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Abstract: Manganese (Mn) is one of the most studied environmental heavy metals linked to
Alzheimer’s disease (AD). However, it remains unclear whether serum Mn levels are associated with
AD and mild cognition impairment (MCI, a prodromal stage of AD). We conducted a meta-analysis to
analyze the serum Mn levels in patients with AD and MCI. A systematic database search of PubMed,
Web of Science, and the China National Knowledge Infrastructure (CNKI) identified 17 studies,
including 836 cases and 1254 health controls (HC). Random-effects meta-analysis showed that patients
with AD had significantly reduced serum Mn levels compared with HC subjects (SMD = −0.39;
95% CI (−0.71, −0.08); p = 0.015). MCI individuals had a tendency toward reduced serum Mn levels
compared with HC subjects (SMD = −0.31; 95% CI (−0.70, 0.08); p = 0.117). A significant decrease
in serum Mn levels was found in patients with cognitive impairment (including both AD patients
and MCI patients) (SMD = −0.37, 95% CI (−0.60; −0.13); p = 0.002). Finally, no significant differences
were observed between AD and MCI patients in serum levels (SMD = 0.24; 95% CI (−0.23, 0.72);
p = 0.310). Our findings show that the serum Mn levels are lower in AD patients, and Mn deficiency
may be a risk factor for AD.
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1. Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder clinically characterized by
cognitive impairment, and becomes the predominant form of dementia [1–3]. Cognitive impairment
commonly starts with mild symptoms and gradually aggravates [4]. Because of the slowness of the
disease’s progression, the neurodegenerative processes are likely to start many years before AD patients
presents with typical clinical symptoms of dementia. This transitional stage is clinically recognized as
mild cognitive impairment (MCI), the precursor of dementia [5–7]. Despite great progress in basic and
clinical studies of AD, the etiology of the disease is still largely unclear. Current treatments only offer
symptomatic improvement without stopping disease progression [8]. Therefore, identifying the risk
factors for dementia is important for effectively preventing or postponing the onset of AD [9,10].

It was found that the altered homeostasis of some metal elements could be related to the
progression of AD [11], and the previous meta-analysis studies have indicated that AD is associated
with an imbalance of increased Cu levels [12,13] and decreased Zn levels [12,14]. Manganese (Mn)
widely exists in minerals, soil and food, and is an essential trace element for human health [15,16].
In the nervous system, Mn presents in several proteins and key enzymes, such as astrocytic glutamine
synthetase, pyruvate carboxylase and mitochondrial superoxide dismutase [17–20], and is associated

Nutrients 2017, 9, 231; doi:10.3390/nu9030231 www.mdpi.com/journal/nutrients

http://www.mdpi.com/journal/nutrients
http://www.mdpi.com
http://www.mdpi.com/journal/nutrients


Nutrients 2017, 9, 231 2 of 12

with some neurodegenerative disorders of the central nervous system (CNS) [21–24]. Recently,
increasing evidence has shown that Mn is potentially involved in the progression of AD. It has
been reported that AD patients have a deregulated metabolism of Mn, and a dysfunction of the
manganese-superoxide dismutase (Mn-SOD) scavenger system, associated with the formation of
senile plaques [25]. Reduced mitochondrial Mn-SOD activities have been found in the brain of
neuropathology confirmed AD patients [26]. Moreover, it has been reported that the transport of Mn
across the blood-brain barrier (BBB) is regulated by iron, and perturbed iron distribution has been
implicated in the pathogenesis of AD [27–29].

Several studies have evaluated the associations between serum Mn levels and the risk of AD or
MCI. However, conflicting results exist regarding whether cognitive impairment is associated with
serum Mn levels. In addition, many studies have a relatively small sample size, which may not
be sufficiently powered to detect the differences. Here, we performed a meta-analysis to study the
association of serum Mn levels with AD and MCI.

2. Materials and Methods

2.1. Search Strategy and Study Selection

This meta-analysis was conducted according to the Preferred Reporting Items for Systematic
reviews and Meta-Analyses (PRISMA) statement [30]. The study protocol was registered with
the International Prospective Register of Systematic Reviews (PROSPERO) (registration No.
CRD42017055425). Supplementary materials showed the PRISMA Checklist. We searched published
studies from the following databases: PubMed, Web of Science, and the China National Knowledge
Infrastructure (CNKI) from inception to January 2017 reporting the association of serum Mn levels
with AD or MCI. The keywords in the English or Chinese language included the following terms:
Alzheimer’s disease, mild cognitive impairment, manganese, and serum. The search strategies are
shown in Table S1. Eligible articles were retrieved from the above databases, and additional articles
were obtained by handsearching the references of relevant studies. Studies for inclusion in this study
should meet the following criteria: (1) a clinical study; (2) a case-control study; and (3) studies that
provided a sample size and serum Mn levels in at least two groups of subjects (AD, MCI and HC).
Exclusion criteria included: (1) in vitro or laboratory studies; (2) overlapped studies; (3) review or case
reports; and (4) studies without serum Mn levels.

2.2. Data Extraction and Quality Assessment

Two investigators (Ke Du and Xin Zhong) independently assessed the eligible studies and
extracted the relevant information from the literature, including the last name of first author, year
of publication, geographic locations of studied populations, sample size, mean age of the subjects,
percentage of women, criteria for AD diagnosis, and the technique used for measuring serum Mn
levels. The serum Mn levels were expressed as the mean ± standard deviations (SD) if available,
or estimated data from the sample size, median and range if they were not given directly [14,31].
The study quality was assessed using the Newcastle-Ottawa quality assessment Scale (NOS), in which
scores for low (0–3), moderate (4–6), and high-quality studies (7–9) were assigned (Table S2).

Meta-analyses were performed using STATA 12.0 (Stata, College Station, TX, USA). A random
effects model was used to combine results from multiple studies if the heterogeneity was significant,
or a fixed effects mode was used if the heterogeneity was not significant. Standardized Mean
Difference (SMD), which expresses the difference in mean for the individual study, was used as
the summary statistic. The heterogeneity among studies was evaluated using Chi-square and I-square
tests. A subgroup analysis was performed to assess the impact of the study characteristics as possible
sources of heterogeneity, including the methods for measuring Mn concentrations (ICP-MS (inductively
coupled plasma-mass spectrometry), ICP-AES (coupled plasma-atomic emission spectrometry) or AAS
(atomic absorption spectrometry) and the geographic locations of studied participants (Europe, Asia
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or Australia). Meta-regression was conducted to explore the effect of the continuous variables on the
outcomes of the meta-analysis, especially the effect of two study-level characteristics (mean age and
gender distribution) on the serum Mn levels in AD and MCI. A sensitivity analysis was performed to
assess the influence of individual studies on the pooled SMD. Publication bias was assessed using the
Egger’s and Begg’s tests. Cumulative meta-analysis was conducted to evaluate the temporal effect.
The results were presented as forest plots and determined to be statistically significant when p-values
were less than 0.05.

3. Results

3.1. Literature Search and Study Characteristics

A total of 31 potential articles were found in an initial search using PubMed, Web of Science, and
CNKI. Fourteen studies were excluded due to unavailability of serum Mn levels (n = 8), overlapped
studies (n = 2), no AD or MCI (n = 2), insufficient subjects (n = 1), and no standard deviation (n = 1).
Finally, 17 studies were included in this analysis (total 836 cases and 1254 controls). The selecting
process was shown in a flow diagram (Figure 1).

The sample size of the included studies ranged from 8 to 758. The average age of the patient
groups ranged from 66.2 to 87.0 years. The proportion of female patients ranged from 33% to 80%.
The geographic locations were in Europe, Asia, and Australia in 10, 4, and 3 studies, respectively.
The average age was missing in one study, and the criteria for AD diagnosis was lacking in one
study. The detailed characteristics are summarized in Table 1. The details of quality assessment scale
according to the NOS are presented in Table S2. The study quality ranged from 7 stars (5 articles) to
8 stars (6 articles).
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Table 1. Characteristics of the included studies in the meta-analysis of serum Mn levels.

Studies on AD to HC

AD Patients HC Subjects

Reference Country n Gender Age Mn Concentration Criteria for AD Diagnosis n Gender Age Mn Concentration Method

(% Female) Mean ± SD (Year) Mean ± SD (µg/L) (% Female) Mean ± SD (Year) Mean ± SD (µg/L)

Fang 1997 [32] China 24 33 61–87 42.85 + 17.03 DSM-III 8 38 58–72 50.00 + 19.78 ICP-AES
Molina 1998 [33] Spain 26 46 73.1 ± 8.2 1.03 + 0.68 DSM-IV, NINCDS-ADRDA criteria 28 43 70.8 ± 7.3 1.31 + 0.63 AAS
Bocca 2005 [34] Italy 60 67 74.6 ± 6.4 0.63 + 0.22 NINCDS-ADRDA criteria 44 25 ≥45 0.65 + 0.24 ICP-MS

Alimonti 2007 [35] Italy 53 68 74.5 ± 6.5 0.60 + 0.08 NINCDS-ADRDA criteria 124 35 44.8 ± 12.7 0.60 + 0.04 ICP-MS
Liu 2008 [36] China 30 47 66.2 ± 9.9 15.00 ± 4.00 DSM-IV, NINCDS-ADRDA criteria 28 46 66.8 ± 8.3 18.00 ± 3.00 ICP-AES

Baum 2010 [37] Hong Kong 44 66 74.3 ± 8.7 1.18 ± 1.15 NINCDS-ADRDA criteria 41 49 79.1 ± 6.0 0.73 ± 0.51 ICP-MS
Dominguez 2014 [11] Spain 30 60 80.9 ± 4.5 0.62 ± 0.35 NINCDS-ADRDA criteria 30 57 74.0 ± 5.7 1.16 ± 0.73 ICP-MS

KOC 2015 [38] Turkey 44 49 77.7 ± 9.3 9.00 ± 7.50 DSM-IV, NINCDS-ADRDA criteria 33 52 73.2 ± 10.6 10.00 ± 5.00 ICP-MS
Paglia 2016 [39] Italy 34 74 72.4 ± 7.5 0.59 ± 0.32 NINCDS-ADRDA criteria 40 63 65.5 ± 6.4 1.24 ± 0.42 ICP-MS
Hare 2016 [40] Australia 206 62 78.0 ± 8.6 0.82 ± 0.25 - 758 31 70.0 ± 7.0 0.92 ± 0.70 ICP-MS

Studies on MCI to HC

MCI Individuals HC Subjects

Reference Country n Gender Age Mn Concentration Criteria for AD Diagnosis n Gender Age Mn Concentration Method

(% Female) Mean ± SD (Year) Mean ± SD (µg/L) (% Female) Mean ± SD (Year) Mean ± SD (µg/L)

Dominguez 2014 [11] Spain 16 38 75.9 ± 5.7 0.57 ± 0.33 - 30 57 74.0 ± 5.7 1.16 ± 0.73 ICP-MS
Negahdar 2015 [41] Iran 120 50 74.3 ± 7.8 14.30 + 5.18 - 120 50 67.7 ± 6.9 13.50 + 5.30 AAS

Paglia 2016 [39] Italy 20 80 68.3 ± 7.8 0.91 ± 0.48 - 40 63 65.5 ± 6.4 1.24 ± 0.42 ICP-MS
Hare 2016 [40] Australia 129 57 75.7 ± 7.6 0.85 ± 0.37 - 758 31 70.0 ± 7.0 0.92 ± 0.70 ICP-MS

Studies on MCI to AD

AD patients MCI Individuals

Reference Country n Gender Age Mn Concentration Criteria for AD Diagnosis n Gender Age Mn Concentration Method

(% Female) Mean ± SD (Year) Mean ± SD (µg/L) (% Female) Mean ± SD (Year) Mean ± SD (µg/L)

Dominguez 2014 [11] Spain 30 60 80.9 ± 4.5 0.62 ± 0.35 NINCDS-ADRDA criteria 16 38 75.9 ± 5.7 0.57 ± 0.33 ICP-MS
Paglia 2016 [39] Italy 34 74 72.4 ± 7.5 0.59 ± 0.32 NINCDS-ADRDA criteria 20 80 68.3 ± 7.8 0.91 ± 0.48 ICP-MS
Hare 2016 [40] Australia 206 62 78.0 ± 8.6 0.82 ± 0.25 - 129 57 75.7 ± 7.6 0.85 ± 0.37 ICP-MS

NINCDS-ADRDA, National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer’s Disease and Related Disorders Association; DSM-III or DSM-IV, the
Diagnostic and Statistical Manual for Mental Disorders; ICP-MS, inductively coupled plasma-mass spectrometry; ICP-AES, inductively coupled plasma-atomic emission spectrometry;
AAS, atomic absorption spectrometry; MCI, mild cognition impairment.
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3.2. Studies on Mn Levels between Patients with AD and HC

Ten studies compared the serum Mn levels in AD patients with HC subjects (Table 1). The pooled
sample size consisted of 1685 participants: 551 AD and 1134 HC. The random-effects meta-analysis
results showed that patients with AD had significantly lower serum Mn levels than HC subjects
(SMD = −0.39; 95% CI (−0.71, −0.08); p = 0.015; Figure 2). There was statistically significant
heterogeneity among these studies (I2 = 84.0%, p = 0.000). The subgroup analysis assessment of
the method for measuring serum Mn levels and geographic locations showed that the heterogeneity
existed among studies, suggesting that the method for measuring Mn levels and geographic locations
were not significant sources of heterogeneity (Table 2). In meta-regression analyses, neither mean
age nor gender of AD patients were found to have moderating effects on the serum Mn levels in
AD (mean age: p = 0.619; gender: p = 0.505). A sensitivity analysis showed that no study from the
pooled analysis changed the results significantly. Temporal effect was excluded by using a cumulative
analysis. Furthermore, there was no publication bias in the present meta-analysis evaluated by the
Egger’s test (p = 0.258) and Begg’s test (p = 0.107).
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Figure 2. Forest plot for serum Mn levels in AD patients and health controls in included studies.
The rhombus represents the combined effect estimates. The size of grey box is positively proportional
to the weight assigned to each study, and horizontal lines represent the 95% confidence interval (CI).

Table 2. Meta-analysis of studies on serum Mn levels between AD patients and health controls.

Subgroups n of Studies SMD (95% CI) I2 p-Value

All studies 10 −0.39 (−0.71, −0.08) 84.0% 0.000

Methods
ICP-MS 7 −0.33 (−0.73, 0.06) 88.1% 0.000
ICP-AES 2 −0.71 (−1.16, −0.26) 0.0% 0.373
AAS 1 −0.43 (−0.97, 0.11) - -

Geographic
locations

Europe 6 −0.53 (−1.03, −0.04) 86.4% 0.000
Asia 3 −0.23 (−1.14, 0.68) 86.8% 0.001
Australia 1 −0.16 (−0.32, −0.01) - -
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3.3. Studies on Mn Levels between Patients with MCI and HC

Four studies compared the serum Mn levels in MCI patients with HC subjects (Table 1).
The pooled sample size of these studies was 1233 participants, including 285 MCI patients and 948 HC
subjects. The random-effects meta-analysis showed that MCI patients had a tendency toward decreased
serum Mn levels compared with HC subjects, but no statistically significant difference was found
(SMD = −0.31; 95% CI (−0.70, 0.08); p = 0.117; Figure 3). In addition, there was significant heterogeneity
among these studies (I2 = 80.7%, p = 0.001). Due to the limited number of studies, no further analysis
was performed.

Nutrients 2017, 9, 231 6 of 12

 

3.3. Studies on Mn Levels between Patients with MCI and HC

Four studies compared the serum Mn levels in MCI patients with HC subjects (Table 1). The
pooled sample size of these studies was 1233 participants, including 285 MCI patients and 948 HC
subjects. The random effects meta analysis showed that MCI patients had a tendency toward
decreased serumMn levels compared with HC subjects, but no statistically significant difference was
found (SMD = 0.31; 95% CI ( 0.70, 0.08); p = 0.117; Figure 3). In addition, there was significant
heterogeneity among these studies (I2 = 80.7%, p = 0.001). Due to the limited number of studies, no
further analysis was performed.

Figure 3. Forest plot for serumMn levels in patients withMCI and health controls in included studies.
The rhombus represents the combined effect estimates. The size of grey box is positively proportional
to the weight assigned to each study, and horizontal lines represent the 95% confidence interval (CI).

3.4. Studies on Mn Levels between Cognitive Impairment Individuals and HC

We also performed an analysis of the difference in serum Mn levels between cognitive
impairment individuals (AD and MCI pooled together) and HC subjects in 14 studies (Table 1). The
pooled sample size consisted of 2090 participants, including 836 cognitive impairment individuals
and 1254 HC subjects. The meta analysis results showed that patients with cognitive impairment had
significantly lower serumMn levels compared with HC subjects (SMD = 0.37, 95% CI ( 0.60; 0.13);
p = 0.002; Figure 4). Significant heterogeneity (I2 = 82.4%, p = 0.000) was observed across the studies.
To explore the possible source of heterogeneity, a subgroup analysis was conducted, and the
heterogeneity was not removed by the method for measuring Mn levels or geographic locations of
the studied population (Table 3). Since the proportion of female patients ranged from 33% to 80%
(Table 1), which suggested high heterogeneity, we repeated the analysis after excluding the studies
that had female proportions of the maximum and the minimum (Paglia MCI 2016; Fang AD 1997).
The results also showed lower levels ofMn in patients with cognitive impairment than inHC subjects
(SMD = 0.34; 95% CI ( 0.58, 0.09); p = 0.007), indicating good stability of our meta analysis. Further,
meta regression analyses showed that mean age and gender were not the sources of heterogeneity
(mean age: p = 0.771; gender: p = 0.636). Sensitivity analyses showed that no studies significantly
changed the overall results. No temporal effect was found by the cumulative meta analysis.
Furthermore, according to the Egger’s (p = 0.068) or Begg’s (p = 0.063) tests, no publication bias was
observed in the meta analysis.

Figure 3. Forest plot for serum Mn levels in patients with MCI and health controls in included studies.
The rhombus represents the combined effect estimates. The size of grey box is positively proportional
to the weight assigned to each study, and horizontal lines represent the 95% confidence interval (CI).

3.4. Studies on Mn Levels between Cognitive Impairment Individuals and HC

We also performed an analysis of the difference in serum Mn levels between cognitive impairment
individuals (AD and MCI pooled together) and HC subjects in 14 studies (Table 1). The pooled sample
size consisted of 2090 participants, including 836 cognitive impairment individuals and 1254 HC
subjects. The meta-analysis results showed that patients with cognitive impairment had significantly
lower serum Mn levels compared with HC subjects (SMD = −0.37, 95% CI (−0.60; −0.13); p = 0.002;
Figure 4). Significant heterogeneity (I2 = 82.4%, p = 0.000) was observed across the studies. To explore
the possible source of heterogeneity, a subgroup analysis was conducted, and the heterogeneity was
not removed by the method for measuring Mn levels or geographic locations of the studied population
(Table 3). Since the proportion of female patients ranged from 33% to 80% (Table 1), which suggested
high heterogeneity, we repeated the analysis after excluding the studies that had female proportions of
the maximum and the minimum (Paglia MCI 2016; Fang AD 1997). The results also showed lower
levels of Mn in patients with cognitive impairment than in HC subjects (SMD = −0.34; 95% CI (−0.58,
−0.09); p = 0.007), indicating good stability of our meta-analysis. Further, meta-regression analyses
showed that mean age and gender were not the sources of heterogeneity (mean age: p = 0.771; gender:
p = 0.636). Sensitivity analyses showed that no studies significantly changed the overall results. No
temporal effect was found by the cumulative meta-analysis. Furthermore, according to the Egger’s
(p = 0.068) or Begg’s (p = 0.063) tests, no publication bias was observed in the meta-analysis.
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Table 3. Meta analysis of studies on serum Mn levels between patients with cognitive impairment
and health controls.
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3.5. Studies on Mn Levels between Individuals with AD and MCI

Three studies analyzed the differences in serumMn levels between AD andMCI patients (Table
1). The pooled sample size was 435 subjects, including 165 MCI patients and 270 AD patients. The
random effects meta analysis showed that MCI patients had similar serumMn levels compared with
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Table 3. Meta-analysis of studies on serum Mn levels between patients with cognitive impairment and
health controls.

Subgroups n of Studies SMD (95% CI) I2 p-Value

All studies 14 −0.37 (−0.60, −0.13) 82.4% 0.000

Methods
ICP-MS 10 −0.38 (−0.66, −0.10) 85.0% 0.000
ICP-AES 2 −0.71 (−1.16, −0.26) 0.0% 0.373
AAS 2 −0.09 (−0.64, 0.46) 71.8% 0.060

Geographic
locations

Europe 8 −0.60 (−1.01, −0.20) 82.8% 0.000
Asia 4 −0.11 (−0.65, 0.43) 81.7% 0.001
Australia 2 −0.14 (−0.26, −0.02) 0.0% 0.651

3.5. Studies on Mn Levels between Individuals with AD and MCI

Three studies analyzed the differences in serum Mn levels between AD and MCI patients
(Table 1). The pooled sample size was 435 subjects, including 165 MCI patients and 270 AD patients.
The random-effects meta-analysis showed that MCI patients had similar serum Mn levels compared
with AD patients (SMD = 0.24; 95% CI (−0.23, 0.72); p = 0.310; Figure 5). There was significant
heterogeneity among these studies (I2 = 68.6%, p = 0.041). Since the meta-analysis included a limited
number of studies, and found no difference in serum Mn levels between MCI and AD patients, no
further test was conducted.
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4. Discussion

To date, the association of serum Mn levels with cognitive impairment remains controversial.
Some studies have shown that serum Mn levels are reduced in AD patients or MCI patients compared
with HC subjects [11,32,36,38,39]. However, several other studies have reported that AD and MCI
patients have similar or higher serum Mn levels compared with HC subjects [33–35,37,40,41]. In this
meta-analysis, we investigated the association of serum Mn levels with AD and MCI. We found that
AD patients had significantly lower serum Mn levels compared with HC subjects (SMD = −0.39; 95%
CI (−0.71, −0.08); p = 0.015), and MCI patients tended to have lower serum Mn levels (SMD = −0.31;
95% CI (−0.70, 0.08); p = 0.117). A decrease in serum Mn levels was found in patients with cognitive
impairment including both AD patients and MCI patients. However, strong heterogeneity existed
among the studies. Heterogeneity was not due to methods for measuring Mn levels, geographic
locations, age, and gender of patients. In this meta-analysis, we found that the serum Mn levels
were significantly lower in AD patients compared with HC subjects. Although we found that MCI
patients had a tendency toward a decrease in the serum Mn levels, no statistical significance was found.
The smaller number of studies and sample size (4 studies, 285 MCI subjects and 948 health controls)
(compared with 10 studies, 551 AD patients and 1134 health controls in AD studies) may contribute to
the no statistically significant difference between the serum Mn levels in MCI patients and HC subjects.
In two meta-analysis studies [11,39], the serum Mn levels were found to be significantly decreased
in MCI patients compared with health controls, but in two other studies [40,41] Mn levels were not
significantly different between MCI and HC subjects. Hence, the conclusion was not robust and further
investigations are necessary to address serum Mn levels in MCI individuals.

Consistent with our results showing that AD patients had lower serum Mn levels, Szabo et al. [42]
found that the Mn levels were lower in the frontal cortex tissues of AD patients. In addition,
Gerhardsson et al. [43] reported that the Mn levels in cerebrospinal fluid was significantly lower
in AD patients. The mechanisms underlying lower Mn levels in the brain of AD patients remain
unknown. Multiple transporters, such as the transferrin receptor, the divalent metal transporter 1
and the dopamine transporter, have been found to regulate Mn levels to maintain Mn homeostasis in
the brain [15]. Dysfunction of these Mn transporters has been found in AD patients or in AβPP/PS1
transgenic AD mice [44–46]. Therefore, the low Mn levels in the brain of AD patients may be the
result dysfunctional Mn transporters. However, we cannot rule out the possibility that dietary Mn
deficiency is involved in Mn decrement in AD. Further studies will be required to clarify the molecular
mechanisms that are responsible for Mn deficiency in AD patients.
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It remains unclear how Mn reduction contributes to AD progression. It is known that Mn is
important for several key enzymes, such as glutamine synthetase, arginase, pyruvate carboxylase, and
Mn-SOD. These metalloproteins regulate several enzymatic processes, including antioxidant defense,
energy metabolism and immune function, and dysfunction of these metalloproteins contribute to the
pathogenesis of AD [15,47–50]. Mn deficiency may promote the progression of AD through these
metalloproteins. Our findings that AD patients had lower serum Mn levels support the notion that Mn
deficiency is a potential risk factor for AD, and Mn related intervention is a potential therapy for the
prevention of AD. Although the results in this study were not completely indicative of causation, such
evidence may indicate a role for low Mn in the degenerative conditions of AD. Our meta-analysis still
has some limitations. First, the number of studies are relatively small, especially for the studies in MCI
subjects. Future studies with larger sample sizes are required to confirm our conclusion. Second, Mn,
as one of most important micronutrients for human health, naturally exists in daily diets [51,52]. Thus,
the serum Mn levels are affected by dietary intake of Mn. Due to the unavailability of the dietary intake
of Mn in the included studies, we could not assess the possible associations between dietary intake of
Mn and serum Mn levels. Third, since the methods used for measuring serum Mn and the sampling
techniques are different among studies, the data of the mean serum Mn levels exhibited obvious
variability among the included studies. Fourth, the studies published in English or Chinese have been
reviewed using our research database, but we excluded the studies published in other languages.

In summary, this meta-analysis found that there were significantly lower serum Mn levels in
patients with cognitive impairment (AD and MCI patients) compared with HC subjects. However, the
results should be interpreted with caution due to the high heterogeneity of the studies.
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