on the output can be envisioned by the related tree-based structure.

ELM. For the past decades in the feed forward neural networks the learning speed was

generally slower than desired since the entire network parameters are iteratively tuned mostly

using slow gradient-based learning algorithm. Also, more human involvement is needed in

classical learning methods to get suitable model parameters. Extreme learning machine (ELM)

is proposed as a new machine learning method to get the better of the classical machine learn-

ing models for single-hidden layer feed-forward neural networks (SLFNs) [34,35]. It simply

uses the idea of a random projection and then linear regression. During its learning phase

Fig 6. Relation between input parameters and ST- 100cm.

https://doi.org/10.1371/journal.pone.0231055.g006
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tuning hidden neurons is not required. A sub-network of several nodes can be used as a hid-

den node.

In the last decades it has been used in variety problems like feature learning, classification,

regression, and clustering [36,37,38,39,40,41,42,43]. ELM became faster and efficient for big

data processing because of the improvements of the parallel computing techniques.

The output function of generalized single- hidden layer feed-forward neural networks with

L hidden nodes can be defined as:

fMðxÞ ¼
PL

i¼1
biGðai; bi; xÞ ð2Þ

where β1 is output weights and G is hidden node output function.

During training phase, the quantity of hidden nodes, output function and hidden node is

given, ELM learning process consists of the following steps:

Fig 7. Architecture of an artificial neural network.

https://doi.org/10.1371/journal.pone.0231055.g007

Fig 8. Decision tree.

https://doi.org/10.1371/journal.pone.0231055.g008
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Assigning randomly hidden node parameters (ai,bi), i = 1,. . .,L, calculating hidden layer

output matrix:

H ¼

Gða1; b1; x1Þ � � � GðaL; bL; x1Þ

..

. . .
. ..

.

Gða1; b1; xNÞ � � � GðaL; bL; xNÞ

2

6
6
4

3

7
7
5; ð3Þ

and calculating output weights β by minimizing kHβ−Tk and kβk where T ¼

tT
1

..

.

tTN

2

6
6
4

3

7
7
5 is the tar-

get function [34].

GMDH. Group method of data handling (GMDH) is originated by Ivakhnenko [44]. It is

a set of inductive algorithms. It consists of clusterization, rebinarization, parametric, probabil-

ity and analogues complexing algorithms. It has big area of applications like optimization, data

mining, complex system modeling, pattern recognition, and deep learning. It is cited as one of

the oldest deep learning methods [45]. By its inductive nature it finds the optimal structure of

the model without interaction of the authors.

The performance of GMDH is better than the classical alternatives like ARIMA, back-prop-

agation neural network, single exponential smooth [46]. GMDH has three parts which are

input variables, external and internal criteria, see Fig 9. During model selection, external crite-

ria are used meanwhile internal criteria are used to predict the equation’s coefficients.

Fig 9. A typical GMDH neural network.

https://doi.org/10.1371/journal.pone.0231055.g009
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Table 2. Training and testing accuracies of the ELM models in modeling soil temperature at different depths.

Input combination Training Testing

RMSE (˚C) NSE R2 RMSE (˚C) NSE R2

5 cm

T 1.526 0.974 0.974 1.607 0.975 0.980

T, RH 8.531 0.196 0.727 10.08 0.033 0.335

T, Rs, W 8.131 0.269 0.744 9.705 0.103 0.337

T, Rs, W, RH 3.836 0.837 0.837 6.711 0.571 0.571

10 cm

T 1.265 0.980 0.980 1.190 0.984 0.986

T, RH 8.129 0.210 0.708 9.339 0.048 0.312

T, Rs, W 7.663 0.298 0.762 8.693 0.175 0.312

T, Rs, W, RH 4.167 0.792 0.792 7.110 0.448 0.461

50 cm

T 1.025 0.980 0.980 1.397 0.969 0.982

T, RH 6.245 0.263 0.572 7.875 0.017 0.181

T, Rs, W 5.949 0.331 0.607 7.411 0.13 0.177

T, Rs, W, RH 4.242 0.660 0.66 6.335 0.364 0.39

100 cm

T 4.276 0.455 0.455 5.149 0.356 0.459

T, RH 5.492 0.102 0.102 7.201 -0.258 0.346

T, Rs, W 2.210 0.854 0.854 3.211 0.749 0.901

T, Rs, W, RH 2.185 0.857 0.857 3.215 0.749 0.915

https://doi.org/10.1371/journal.pone.0231055.t002

Table 3. Training and testing accuracies of the ANN models in modeling soil temperature at different depths.

Input combination Training Testing

RMSE (˚C) NSE R2 RMSE (˚C) NSE R2

5 cm

T 1.600 0.971 0.971 1.914 0.965 0.977

T, RH 9.276 0.049 0.130 10.82 -0.113 0.027

T, Rs, W 9.379 0.028 0.028 10.28 -0.005 0.052

T, Rs, W, RH 8.411 0.218 0.723 10.06 0.037 0.336

10 cm

T 1.237 0.981 0.981 1.429 0.977 0.980

T, RH 9.046 0.022 0.022 9.596 -0.004 0.004

T, Rs, W 7.968 0.241 0.729 9.085 0.099 0.314

T, Rs, W, RH 8.069 0.221 0.709 9.310 0.054 0.314

50 cm

T 1.058 0.978 0.978 1.456 0.966 0.984

T, RH 7.152 0.034 0.501 8.088 -0.035 0.085

T, Rs, W 6.846 0.114 0.537 8.465 -0.134 0.179

T, Rs, W, RH 6.538 0.192 0.557 8.146 -0.050 0.181

100 cm

T 4.488 0.400 0.401 5.407 0.290 0.406

T, RH 5.628 0.057 0.057 6.446 -0.008 0.115

T, Rs, W 4.949 0.270 0.270 6.053 0.110 0.205

T, Rs, W, RH 4.328 0.442 0.442 5.704 0.210 0.409

https://doi.org/10.1371/journal.pone.0231055.t003
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Table 4. Training and testing accuracies of the CART models in modeling soil temperature at different depths.

Input combination Training Testing

RMSE (˚C) NSE R2 RMSE (˚C) NSE R2

5 cm

T 1.162 0.985 0.985 1.719 0.971 0.974

T, RH 0.600 0.996 0.996 1.665 0.973 0.977

T, Rs, W 0.563 0.996 0.996 1.674 0.973 0.975

T, Rs, W, RH 0.571 0.996 0.996 1.591 0.975 0.977

10 cm

T 0.981 0.988 0.988 1.407 0.978 0.979

T, RH 0.570 0.996 0.996 1.269 0.982 0.984

T, Rs, W 0.549 0.996 0.996 1.401 0.978 0.98

T, Rs, W, RH 0.551 0.996 0.996 1.365 0.979 0.98

50 cm

T 0.853 0.986 0.986 1.382 0.969 0.980

T, RH 0.636 0.992 0.992 1.552 0.962 0.976

T, Rs, W 0.667 0.991 0.991 1.542 0.962 0.975

T, Rs, W, RH 0.668 0.991 0.991 1.541 0.962 0.974

100 cm

T 2.975 0.738 0.738 5.478 0.299 0.386

T, RH 1.217 0.956 0.956 3.576 0.701 0.799

T, Rs, W 1.178 0.959 0.959 3.330 0.741 0.821

T, Rs, W, RH 1.121 0.962 0.962 3.483 0.716 0.787

https://doi.org/10.1371/journal.pone.0231055.t004

Table 5. Training and testing accuracies of the GMDH models in modeling soil temperature at different depths.

Input combination Training Testing

RMSE (˚C) NSE R2 RMSE (˚C) NSE R2

5 cm

T 0.937 0.990 0.990 1.726 0.971 0.986

T, RH 0.934 0.990 0.990 1.643 0.974 0.984

T, Rs, W 0.908 0.991 0.991 1.757 0.970 0.986

T, Rs, W, RH 0.877 0.991 0.991 2.294 0.949 0.951

10 cm

T 0.806 0.992 0.992 1.308 0.981 0.987

T, RH 0.807 0.992 0.992 1.218 0.983 0.988

T, Rs, W 0.762 0.993 0.993 1.399 0.978 0.978

T, Rs, W, RH 0.757 0.993 0.993 4.425 0.784 0.799

50 cm

T 0.978 0.982 0.982 1.165 0.978 0.978

T, RH 0.980 0.982 0.982 1.423 0.968 0.97

T, Rs, W 0.948 0.983 0.983 3.253 0.833 0.851

T, Rs, W, RH 0.937 0.983 0.983 6.279 0.377 0.52

100 cm

T 2.479 0.818 0.819 4.486 0.529 0.923

T, RH 2.484 0.817 0.818 5.092 0.394 0.916

T, Rs, W 2.359 0.835 0.835 7.635 -0.361 0.287

T, Rs, W, RH 2.242 0.851 0.851 4.733 0.476 0.931

https://doi.org/10.1371/journal.pone.0231055.t005
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Table 6. Training and testing accuracies of the MLR models in modeling soil temperature at different depths.

Input combination Training Testing

RMSE (˚C) NSE R2 RMSE (˚C) NSE R2

5 cm

T 1.486 0.975 0.975 1.652 0.973 0.978

T, RH 0.855 0.992 0.992 1.908 0.964 0.985

T, Rs, W 0.846 0.992 0.992 1.821 0.968 0.988

T, Rs, W, RH 0.835 0.992 0.992 1.883 0.965 0.985

10 cm

T 1.235 0.981 0.981 1.252 0.982 0.983

T, RH 0.720 0.993 0.993 1.419 0.977 0.986

T, Rs, W 0.713 0.994 0.994 1.424 0.977 0.986

T, Rs, W, RH 0.737 0.993 0.993 1.376 0.979 0.985

50 cm

T 1.056 0.979 0.979 1.286 0.973 0.983

T, RH 0.907 0.984 0.984 0.997 0.984 0.988

T, Rs, W 0.964 0.982 0.982 1.089 0.981 0.988

T, Rs, W, RH 0.998 0.981 0.981 1.222 0.976 0.978

100 cm

T 4.366 0.436 0.436 5.201 0.368 0.500

T, RH 2.285 0.845 0.845 4.337 0.560 0.922

T, Rs, W 2.181 0.859 0.859 4.045 0.617 0.923

T, Rs, W, RH 2.274 0.847 0.847 4.091 0.609 0.915

https://doi.org/10.1371/journal.pone.0231055.t006

Fig 10. The RMSE values of the optimal ELM, ANN, CART, and GMDH models in predicting soil temperatures at different depths.

https://doi.org/10.1371/journal.pone.0231055.g010
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Fig 11. The tree of the optimal CART model in predicting soil temperature at 5-cm depth.

https://doi.org/10.1371/journal.pone.0231055.g011

Fig 12. The scatterplots of the optimal ELM, ANN, CART, GMDH, and MLR models in predicting soil temperatures at 5 cm depth.

https://doi.org/10.1371/journal.pone.0231055.g012
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Polynomial functions are used in the majority of GMDH algorithms and the network

formed by using GDMH is adaptive. A generic relation between input/output variables can be

shown by the following Kolmogorov- Gabor polynomial equation [47].

y ¼ a0 þ
Pm

i¼1
aixi þ

Pm
i¼1

Pm
j¼1
aijxixj þ

Pm
i¼1

Pm
j¼1

Pm
k¼1
aijkxixjxk þ � � � ð4Þ

where y is the node output, xi,xj,xk,. . . are inputs, and a0,ai,aij,. . . are the coefficients of the

polynomials.

Application and results

In the presented work, the exactness of four data-driven methods, ELM, ANN, CART, GMDH

and multi-linear regression (MLR), is examined in mapping monthly soil temperature at vari-

ous depths. Sigmoid function and 250 hidden nodes were used for the ELM after trying various

numbers. For the ANN models, Bayesian regulation was employed for training and the opti-

mal hidden node number was determined as 25. The hidden neurons’ number was decided

based on trial and error considering minimization of the training error and the performance

of the models was checked by testing samples that had not any role in model training (calibra-

tion stage). In the hidden/output layers, sigmoid/purelin activation functions were utilized,

respectively. The loss function was mean-squared error. Root mean square error (RMSE) was

utilized to assess the employed models. To check the over training which is the well-known

Fig 13. The scatterplots of the optimal ELM, ANN, CART, GMDH, and MLR models in predicting soil temperatures at 10 cm depth.

https://doi.org/10.1371/journal.pone.0231055.g013
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challenge in AI-based techniques, dataset was classified as training and testing and models

were calibrated utilizing training samples and the performance of the models was checked by

testing samples that had not any role in model training (calibration stage). Therefore, an

acceptable result in testing stage proved that there is no over training in the proposed models.

The following criteria were used for evaluation of the model results

Root Mean Square Error RMSEð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
ðSTim � STipÞ

2

N

s

ð5Þ

Nash � Sutcliffe Efficiency NSEð Þ ¼ 1 �

PN
i¼1
ðSTim � STipÞ

2

PN
i¼1
ðSTim � �STmÞ

2
ð6Þ

Determination Coefficient R2ð Þ ¼

PN
i¼1
ðSTim � �STmÞðSTip � �STpÞ

2

PN
i¼1
ðSTim � �STmÞ

2PN
i¼1
ðSTip � �STpÞ

2
ð7Þ

Where N = data quantity, STim = measured soil temperature, �STm = mean of measured soil

temperature, STip = predicted soil temperature, �ST p = mean of predicted soil temperature.

Fig 14. The scatterplots of the optimal ELM, ANN, CART, GMDH, and MLR models in predicting soil temperatures at 50 cm depth.

https://doi.org/10.1371/journal.pone.0231055.g014
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Training and test results of the ELM models with various input scenarios are summed up in

Table 2. At the first the depths of 5, 10 and 50 cm, the models with only temperature input per-

forms superior to the other models while for the depth 100 cm, the ELM model with T, Rs, W

or full inputs has the least RMSE and the highest NSE and R2. The best models’ accuracies of

the ELM with respect to RMSE range from 1.190 cm (10 cm depth) to 3.211 cm (100 cm

depth) in modeling soil temperature at various depths. Table 3 reports the training and test sta-

tistics of the ANN with different climatic inputs in estimation of soil temperature at 5, 10, 50

and 100 cm depths. The optimal ANN model was found for only temperature input for each

depth. The RMSE range of the best ANN models is 1.429–5.407 cm (10 cm—100 cm depths).

The RMSE, NSE and R2 statistics of the CART are provided in Table 4. A different trend is

observed for this method compared to ELM and ANN. Linear structure of CART may be the

reason of this. The best CART models for the depths 5, 10, 50 and 100 cm were obtained from

the fourth, second, first and the third input combinations, respectively. The RMSE of the best

model increases from 1.269 cm (10 cm depth) to 3.330 cm (100 cm depth). Table 5 presents

the training and test results of the GMDH in respect of RMSE, NSE and R2 in mapping soil

temperatures of various depths. For this method, temperature input provides the best perfor-

mance for the depths of 50 cm and 100 cm while for the other two depths, the model with T

and RH (second input combination) has the best accuracy. The error range of the GMDH

Fig 15. The scatterplots of the optimal ELM, ANN, CART, GMDH, and MLR models in predicting soil temperatures at 100 cm depth.

https://doi.org/10.1371/journal.pone.0231055.g015
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with respect to RMSE varies from 1.165 cm (50 cm depth) to 4.486 cm (100 cm depth). The

training and test results of the MLR are reported in Table 6 in mapping soil temperature at

four different depths. The best MLR models for the depths 5, 10, 50 and 100 cm were obtained

from the first, first, second and the third input combinations, respectively. The RMSE incre-

ment of the best models is from 0.997 cm (50 cm depth) to 4.045 cm (100 cm depth). As a lin-

ear model, MLR seems to be worse than the other linear structured CART model except the

ST at 50 cm in which the MLR with T and RH input performs superior to the other four meth-

ods in this case.

The RMSE values of the best models are visually compared in Fig 10 in the bar graph forms.

The differences among the models with respect to various climatic inputs can be better seen

from these graphs. In case of 5 cm depth, including climatic variables (RH, Rs and W) in

inputs does not affect the accuracy of the CART and GMDH while the exactness of the ELM

and ANN decreases and the one input model with temperature data has the lowest RMSE for

the all methods. In estimation of soil temperature at 10 cm and 50 cm depths, also same trend

is observed except the last one and two-input combinations of the GMDH. In case of 100 cm

depth, adding Rs and W variables into input combination generally increases the performance

Fig 16. The comparison of the optimal ELM, ANN, CART, GMDH, and MLR models in predicting soil temperatures at 5 cm depth.

https://doi.org/10.1371/journal.pone.0231055.g016
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of ELM and CART and they perform superior to the ANN and GMDH. As an example, the

regression tree of the CART model for modeling soil temperature at depth of 5 cm is illustrated

in Fig 11.

The scatterplots of the optimal models in estimating ST at various depths are shown in Figs

12–15. In case of soil temperatures at 5 cm depth (ST5) and at 10 cm depth (ST10), the ELM

and GMDH generally have less scattered estimates than the CART and ANN models (Figs 12

and 13). The ELM better predicts low ST5 and ST10 (lower than 15 oC) while the GMDH has

better estimates middle values (between 15 and 30 oC). Here, the main advantage of the ELM

model compared to GMDH model is it uses only air temperature data while the latter model

also requires relative humidity. In case of soil temperatures at 50 cm depth (ST50), the fit line

of the GMDH model is closer to the exact line (Y(estimate) = T (target or observed)) which

indicates that the estimates of the GMDH are closer to the observed values compared to ELM,

ANN, CART, MLR model (Fig 14). All the optimal models use only temperature input. In case

of soil temperatures at 100 cm depth (ST100), the ELM model is relatively better than the other

models while the ANN model provides the worst results (Fig 15). Time variation of the models’

estimates and observed ST values are shown in Figs 16–19. All five methods could catch the

general trend of the ST values at three depths while for the depth of 100 cm, considerable

under- and over-estimations are observed for the all methods. The ANN seems to be

Fig 17. The comparison of the optimal ELM, ANN, CART, GMDH, and MLR models in predicting soil temperatures at 10 cm depth.

https://doi.org/10.1371/journal.pone.0231055.g017
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Fig 19. The comparison of the optimal ELM, ANN, CART, GMDH, and MLR models in predicting soil temperatures at 100 cm depth.

https://doi.org/10.1371/journal.pone.0231055.g019

Fig 18. The comparison of the optimal ELM, ANN, CART, GMDH, and MLR models in predicting soil temperatures at 50 cm depth.

https://doi.org/10.1371/journal.pone.0231055.g018
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inadequate in catching ST at 100 cm depth while the GMDH and MLR have considerable

over- and underestimates at this depth. The main reason of this might be the low correlation

between climatic inputs and ST at 100 cm depth. The other may be the different behavior of

ST at 100 depth as also observed from Fig 2.

In overall, the ELM provides better accuracy than the ANN, CART, GMDH and MLR in

estimating soil temperature at different multiple depths. This result is in accordance with the

study of Feng et al. [19] in which ELM was applied in estimating soil temperature at the depths

of 2, 5, 10 and 20 cm and compared with GRNN, BPNN and RF models. Better estimates were

obtained from ELM compared to other models.

Conclusion

The abilities of four machine learning methods, ELM, ANN, CART and GMDH in estimating

soil temperature at different depths were compared utilizing various combinations of climatic

variables as inputs and results were compared with MLR model. The following conclusions

can be reached from application results:

• It was found that the models’ accuracies generally decrease by increase in soil depth.

• Soil temperatures at 5, 10 and 50 cm depths could be successfully predicted using only air

temperature data as input. In prediction of ST at 100 cm depth, however, solar radiation and

wind speed information are also needed.

• ELM method generally provided superior accuracy to the other methods in predicting

monthly soil temperatures at various depths.

• ELM can be used in real soil temperature forecasting which carries importance for agricul-

tural decision systems.

In the current research, models were tested by data from only one site. In future studies, the

models may be tested using more data from other sites and ELM may be compared with other

machine learning methods such as neuro-fuzzy, fuzzy-genetic, neuro-genetic.
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